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A basic introduction to the period doubling bifurcation route to chaos is given. The connec
tion between numerical trajectories and true trajectories of a dynamical system, which present 
chaos, is discussed. The discretization procedure of continuous dynamical systems which model 
natural phenomena, and the corresponding properties which both systems, continuous and 
di crete, share, are presented. Finally some comments about the possible appearance of spurious 
in tabilities, pseudochaos, in the discrete model are sketched. 

1. Period-Dubbing route to chaos 

Dynamical systems attempt to understand processes in motion. Among the dif
ferent processes we can consider, we have the motion of stars in galaxies, the ups 
and downs of the stockmarket, the weather forecasting, the chemical reactions, the 
ri e and fall of the populations, the mechanical oscillations, etc. 

But the principal aim is to predict the state of the dynamical system at a further 
time. Thus, a simple question arises: Are dynamical systems predictable? The 
answer is also simple: Some yes, other no. But why is the question this way? Is it 
due to the very many variables included in the dynamical system? Well, this may 
be true, but it is not always the case, i.e., the answer is not complete. The very reason 
is chaos, which seems to appear in very simple dynamicl systems. With it, we mean 
that very simple systems depending on one variable, may behave unpredictably. 
There exists the hope of understanding more complex phenomena related to natural 
and applied sciences, with these simple dynamical systems. 

In order to have a bit clearer idea of how chaos arises, we will consider the family 
of quadratic functions. 

We have Qc(x) = x2 + c, where c is a parameter. This is one of the simplest 
nonlinear functions, and among the many different parameters we concentrate our-
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selves in those parameters with non-escaping orbits. For — 2 _ c _ 1/4, there is 
an interval of values for which the orbits of Qc(x) do not escape. All this can be 
analytically explained. From x2 + c = x, it can be easily proved that there exists 
two fixed points p, q e 91, when c _ 1/4: 

_ 1 + V(l - 4c) , _ 1 ~ V(l - 4c) 
2 

For c = 1/4 we have the so-called tangent bifurcation, which means that this first 
fixed point splits into two fixed points as c decreases. 

For — 3/4 — c — 1/4 all orbits: tend toward an attracting fixed point q. For c = 
= —3/4 we have the so-called period-doubling bifurcation. The attracting fixed 
point disappears and an attracting cycle of period 2 appears. For c = —5/4 the 
attracting cycle of period 2 becomes repelling, and a cycle of period 4 is born. And 
this continues while c decreases. 

Thus at each stage a cycle of period 2n becomes repelling, and an orbit of period 
2 n + 1 is born. This is the so-called period-doubling route to chaos, which seems to 
appear in a great deal of dynamical systems. 

For c = — 2, then we have Q_2, that has at least 2" fixed points in the interval 
— 2 _ x _ 2. However it has now infinitely many periodic points, and the orbits 
move about randomly. This is a chaotic quadratic function. [1] 

In this way the orbit diagram; is such, that the function has regions with period 
2, 4, 8, 16. ... and a window of period 3, among other. When this window appears 
on a dynamical system, i.e., when the dynamical system has period three, it has 
been proved by Li& Yorke, in his famous paper. „Period three implies chaos" [2], 
that chaos exists. In fact it was here when for the first time the term chaos was 
introduced in the modern literature. Some years before the Russian mathemati
cian Sharkovskii [3] had proved the same result. 

Fig. 1. Orbit Diagram of Qc(x) for - 2 _ c _ 1/4 
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One very basic ingredient of chaos is the sensitive dependence on initial conditions, 
which means that no matter how close two orbits start out, after a few iterations, 
they will be very far apart. We will take the approach that a dynamical system is 
chaotic, when there exist Lyapunov exponents bigger than zero. 

2. Shadowing Theorem 

For a physical system with chaos, in what sense lies the computer-generated 
trajectory near the true trajectory of the system? In fact we must consider not only 
the necessary roundoff errors in computers, but the noise in experiments, errors 
in iterations and even the sensitive dependence on initial conditions, which is essen
tial in chaotic orbits. A true orbit which stays near the pseudo-orbit is said to shadow 
the pseudo-orbit. In order to clarify the things we will use the following definitions 
[6], [7]: 

Definition: {pn}n=a is a 8f - pseudotrajectory for / if \pn+1 - f(pn)\ < 8f, 
a —̂ n = b, where 8f is the noise amplitude. 

Definition: {xn}
h
n=a is a true trajectory if xn+1 = f(xn), a ^ n ^ b 

Shadowing theorem. 

The true trajectory {xn}n=a 8x-shadows {pn}n=a on a ^ n ^ b, if \xn — pn\ < 8X 

for a ^ n —^ b. 

Definition; The pseudotrajectory {pn}
b

n=a has a glitch at iterate n = N < b, if 
for some relevant Sx there exists a true trajectory that ^-shadows {pn}n=a for 
0 ^ n ^ N, but no true trajectory that ^-shadows it for 0 ^ n ^ Nu when N± > N. 

The shadowing theorem was originally proved by Anosov and Bowen [4], [5], 
for hyperbolic maps. Their proof is of no practical use for computer experiments due 
to the order of magnitudes of the <5's. On the other hand most physical dynamical 
systems are not hyperbolic. 

Very recently it has been proved by Yorke and coworkers [6], [7] for non-
hyperbolic chaotic processes, which are the typical systems found in nonlinear 
dynamics. The very reason why shadowing works here, lies in the hyperbolicity 
along the pseudotrajectory. Even they formulate a conjecture to indicate the relative 
magnitudes of the quantities involved in the dynamical system: For a typical 2D 
Hamiltonian map with a chaotic trajectory and a small 8f > 0, it is expected a 8X ^ 
_̂  yJSf for a trajectory of length 1V « l/\AV 

3. Discretization of a continuous dynamical system 

Natural phenomena are usually modelled through the help of nonlinear ordinary 
differential equations, which have no exact solutions. It is necessary then to build 
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a discrete model for computational purposes. One question so arises: Do the discrete 
system share the same properties of the original continuous system? 

In principle numerical models represent the underlying continuous dynamical 
system when the step size tends to zero. The step size should be small enough, but, 
how small enough? 

It is known that for some numerical models with large enough step sizes, a type 
of spurious instability, computational chaos or pseudochaos is produced, which 
has no relation to the dynamics of the continuous model. 

We will consider here two simple examples. The first one is the pendulum which 
is a continuous system and which has been for long used as a paradigm of Hamilto-
nian nonlinear systems, and with the help of a simple algorithm we build a discrete 
system from it, with quite different properties. 

Pendulum Standard Mapping 

x = y In+1 =In- Ksin0„ 

y = —G>Q si*1 x K < 0 

x + co^sinx = 0 0n + 1 = 6n + I„ + 1 

In order to obtain the so-called standard mapping, which is also a paradigm for 
Hamiltonian discrete nonlinear systems; we have just considered the following 
algorithm: 

^ = xn+1 - x„ „ = dp 

At dt 

where At <| small and with K = a)o(Af)2 <̂  1. We have used the following change 
of variables Atp -> I, x -> 0. 

But now we note something surprising. While the continuous case is completely 
integrable, i.e. with exact solutions and with invariant curves in phase space, the 
discrete case has very different properties. 

For the standard mapping we have the following pattern of behaviour depending 
on the value of the constant K [8]: 
1. If K = 0, the system is completely integrable. 
2. If K =1= 0, but K -> 0, then Kl.A.M. curves still are preserved and stochastic layers 
exist in phase space. I 
3. If K -^ co, then the system is fully chaotic. 

This clearly shows that in the process of discretization we obtain a system whose 
dynamical properties are far apart from the one which possesses the continuous 
system. 

We consider now the Rossler model [9], which is a system that comes from the 
chemical dynamics. We have a system of three ordinary differential equations. 

x = -(y + z) 

y = x + ay 

z = b + z(x — c) 
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where a, b and c are constants. After using the backward Euler algorithm dw/df = 
= /(w), we obtain the discrete dynamical system wn+1 — hf(wn+l) = wn, where h 
can act as a control parameter and for h —> 0 in principle we go back to the conti
nuous system. 

If for h small the trajectories are chaotic, some questions can be formulated: 
1. Is the original continuous dynamical system also chaotic? 
2. Does the computed trajectory corresponds to the true trajectory? 

The first question can be answered affirmatively only in the case of arbitrarily 
small step sizes. For the last question shadowing applies, but still even assuming 
shadowing, at least for small h, there is no guarantee that the chaotic attractor 
present in the discrete system is continuous in h. 

In the present case the discretization has precisely the same fixed points as the 
continuous dynamical system, which is a property not shared by all numerical 
models. 

If we vary the step size h as a control parameter it results that: There exists a value 
h*9 which is a Hopf bifurcation of the discrete system and such that: 
For h > h* appears a fixed point which is stable. 
For h = h* the Lyapunov exponent is equal to zero. 
For h < h* appears a fixed point which is unstable. 

So as a conclusion we can affirm that: 
I. Numerical methods can generate numerical instabilities, pseudochaos, which are 
not present in the underlying continuous dynamical system. 
II. Some numerical methods can also suppress chaos via spurious stability, by 
simply increasing the step size of the integrator method. 
III. Pseudochaos can be generated also by round-off errors, just as a small effect 
contributing to the calculation of the Lyapunov exponents. 

As a consequence of all this we can say that it is necessary to pay more attention 
to the discretization method, and realize that different algorithms give rise to dif
ferent discrete models, which have or not the same fixed points. Different step sizes 
give also rise to different behaviours. The identification of the sources of cancellation 
errors along with the precision of computational calculations results is also necessary. 
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