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The Hamiltonian formalism for the damped harmonic oscillator has recently received some
attention [1–4], in which a canonical transformation has been used in order to remove the
damping term in the original term. The original idea goes back, as far as the author knows,
to the article of Bateman [5], where he introduces the transformation in the Lagrangian
formulation for the linear damped harmonic oscillator, while trying to prove that a linear
dissipative system can be derived from a variational principle. Later, Havas [6] studied the
range of application of the Lagrangian and Hamiltonian formalism. This was also used by
Denman and Buch [7] in order to study the Hamilton–Jacobi equation and to analyze
dissipative systems for its possible treatment in quantum mechanics.

In reference [4], Nagem and Sandri found, in the case in which the natural frequency
is zero, that the energy ET is a constant of motion and that the two quantities K1

and K2,

K1=ẋ+gx=e−gtpx+gx/2, K2=ẋ egt=px−(g/2)x egt, (1, 2)

are constants of motion. Using a convenient canonical transformation, Lemos [8] showed
the existence of the constant of motion

f(x, ẋ, t)=egt(ẋ2+v2
0x2+gxẋ) (3)

for the general linear damped harmonic oscillator of equation

ẍ+gẋ+v2
0x=0, (4)

from which K1 and K2 can be obtained as particular cases. On the other hand, a generaliz-
ation of the transformation used in references [1, 4] can be found in reference [9], where a
linear oscillator with time-dependent friction and frequency is considered. In relation to the
geometry of the harmonic oscillator in phase space see reference [10].

Concerning the Hamiltonian formalism for non-linear oscillators with dissipation terms,
Denman and Buch [7] gave the general expressions for the Lagrangian and the Hamiltonian.
This was developed later by Steeb and Kunick [11] for a class of dissipative dynamical
systems with limit cycle and chaotic behaviour and the explicit Lagrange and Hamilton
functions were given. Among the non-linear oscillators considered were the Duffing and
the simple pendulum. Suppose that we consider the equation of motion of a non-linear
oscillator in the form

ẍ+gẋ+dV(x)/dx=F sin vt, (5)
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where F is the amplitude and v is the frequency of the external perturbation, g is the damping
coefficient, V(x) is the potential, and x represents the displacement from the equilibrium
position. The Lagrange and Hamilton functions for this case are

L=egt6ẋ2

2
−V(x, t)7, H=1

2p
2 e−gt+egtV(x, t), (6, 7)

where the time-dependent potential is given by

V(x, t)=V(x)−Fx sin vt. (8)

From this general expression, if V(x)=x2/2 and F=0, we obtain the Lagrangian and
Hamiltonian for the harmonic oscillator, which clearly coincide with the ones given by
Rollins and Shivamoggi [2], which are simpler than in reference [1], precisely for the reason
stated there: the elimination of the gauge factor in the Lagrangian.
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We thank Dr Sanjuán for his interesting and enlightening comments. In addition to the
results for ordinary differential equations which are listed by Dr Sanjuán, extensions to
partial differential equations are also possible. For example, the equation

128/1t2+2g18/1t−c2
01

28/1x2=0 (1)
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may be transformed by the change of variables

8(x, t)=e−gtf(x, t) (2)

into the equation

12f/1t2−c2
01

2f/1x2−g2f=0. (3)

Thus the physical problem of small transverse vibrations of a stretched string with
viscous damping may be transformed into the problem of small transverse vibrations of
an undamped stretched string on an elastic foundation with a negative spring constant.
The Lagrangian density corresponding to equation (3) is

Lf=1
2(1f/1t)2−1

2c
2
0 (1f/1x)2+1

2g
2f2, (4)

and equation (3) implies the local energy conservation equation

1

1t 61
201f

1t1
2

+1
2c

2
001f

1x1
2

−1
2g

2f27+ 1

1x 6−c2
001f

1x101f

1t17=0 (5)

and the local conservation of linear momentum equation

1
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001f

1x101f
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1x 61
2c

2
001f
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001f

1x1
2

+1
2g

2c2
0f

27=0. (6)

By using equation (2) to change back to the variable 8, the Lagrangian density for
equation (1) may be written as

L8=e2gt[1
2(18/1t )2+g818/1t+g282−1

2c
2
0 (18/1x)2]. (7)

The corresponding local energy conservation for equation (1) is

1

1t 6e2gt$1
2018

1t1
2

+g8
18

1t
+1

2c
2
0018

1x1
2

%7+ 1

1x 6−c2
0 e2gt$018

1x1018

1t1+g8
18

1x%7=0,

(8)

and the local conservation of linear momentum equation for equation (1) is

1

1t 6−c2
0 e2gt$018

1x1018

1t1+g8018

1x1%7
+
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If equation (1) is written with more than one space dimension, it is also possible to derive
a local conservation of angular momentum equation.


