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A generalization of the van der Pol oscillator, in which a cubic non-linearity in the
restoring force is considered, has been studied. For very small values of the cubic
parameter, different chaotic transitions take place, via period-doubling, saddle-node
bifurcations and crises, which restore the symmetry of the chaotic attractor. For larger
values of the parameter a period-adding sequence of saddle-node bifurcations and the
scaling laws that rule them are found. When negative values of the cubic parameter are
considered, bifurcations via hysteresis following a period-adding sequence are found.
Finally, it has been found that there is a strong sensitivity to very small modifications of
some system parameters.
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1. INTRODUCTION

The possibility of irregular and aperiodic oscillations has manifested itself as one of the
most interesting and striking properties of driven non-linear oscillators. A certain
dynamical system may evolve toward this aperiodic dynamical state through different
ways, showing that there are many different scenarios for the transitions to chaos [1], which
are possible for dynamical systems when an appropriate parameter is varied.

Non-linear oscillators may be divided into two different types: self-excited oscillators,
which possess a stable limit cycle without external driving, and strictly dissipative
oscillators which tend to a motionless state when not driven.

The present work is concerned with a generalized version of a self-excited oscillator,
the well-known van der Pol oscillator, in which a cubic term in the restoring force is
considered. The equation of motion of the forced oscillator is

d2x/dt2 − a(1− x2) dx/dt+ bx+ cx3 = d sin vt, (1)

where a, b, c, d and v are parameters. This non-linear oscillator involves the non-linear
damping term, corresponding to the classical van der Pol equation, and the non-linear
cubic term, corresponding to the Duffing equation. Sometimes it is referred to as the
Duffing–van der Pol oscillator.

In this study of the cubic van der Pol oscillator, a set of parameters has been selected
for which the system is in a chaotic state, a= d=5, b=1, c=0 and v=2·466 [2, 3].

The effect of the cubic term on the asymptotic behaviour of the system dynamics is the
matter of interest, with c acting as the control and bifurcation parameter. The dynamics
of equation (1) have been simulated by using a fixed-step-size fourth order Runge–Kutta
numerical integration, with 500 time steps per forcing period. The oscillator is symmetric,
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and thus the attractors appear either in pairs, being inversions of each other, or alone,
being inversion-symmetric with an odd period [4]. The co-existence of asymmetric
attractors is a feature of the van der Pol oscillator, due to its symmetry. The orbit loses
stability and two stable asymmetrical orbits appear via a symmetry-breaking bifurcation,
which corresponds in fact to the first period-doubling bifurcation. For very small values
of c, different bifurcation phenomena are observed in this region, including saddle-node,
period-doubling, period-adding and, due to the symmetry of the system, symmetry-
breaking bifurcations, along with periodic and chaotic attractors. Note that without these
symmetry-breaking bifurcations period-doubling bifurcations are not possible.

In the region [0, 0·02] five different chaotic zones have been found, instead of the three
reported in reference [2], and an interpretation is to be given here of what was also reported
there concerning symmetrical and unsymmetrical transitions to chaos. In Figure 1, the
bifurcation diagram versus the parameter c of the cubic term for the parameter region
[0, 0·015] is shown, where the five chaotic zones are clearly observed. A deeper study of
this region shows a richer variety of complex dynamical phenomena, which occur in this
system for very small values of the cubic non-linearity.

Among the different complex phenomena observed in the study of the dynamics
of different non-linear oscillators, much attention has been focused on period-doubling
bifurcations. However, other kinds of period-increasing phenomena, such as period-adding
bifurcations, have received some attention very recently [5–9] and are therefore of interest.
For larger values of the parameter c, a sequence of period-adding bifurcations leads the
system to a period-1 orbit. Something similar occurs for negative values of c, where
bifurcations via hysteresis are found. The system also shows a very strong sensitivity to
very small modifications of some parameters, allowing transitions from chaotic to periodic
states and vice versa.

Figure 1. Bifurcation diagram versus the parameter c of the cubic term. The five chaotic regions in the c interval
[0, 0·0015] are clearly observed. Other smaller windows exist within these regions.
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2. CHAOTIC TRANSITIONS AND CRISES

As c increases different bifurcation phenomena and other features are observed.
In Figure 2(a) the bifurcation diagram versus the cubic parameter for this region I,
which is the same as region I in reference [2], is shown. At c=0·02 one has a periodic
orbit, which lies in a periodic window, extending until c=0·052.

If one considers c as a decreasing parameter, a period-doubling bifurcation occurs at
c1 0·0015. The symmetric chaotic attractor persists until c=0·0003, where different
attractors merge. At c=0·00044 a sudden widening of the attractor occurs. In fact this
is an interior crisis [10]. Figure 2(b) shows the asymmetric chaotic attractor at c=0·00045,
while Figure 2(c) shows the restored symmetric chaotic attractor at c=0·00043, once the
parameter has surpassed the value of the crisis. Figure 2(d) manifests a more symmetric
chaotic attractor at c=0·00025, taking further the limit value where the attractor merging
crisis [11] at c=0·0003 occurs. This crisis occurs in systems with symmetries where two
or more chaotic attractors merge to form one chaotic attractor. The asymmetric chaotic
attractor at c=0·00045, which is shown in Figure 2(b), is explained by considering the
unsymmetric chaotic bands before the interior crisis where the orbit lies. This may be
observed very clearly in Figure 2(a). The chaotic attractor lies, in reality, in a four-chaotic

Figure 2. (a) Bifurcation diagram of region I; (b) asymmetrical chaotic attractor for c=0·00045; (c) chaotic
attractor for c=0·00043 after the interior crisis, where the symmetry has been restored; (d) chaotic attractor
for c=0·00025.



. . . 866

Figure 3. (a) Bifurcation diagram of region II; (b) chaotic attractor for c=0·00678, where the orbit lies in
a chaotic band attractor; (c) chaotic attractor for c=0·00675, after the crisis.

band just before the interior crisis, which has the effect of widening the attractor into
one chaotic band and consequently restoring the symmetry. This explains one of the
routes described in reference [2]. In fact the route to chaos followed here is simply a
period-doubling bifurcation route, which for certain parameter values allows the orbit to
lie in an attractor formed by unsymmetric four-chaotic bands, just before the interior crisis
where the symmetry is restored again.

The region II (see Figure 3(a)) extends approximately until c=0·00695. When one
considers the transition from a periodic orbit to the chaotic zone for decreasing values
of c, one finds that at c=0·00686 a symmetry-breaking bifurcation occurs. Figures 3(b)
and 3(c) show the chaotic attractors in phase space before and after the interior crisis
which exists at c=0·00676, where the attractor widens notably. In this region the chaotic
attractor lies within several chaotic bands, possessing a certain degree of symmetry for
c=0·00678, which is shown in Figure 3(b). Inside the chaotic region and past the crisis,
a small periodic window at c=0·00659 is found.

The region III, which extends until c=0·092, is shown in Figure 4(a). Considering
decreasing values of c as well, one observes at c=0·00864 a symmetry-breaking
bifurcation. Again the scenario leading to chaos is via period-doubling cascades. At
c=0·00835 the orbit lies within chaotic bands and, as the parameter decreases, the
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Figure 4. (a) Bifurcation diagram of region III; (b) chaotic band attractor for c=0·00835; (c) chaotic attractor
for c=0·0083; (d) chaotic attractor for c=0·00818.

symmetry increases. Figures 4(b) and 4(c) show the transition to wider chaotic bands
with symmetry, while in Figure 4(d) one can see the more symmetric attractor for
c=0·00818, where the interior crisis takes place. Periodic windows beyond this parameter
value are also observed.

Figure 5(a) shows the region IV, which corresponds to region II in reference [2], and
continues until c=0·01102. At c=0·011 the oscillator has an asymmetric period-6 orbit
as is shown in Figure 5(b). At c=0·01075, just before the sudden widening of the chaotic
attractor as shown in Figure 5(c), there is an asymmetrical chaotic attractor. This was not
observed in reference [2], where it was stated that a chaotic unsymmetric attractor between
a periodic unsymmetric and chaotic symmetric attractor was not found. The chaotic
transition here is then similar to the one in region I. The period-doubling bifurcation
cascades, at this value of the parameter, have chaotic bands which are non-symmetric
until they reach the interior crisis at c=0·0107, beyond the interior crisis and where the
symmetry is restored again. This asymmetry at c=0·01075 can be also observed in the
time series for the velocity, which is shown in Figure 6.

Region V is the last chaotic zone in Figure 1, which corresponds to region III in reference
[2]. It begins with a saddle-node bifurcation at c=0·1102 from a period-6 orbit and ends
up with a saddle-node bifurcation at c=0·0122, where a period-3 orbit is born. Thus,
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Figure 5. (a) Bifurcation diagram of region IV; (b) periodic attractor for c=0·011; (c) asymmetric chaotic
attractor for c=0.01075; (d) chaotic attractor for c=0·0107, after the interior crisis.

if one starts at a value of cq 0·0122, and decreases c, the periodic attractor suddenly
undergoes a jump transition to the symmetric chaotic attractor at this point. Within the
region, a small window of high periodicity may be observed between c=0·0118 and
c=0·0119.

It should be noted here that similar sudden transitions from chaotic attractors
into periodic attractors occur in any of the chaotic regions considered, at the value
of the saddle-node bifurcation; that is, at c=0·0052, c=0·00695, c=0·092 and
c=0·01102. Between two of these chaotic regions there is a periodic window, whose
structure is universal in the sense that it is born through a saddle-node bifurcation,
undergoes a period-doubling bifurcation and ends when the m-chaotic bands collide
with the unstable periodic orbits. These were born at the same saddle-node bifurcation,
where the chaotic bands widen into one band attractor at the interior crisis parameter
value.

Thus five chaotic regions have been found in this c interval. In all of them the transitions
to chaos are carried out through period-doubling bifurcation cascades, arriving then to
a symmetric chaotic attractor, with the exception of this last region entered via decreasing
values of c. In this final region a chaotic zone is entered through a saddle-node bifurcation
giving rise to a symmetric attractor as well. The asymmetric chaotic attractors reported
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Figure 6. Time series for the velocity for c=0·01075, where the asymmetry is manifested.

in reference [2] are just the chaotic attractors corresponding to the chaotic bands
before the interior crisis occurs. This restores the symmetry once the value of the crisis
is exceeded.

3. PERIOD-ADDING AND SCALING LAWS

The period-3 window which appears at c=0·0122 in Figure 1 continues until c=0·58
where another saddle-node bifurcation occurs. Arising from this bifurcation, a series of
periodic windows of increasing periodicity lead finally to a period-1 orbit at a saddle-node
bifurcation when the parameter value is c=1·659, as illustrated in Figure 7.

In this parameter region an infinite cascade of saddle-node bifurcations is observed and
a sequence of periodic windows of periods 3:2:5:3:7:4:9:· · · is exhibited.
This infinite sequence of saddle-node bifurcations accumulates at the value of c=1.659,
where the period-1 orbit is born via a saddle-node bifurcation. This infinite cascade of
saddle-node bifurcations is composed of two subsequences of periodic windows, each one
possessing a period-adding bifurcation mechanism. The first one arithmetically increases
the period by 2 and the other one increases the period by 1. In fact what one really has
is a period-1 adding sequence, since one of the subsequences corresponds to symmetric
orbits, where the periodicity increases by two. The other subsequence corresponds to
pairs of asymmetric orbits. However, only one of the asymmetric orbits is observed in
the bifurcation diagram. Similar situations occur for the Duffing oscillator and for the
linear van der Pol oscillator [12, 13]. On the other hand, the topological explanation of
the window ordering and of the window-structure is given in reference [13], where the
bifurcation structure of the double-well Duffing oscillator is analyzed in detail. As c
increases, the size of the windows decreases, and the period m of the windows increases,
accumulating at the final saddle-node bifurcation.

What one observes is that the length in c of the range of stability for an orbit of
period m decreases approximately geometrically with m. One can analyze the scaling law
and structure of this period-adding sequence as follows. Suppose {cm}a

m=3 is the series
formed by the parameter values for which the cascade of saddle-node bifurcations occurs.
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Figure 7. Sequence of period-adding bifurcations accumulating at c=1·659, where a period-1 orbit is born
via a saddle-node bifurcation.

One can construct a sequence of dm values,

dm =(cm+2 − cm+1)/(cm+1 − cm )= dm+1/dm , (2)

where dm = cm+1 − cm is the parameter length, between two successive bifurcations
including the period-m window and the small chaotic band in between. For large values
of cm the period becomes larger and when m:a, numerical calculations show that

lim
m:a

dm = d=1. (3)

This confirms the result given in reference [9], where d is conjectured to be a universal
constant for period-adding bifurcations. Likewise, the well-known Feigenbaum constant
d=4.669 applies to period-doubling bifurcations [1]. It is possible in this situation to
predict the parameter value ca, to which the accumulation of these bifurcations values cm

tends as m:a. This parameter value corresponds with the birth of the period-1 orbit
through a saddle-node bifurcation, and obviously depends on the value of the parameter
set (a, b, d, w) chosen. The Aitken d2-process [14] of quick convergence, which is applied
to geometrically decreasing magnitudes, may be used in order to predict this parameter
value. The result which is obtained is

ca = cm + dm /(1− dm ), (4)

giving ca with rather good accuracy. For instance, the period-34 orbit is born at a
saddle-node bifurcation at c34 =1·6305, which c35 =1·6322 and c36 =1·6338. Thus,
d34 =0·0017 and d34 =0·9411765. These values predict an accumulation point at
ca =1·6594. The scaling laws for cm can also be analyzed. Figures 8(a, b) show the log-log
plot of ca − cm and cm+1 − cm versus the period m. It is clear that there is a power law
relationship. For large values of m, the relationships obtained are ca − cm 0m−2 and
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Figure 8. (a) Log-log plot of ca − cm versus the period m – for large values of the period the scaling behaves
as ca − cm ~ m−2; (b) log-log plot of cm+1 − cm versus the period m– for large values of the period the scaling
behaves as cm+1 − cm 0m−3.

cm+1 − cm 0m−3. Similar results were obtained in reference [15] for a one-dimensional
mapping possessing a period-adding sequence. If one considers the relation (4), which
holds especially for large values of m and the above scaling laws, one can conclude that
1− dm 0m−1 for large values of m. This confirms the result of equation (3) and also gives
the rate of convergence for large values of the period m.

4. BIFURCATION DIAGRAMS FOR NEGATIVE VALUES OF c

The bifurcation diagrams have also been obtained for negative values of c. In this
case the potential from which the restoring force is derived is an inverted double-well,
which corresponds to a soft spring oscillator. The topology of phase space changes
from the previous case in such a way that the orbits are confined, when b=1, to values
of =x =Qz1/c within a separatrix or heteroclinic orbit. Here there is the possibility of
escape when the energy of the system allows the orbit to overcome the potential barrier
which for b=1 is of the order of 1/(4c). What has been found is a rather small chaotic
region for very small values of c in the interval [−0·006, 0], where all the bifurcation
phenomena reported for positive values of c, such as period-doubling, crisis and
symmetry-breaking appear. After this small chaotic region (see Figure 9(a)), a period-5
orbit is born at c=−0·006 through a saddle-node bifurcation, and at c0−0·15 suddenly
this system switches to a period-7 orbit, without traversing any chaotic region. In fact what
one has here is a bifurcation via hysteresis, which may be observed when the parameter
used for the bifurcation diagram is varied in the reversed direction. The region of the
hysteresis extends from c0−0·13 to c0−0·15, where both period-7 and period-11
orbits co-exist. One enters into a chaotic region again, and finally the system suffers
the sudden destruction of the period-11 attractor where the orbit lies, escaping from
its potential well at the value of c=−0·244 and x tends to the attractor at =x ==a.
For larger values of the forcing and the frequency, numerical calculations show the
appearance of new periodicities (see Figure 9(b)). In fact the transition observed is chaos
:7:9:11:chaos:periodic window:chaos:boundary crisis [10], where the chaotic
attractor collides with the periodic orbit of its basin boundary, and the system undergoes
the escape from its potential to infinity, at a parameter value larger than before. The
periods observed are odd and the period-adding involves adding by two to the previous
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Figure 9. (a) Bifurcation diagram for negative values of the parameter c – at c=−0·244 the period-11 orbit
collapses and escapes to an attractor at infinity; (b) bifurcation diagram for d=10 and v=3.9 versus negative
values of c – boundary crisis is observed past c=−0·25.

period. For even larger values of the forcing and the frequency, the periodic-periodic
transitions disappear, and what are observed are chaotic-periodic transitions. Also, the
period-adding mechanism with odd periods adds two to the previous period. The scaling
relations in the period-adding bifurcations, which are observed for the negative values
of the parameter c, seem to possess the same laws as those described in the preceding
section.

5. TRANSITIONS TO PERIODIC STATES

Another interesting phenomenon is the strong sensitivity to small changes in the
parameters of the oscillator. Suppose one has a chaotic orbit for say c=0. After a very
small increase of c, say to c=0·003, the situation also remains chaotic, in fact one is in
the chaotic region before the crisis, as seen in Figure 1. Figure 10(a) indicates in phase
space the effect of a small change in the damping term, now a=4·9861, leading to an
asymmetrical periodic state. It is interesting to note that for the same parameter of the
damping term and making again c=0, the orbit falls into a chaotic attractor, showing
a very strong sensitivity to the modification of the parameters. For smaller values of the
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Figure 10. (a) Periodic attractor for a=4·9861 and c=0·0003; (b) chaotic attractor when c is reduced to zero.
Observe the strong sensitivity to the transition from a chaotic state to a periodic state and vice versa; (c) periodic
attractor for b=0·995 and c=0·0003. For c=0 the attractor remains periodic.

damping parameter, the system becomes periodic with lower periodicity. Something similar
may be observed by slightly varying the coefficient b of the linear term (see Figure 10(b)),
although now this parameter is not as sensitive as before, since the orbit also remains
periodic for c=0.

One intuitive explanation of this phenomenon lies in the observation that there are many
periodic windows inside the chaotic area, which can be observed in a certain bifurcation
diagram for a chosen set of parameters. If one varies some of the parameters a little, the
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attractor changes substantially and may easily fall into one of the periodic windows inside
the chaotic attractor, leading the system to a periodic orbit.

6. CONCLUSIONS

In the present work, it has been shown that chaotic transitions exist for very small values
of the c parameter of the cubic term of the hard spring restoring force. Bifurcation
phenomena and complex behaviour have been found in this small region of parameters,
such as period-doubling bifurcations, symmetry-restoring crises via interior crises
and attractor-merging crises and also saddle-node bifurcations. Basically there are two
routes to chaos: period-doubling and the intermittency associated with the saddle-node
bifurcations. An explanation has been given of some previous numerical experiments, via
other features observed in this study. For larger values of the parameter, a sequence of
period-adding bifurcations has been found and the scaling properties have been analyzed.
These confirm recent conjectures about the universal character of this phenomenon.
Similarly negative values of c, which describes a soft spring restoring force, have been
considered. Bifurcations via hysteresis are produced along with boundary crises, where the
system is attracted to infinity. Finally it has been shown that there is strong sensitivity
to very small changes in the values of certain parameters, causing transitions from
chaotic to periodic attractors. This suggests that the system is especially sensitive to very
small variations of the parameters corresponding to the damping term and to the cubic
term. Thus, it would be of interest to consider a parametric perturbation of one of the
above mentioned parameters, by means of which an easy control [16] of the chaotic orbits
of the system would be expected.
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