
Pergamon 

Chaos, Solitons & FracraLr Vol. I, No. 3. pp. 435-440. 19Yh 
Copyright 0 1996 Elsewer Science Lrd 

Ptinted in Great Britain. All rights reserved 
0960~M79/96 SlS.(Kl - O.lHl 

0960-0779(95)00066-6 

TUTORIAL ARTICLE 

Remarks on Transitions Order-chaos Induced by the Shape of the 
Periodic Excitation in a Parametric Pendulum 

MIGUEL A. F. SANJUkN* 

Departamento de Fisica e Instalaciones, E.T.S. de Arquitectura, Universidad Politecnica de Madrid. 
28040 Madrid, Spain 

(Accepted 27 June 1995) 

Abstract-We study a pendulum parametrically excited by nonharmonic perturbations. Instead of 
using a circular harmonic function to perturb the pendulum, we use a Jacobi elliptic function as a 
perturbation, which encompasses it as a limit. Melnikov analysis provides the general condition for 
the onset of homoclinic bifurcations, adding now the elliptic modulus as a new parameter. Using the 
elliptic modulus, which is responsible for the shape of the perturbation, as a control parameter, new 
transitions order-chaos may occur. 

1. INTRODUCTION 

The study of periodically excited nonlinear oscillators has been a topic of interest in the 
past few years. Usually a periodical excitation depending on one or several frequencies, 
acting either as an external perturbation to the system, or on the dynamical state variable 
in a parametric way, has been considered. Apart from the intrinsic dynamical properties of 
the response of the different oscillators to the excitations, one of the more striking 
properties under consideration has been the chaotic response. In this way current research 
has been mainly interested in finding out the regions of parameters, for which the 
responses of the nonlinear oscillators are chaotic. On the other hand, another topic of 
interest in recent years has been concerned with the suppression or inhibition of chaos. 
This has been done experimentally [l] and analytically, via the information which supplies 
the Melnikov method [2-61. 

One of the ways to suppress chaos that has been proposed quite recently, deals with the 
use of parametric modulation. The effect of periodic perturbations on dynamical systems 
near the onset of a period-doubling bifurcation, considering near-resonant perturbations, 
has been studied in [7]. There it was found that near-resonant perturbations suppress the 
onset of subharmonic oscillations, which results in the suppression of period-doubling, or 
that the bifurcation point of an unperturbed system is shifted due to the presence of the 
small-resonant perturbation, in a way that stabilizes the system. Also Saravanan et al. [8] 
studied the parametrically modulated Lorenz system which can show hastening of chaos as 
well as stabilization of the attractor giving rise to a limit cycle, depending upon the 
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amplitude of the modulation. The given theoretical explanation is that the modulation 
affects the threshold of the Hopf bifurcation and hence the threshold for the strange 
attractor is lowered. 

Usually the perturbation that has been used in order to excite the nonlinear oscillator has 
been a harmonic function. However, a different way has been proposed recently, namely to 
excite the oscillator through the Jacobi elliptic functions [5,6], which are the nonlinear 
generalization of the harmonic ones. This selection seems natural, since as harmonic 
functions are natural in a linear world, the Jacobi elliptic functions are perceived as natural 
in a nonlinear world. 

In the present paper we consider the parametrically excited pendulum. This system has 
received considerable attention from many authors. The numerical studies of [9] show that 
strange attractor and period-doubling bifurcation cascades occur in both the dissipative and 
the conservative case. An experimental control of a chaotic parametrically driven pen- 
dulum has been reported in [lo] and analytical studies can be found in [ll]. However, all 
these studies consider only harmonic perturbations, and here we will consider non- 
harmonic perturbations. In fact, the perturbation we use is the nonlinear generalization of 
the harmonic excitation used in [ll], but in such a way that we recover the same results as 
a limiting case. The existence of chaotic regions in parameter space due to homoclinic 
intersections are well known. The transitions from an ordered state to a chaotic one 
depends on the dissipation and on the frequency as well as the amplitude of the 
modulation. 

We stress that the transitions which are reported here. correspond to a fairly new kind, 
which are induced by the modification of the elliptic modulus of the Jacobi elliptic 
function, representing the external perturbation. Even fixing the parameters in a chaotic 
state, we could eventually convert this chaotic state into an ordered one by simply 
modifying the elliptic modulus, used as a control parameter. 

2. ONSET OF THE HOMOCLINIC BIFURCATIONS 

We consider here the effect of periodic nonharmonic pulses, when they act as a 
parametric modulation on the pendulum equation. The parametric perturbation that we 
consider is the Jacobi cosine amplitude elliptic function, cn, of frequency w and elliptic 
modulus k. The equations of motion for the parametrically forced pendulum with 
dissipation can be written as a system of first order differential equations: 

i = v, 

ci = --E/~u - (1 + &Acn(wt, k)sinx, 

where (x, v) E S’ x R, /3, A, w are positive constants and 0 < E d 1. 
The application of the Melnikov method [12], allows us to ascertain the condition that 

the parameters A and p must satisfy in order that the homoclinic tangencies occur, and its 
corresponding chaotic response. 

In order to calculate the onset of the homoclinic bifurcations, we must compute the 
Melnikov function for the parametrically excited pendulum in equation (l), which is to be 
considered as a planar Hamiltonian system, whose unperturbed Hamiltonian is 

(2) 

For this purpose, the solutions of the unperturbed pendulum, E = 0, must be known. The 
phase space of the pendulum is 2n-periodic with hyperbolic saddles in (_fr. 0) and an 
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elliptic centre in (0,O). There are three different kind of orbits for the unperturbed 
pendulum: rotations, oscillations and separatrix motion. The rotations are the unbounded 
motions, the oscillations are the bounded ones and the separatrix motion correspond to an 
oscillation of infinite period. In fact, we can identify both hyperbolic saddles and consider a 
cylindrical phase space, and this allows us also to talk about homoclinic connections and 
homoclinic motions, which correspond to the separatrix motion, instead of the heteroclinic 
ones. The solutions for the oscillating orbits can be expressed in terms of the Jacobi elliptic 
functions as 

(x(t), u(t)) = (2kcn(wt, k)dn(ot, k), 2kcn(wt. k)). (3) 

From them we can obtain the solutions for the homoclinic orbit. taking the limit k -+ 1 for 
the elliptic modulus. In fact k is related to the energy or Hamiltonian of the unperturbed 
pendulum through the expression 

H = 2k2 - 1, (4) 

in such a way that it labels the different orbits. The homoclinic solutions are thus 

(x,,(t), u,,(t)) = (2 tanh wt sech wt , 2 sech ot). (5) 

The Melnikov function has to be evaluated for the homoclinic orbit and takes in our case 
the following form: 

I 

+m 
M(k, w; to) = ~,,(t - to){-Acn(ot, k)sin(x(t - to)) - bu$,(t - to)}dt. (‘5) 

--a 
In order to calculate this integral, which involves the Jacobi elliptic function cn, we will 
consider its Fourier expansion, which is given by 

cn(ot, k) = $-:n$sech (2n + 1)E 1 [ cos (2n + l)?rrwt 

n 0 I 2K ’ 
(7) 

where K(k) denotes the complete elliptic integral of the first kind, K’ = K(k’), k’ is the 
complementary elliptic modulus which satisfy the relation kf2 = 1 - k2. Further information 
on elliptic functions can be found in [13, 141. Thus the Melnikov function takes the form 

M(k, o; to) = -4A cn(w(t + ro)) sech2 (r) tanh rdr - 4p sech2 (r) dr 

= -8p - 4Ai in< sech (2n + 
n 0 

1)s 1 1 cos (2n :j)““‘O 1 
I 

+a 

X sech2 rtanh tsin (2n + dt. 
--P 

l)E 
I 

After evaluation of this last integral we may write the Melnikov function as 

M(k, w; to) = -8p + 8AJ(k, w; to). 

where J( k, o; to) is defined as 

J(k, w; to) = - 
;j$j$j;2 

n + 1)2sech (2n + 1) 
[ $1 

x csch (2n + l)a%B sin (2n + l)aot, 
4K 1 [ 1 2K ’ 

(8) 

(9) 

(10) 
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The condition for the homoclinic tangencies to occur is obtained when the Melnikov 
function changes sign at some t,,, and in our case this implies that 

J = J(k, w), 
A 

(11) 

where now J(k, w) is 

J(k, w) = - ik 5$-i@ II + 1)2sech (2n + l)‘i’ [ ZK]csch[ (2n ;;‘“““I. (12) 

The above relation indicates the onset of homoclinic bifurcations, and for 

B > J(k, CO), 
A 

(13 

the crossing of the stable and the unstable manifolds of the saddle point (a, 0) for the 
Poincare map occurs giving rise to homoclinic chaos. 

3. LIMITING CASES FOR THE THRESHOLD CONDITION 

Equation (11) gives us the threshold function for the parameters A and /3, responsible 
for the modulation and for the dissipation, respectively, to have a homoclinic bifurcation. 
In our case this function depends not only on the frequency of the modulation, as usually 
happens when the perturbation is harmonic, but also on the elliptic modulus, which is 
responsible for the shape of the periodic pulses used to modulate the pendulum. As k is 
bounded, i.e., k E [0, 11, it is natural to analyse equation (11) for the two limiting cases. 

For the case in which k + 0, the complete elliptic integral of the first kind has the 
limiting value K(k) + r/2 and then the function Jl(k, w) is given by 

l&J(k, w) = 
ml.? -csch = . 
4 1 1 2 

(14) 

Inserting this value into equation (11) provides us with the following result for the 
occurrence of homoclinic tangencies 

p - tic& ?! -- 
A 4 [ 1 2 ’ 

(15) 
which obviously coincides with the results in [ll], where the pendulum is harmonically 
modulated. Taking into account that the Jacobi elliptic function c11 converges to the cos 
circular function in this limit case, we recover the equation for the harmonically modulated 
pendulum as in [ll] 

X + F/G + (1 + eAcos wt)sinx = 0. (16) 

The other limit we consider is k -+ 1. Then, using equations (10) and (ll), and 
remembering that the period for the Jacobi elliptic functions is T = 4K/o, we conclude 
that the condition for the homoclinic tangencies is given by 

1 = 5 $2n + 1) csch [ (2n ; l)‘*] 
A n- 

(17) 

This limiting case implies for the period that T -+ 30, and consequently that w --+ 0. The 
result of all this is that we can never find parameters A and /3 satisfying the condition for 
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the homoclinic tangencies and finally this makes impossible the appearance of chaos. In 
this second limiting case, the equation of motion reads 

i + E/C + (1 + &A) sinx = 0, (18) 

which is the equation of the pendulum with dissipation, and clearly does not possess 
chaotic solutions. 

In fact, the functional form that takes our conditions for homoclinic tangencies in 
equations (15) and (17) are very similar to the ones encountered for the Duffing oscillator 
excited externally [5]. This suggests that keeping constant the parameters and modifying 
only the elliptic modulus, i.e., the shape of the periodic perturbation, we may go from a 
chaotic state to a periodic state and vice versa. 

A similar analysis as the one carried out in [5,6] concerning the effect of a perturbation 
on an unstable limit cycle, which is modelled through the mapping x,+~ = (A + &)x, A :> 1, 
can be done in our case, just taking into consideration that for the perturbation we have 
considered, (cn) = 0 and (cn”) = 1 - (E(k) - K(k))/k2K(k), where E(k) is the complete 
elliptic integral of the second kind. This allows us to see how altering the elliptic modulus 
can change the sign of the Lyapunov exponent, modifying the stability of the orbit. 

4. CONCLUSIONS 

We have extended the study of the parametrically excited pendulum to the case when 
nonharmonic perturbations are present. We have found the general threshold condition for 
the occurrence of homoclinic bifurcations, with the help of the Melnikov method. It may 
be noted that this only roughly approximates to the experimental results, due to the 
perturbative nature of the method. This threshold value depends in our case, on the 
control parameters of the pendulum, the frequency of the excitation as well as on the 
elliptic modulus, which plays a fundamental importance in the analysis. We have con- 
sidered the limiting values of this condition in relation to its dependence on the elliptic 
modulus. The analysis shows that through the control of the shape of the time-periodic 
signals used to perturb the system, we can move from a chaotic state to a periodic state, 
having fixed the rest of the parameters. Besides the intrinsic theoretical interest of this 
analysis, it seems also to be a good strategy for the experimentalist to check these new 
possible transitions order-chaos-order of the parametrically excited pendulum. 
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