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Standard dynamical systems theory is based on the study of invariant sets. However, when noise is
added, there are no bounded invariant sets. Our goal is then to study the fractal structure that exists
even with noise. The problem we investigate is fluid flow past an array of cylinders. We study a
parameter range for which there is a periodic oscillation of the fluid, represented by vortices being
shed past each cylinder. Since the motion is periodic in time, we can study a time-1 Poincare´ map.
Then we add a small amount of noise, so that on each iteration the Poincare´ map is perturbed
smoothly, but differently for each time cycle. Fix anx coordinatex0 and an initial timet0. We
discuss when the set of initial points at a timet0 whose trajectory (x(t),y(t)) is semibounded~i.e.,
x(t).x0 for all time! has a fractal structure called anindecomposable continuum. We believe that
the indecomposable continuumwill become a fundamental object in the study of dynamical systems
with noise. © 1997 American Institute of Physics.@S1054-1500~97!01701-1#
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Fractal structures appear naturally in nonlinear dynami-
cal systems. These structures are typically invariant sets
in the sense that they are unchanged under the time evo
lution of the dynamical system. It has been found1 that
many fractal sets in dynamics can be classified topologi
cally as being indecomposable continua. In this paper, we
bring fundamental properties from topology, properties
that apply to indecomposable continua, to understand
fractal invariant structures that arise in dynamics. We
choose a specific physical situation, that of a fluid flow
past an array of cylinders, to study the invariant fractal
sets formed in the wake of the cylinders. In particular, we
use topological properties of indecomposable continua to
prove that these fractal structures persist under the in-
fluence of noise.

I. INTRODUCTION

The standard approach to studying dynamical system
to study invariant sets, such as attractors, basin bounda
stable and unstable manifolds, fixed points, periodic orb
and chaotic saddles. When we add a small amount of ran
noise, these invariant sets are destroyed. We attempt to
scribe other sets which remain despite the noise. To illust
the ideas we investigate a rich example: an incompress
flow past an infinite sequence of cylinders. We create a p
sible stream function and study its Lagrangian dynamics.
ing the Navier-Stokes equations would be preferable,
they are computationally too difficult to solve since we fo
low trajectories for long time periods and compute stable
CHAOS 7 (1), 1997 1054-1500/97/7(1)/125/14/$10.0
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unstable manifolds. In our Lagrangian dynamics we mode
fluid whose velocity field fluctuates periodically, perha
with some random fluctuations added. We focus on the
namics and topology inherent in this model.

The model itself is formulated with the help of a strea
function in such a way that the velocity field equations of t
fluid flow are formally identical to Hamilton’s equations. I
these equations, the stream function plays the role of a ti
dependent Hamiltonian. They describe the motion of the
jectories of a fluid particle in an incompressible tw
dimensional flow. A schematic diagram of the numeric
experiment appears in Fig. 1, with extensive details provid
in Sec. IV. Fluid flows downstream, from left to right in th
figure, but points inside and on the boundaries of the cy
ders are fixed, and the cylinder obstacles cause the com
cations in the flow. Far away from the cylinders, above a
below, the flow is nearly laminar, but of course when t
fluid encounters the cylinders, chaos arises~see Fig. 2!.

Our goal is to study the sets S1(x0) and S
2(x0). The set

S1(x0) is defined to be the set of points(x,y) at time
t050 with the property that the trajectory(x(t),y(t)) satis-
fies x(t)>x0 for all time (positive and negative). The poin
in S2(x0) have trajectories satisfying x(t)<x0 for all time.
Notice that S1(x0) include all the cylinders to the right o
x0. As we explain later we add the point at` in the plane to
the setsS1(x0) andS

2(x0), so that they are compact set
Most trajectories flow fromx52` to x51`. We carry this
even further though, in that our primary aim is to descri
the topology of the sets of semibounded trajectories in
presence of small random fluctuations in the flow.
1250 © 1997 American Institute of Physics

to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/chaos/chocr.jsp



d
th
is
o
a
y
w
in
a
ric
a
nd

is

os
m
ab
a
th
ro
an
a
n

ur
ted
e do
ave
is

s

near

o-
i-

in

d
at
e
but
nd

-
ir of

self-
in-
logi-
he
f
ilat-
ted

wn
ov
ca
ne

ha

ge
.

126 Sanjuan et al.: Indecomposable continua
We simplify the problem by using the periodicity an
symmetry inherent in the example and then consider
time-1 Poincare´ return map, since the period of the flow
T51. Thus, the flow is converted into a discrete-time map
the plane to itself. When considering the discrete-time m
induced by the flow, we study the invariant sets in the d
namics, and when we consider perturbations of that flow,
study the semibounded trajectories. Our investigation
volves numerical studies of the model first, followed by
rigorous investigation of the sets suggested by the nume
studies. Of course none of our numerical observations
rigorous so we carefully specify axiomatically in Secs. II a
III what observations would imply what conclusions.

A continuumis a compact, connected metric space. It
called decomposableif it is the union of two overlapping
proper subcontinua; otherwise, it is calledindecomposable.
The first question that might arise is whether indecomp
able continua do exist. The continua that automatically ju
to mind, such as a line segment or a disk, are decompos
A piece of chalk is a decomposable continuum; if you bre
it, you have two pieces from which it was composed. On
other hand, every indecomposable continuum has the p
erty that if it were separated in half, it would shatter into
uncountable number of pieces, each nowhere as dense
the original continuum. This property can be used to defi

FIG. 1. The figure shows an array of cylinders, where the fluid flows do
stream. Vortices are shed periodically behind each cylinder, they m
along the channel and they die out. In most of our pictures the vertical s
is changed so the cylinders appear highly elliptical. The horizontal li
show the range ofy used in all the figures.

FIG. 2. Several continuous time trajectories are shown, illustrating the c
between cylinders.
CHAOS, Vol. 7,
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the term~see Fig. 3!. Indecomposable continua often occ
in dynamical systems. Examples include most connec
strange attractors and many basin boundaries. Here w
not have attractors or basin boundaries, but we still h
indecomposable continua. An introduction to such sets
provided in Appendix A at the end of the paper.

Much of the setS1(x0) often can be approximated a
follows. At time t0!0, pour dye into the fluid along the
vertical line throughx5x0. Most of it is rapidly swept down-
stream but trace amounts remain, and their remnants lie
S1(x0). The more negative the timet0 is for introducing the
dye, the closer the remnants lie toS1(x0), but also there is
much less dye that has not yet been swept downstream.

We conjecture that in many circumstances, if the tw
dimensional flow is sufficiently fast and irregular, the sem
bounded sets include indecomposable continua. The set
S1(x0) shown in Fig. 4 is an indecomposable continuum
our example.

Our efforts to analyze this fluid flow is greatly simplifie
when we can find some location, some vertical lines,
which the flow is strictly downstream. In our example, w
could have chosen the vertical line through the cylinder,
a less trivial example of such a line is shown in Figs. 4 a
5. When we discussS1(x0), we prefer to think ofx0 as such
an x-coordinate when the flow is uniformly downstream.

We observe that the time-1 Poincare´ map has a horse
shoe and therefore has an invariant set between each pa
consecutive cylinders~see Fig. 6!. As is well known, such an
invariant Cantor set possesses properties of topological
similarity. The indecomposable continuum contains this
variant Cantor set and also has these properties of topo
cal self-similarity. One of the results we establish is t
following ‘‘nesting property.’’ Between a consecutive pair o
cylinders the time-1 map is a horseshoe map on a quadr
eralQ0 andQ0 has an invariant Cantor set and an associa
indecomposable continuumL0 in S

1(x0). We claim~Propo-

-
e
le
s

os

FIG. 3. A continuumS is indecomposable if for every open setO that
intersectS ~with some part ofS lying outside the closure ofO), the inter-
sectionOùS has infinitely many pieces. This figure shows a typical stran
attractor on a cylinder.~The right side of the pictures coincide with the left!
This picture was generated using equations of a parametric pendulum.
No. 1, 1997
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127Sanjuan et al.: Indecomposable continua
sition 2.4! that in any geometry like that of our example, th
set L0 includes the downstream, indecomposable conti
Ln in S1(x012np) for n51,2, . . . . In our caseLn is a
horizontal translate ofL0 translated byx52pn. Moreover
we claim ~Theorem 3.4! that the addition of a small amoun
of random perturbation does not affect the relations
S1(x0).S1(x012p). . . . , andthese sets must still con
tain indecomposable continua.

In general the essential features ofS1(x0) are not de-
stroyed by small perturbations in the system. We refer to
as thef ish f actor, i.e., how a collection of small fish swim
ming randomly, nonperiodically, but close to the cylinde
affects the flow and the sets of semibounded trajectories.

FIG. 4. The set shownS1(x0) is the set of points whose trajectories rema
for all time (t50,61,62, . . . ) to theright of the dashed line atx5x0.

FIG. 5. The valuex0 was chosen carefully in Fig. 4 so that all points on
are mapped to the right by the time-1 mapF. The curve shown is the imag
of this segment shown atx5x0. While it is hard to see, there is a ga
between this line segment and the image, so that the segment maps s
to the right.
CHAOS, Vol. 7,
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real-life situation, no periodic process is likely to descri
fluid flow. At the very least, small time-dependent perturb
tions from that model occur. Thus, we can think of applyin
instead of one particular mapF over and over again, a se
quence of mapsFi . These mapsFi denote the maps applie
at timei , andFi(u) are close toF(u) for all i and allu, and
eachFi fixes the points of the cylinder. In this case, it n
longer makes sense to talk about periodic points and inv
ant sets, since no single map is involved. It still makes se
to talk about the setsS1(x0) andS

2(x0). We also investi-
gate the connection betweenS1(x0) andS

2(x0). The inter-
section of these two indecomposable setsS1(x0) and
S2(x012p) contains Cantor sets, a cylinder and some
variant bubbles of fluid~see Fig. 7!.

We observe in our example, see Fig. 8, a feature tha
very helpful when analyzing such flows with noise, name
there is a vertical line atx5 x̄0 to the right of the quadrilat-
eral Q0 with properties described in the figure caption
These features imply that something very similar must
true for any processF̃, with a small amount of noise, namel
if q P Q0 andF̃(q)¹Q0, thenF̃

n(q) is to the right ofx̄0 for
all n52,3,4,5, . . . .

While Fig. 6 showsG(Q0), Fig. 9 showsF(Q0). Figure
10 shows the invariant Cantor set inQ0. This Cantor set is
the intersection of stable and unstable manifolds, see Fig

The dynamics ofG inside the quadrilateral are exact
the same, from both a topological and dynamical persp
tive, as those of the standard Smale horseshoe map. H
ever, thegeometryof what goes onoutsideof that quadrilat-
eral is quite different and more complicated than it is for t
Smale horseshoe. While the geometry associated with
smallest Smale horseshoe yields the simplest type of in
composable continuum,~see Appendix A!, this geometry
yields one with more interesting structure. As described
Fig. 8, any pointq which leaves the quadrilateralQ0, must
‘‘flow’’ downstream under iteration byF. In particular, it
ctly

FIG. 6. This figure shows a horseshoe. The crosses are the images o
vertices of the quadrilateralQ0 under the action of the mapG. This map
G is a special map that is the ‘‘square root’’ ofF, that is,
G(G(x,y))5F(x,y) for all (x,y) P Q0. See Appendix B for an explanation
of why F5G2.
No. 1, 1997

to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/chaos/chocr.jsp



es,

128 Sanjuan et al.: Indecomposable continua
FIG. 7. This figure shows the exit times, the time required to pass to the next cylinder, in different colors in the region 1.25,x,1.7 and20.6,y,0.5. This
region is to the immediate right of a cylinder, the two invariants bubbles~white! are clearly visible in this region. Solid colored regions have small exit tim
while the brown speckled regions have long exit times.
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cannot reenterQ0. It can then either get ‘‘stuck’’ in the
stream around some downstream invariant set~Cantor set,
cylinder, or bubble!, or, more likely, flow towards̀ . Points
do not ‘‘flow’’ very far upstream. However, if one conside
the time-reversal mapF21, then another indecomposab
continuum S2(x0) results, an upstream continuum aga
containing the point̀ . Of courseS2(x012p) is a translate
of S2(x0), because the process is periodic inx with period
2p.

The paper is organized as follows. In the next section
discuss our main results about how the indecomposable
tinua arise in the fluid flow. Section III discusses how the
results change when we add a small amount of noise.
note that there is a large literature on perturbed dynam
systems of various kinds, but it does not address indec
posable continua of noisy systems. Section IV explains
CHAOS, Vol. 7,
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details of the stream function which models the velocity fie
of the flow past an array of cylinders. Section V provides o
concluding remarks. Appendix A provides the basic top
logical ideas needed to understand indecomposable cont
and Appendix B describes why there is a mapG with the
propertyG25F.

II. INTERMINGLING INDECOMPOSABLE CONTINUA
IN THE CYLINDER FLOW

In this section we take an axiomatic approach to the fl
flow. We assume there is a time-1 diffeomorphis
F:R2→R2. We employ the so-called one point compacti
cation of R2. We add the point̀ to R2 and we write
R25R2ø$`%. We say the sequenceui in R2 converges to
` if and only if uui u→` as i→`. The spaceR2 is compact.
No. 1, 1997
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129Sanjuan et al.: Indecomposable continua
We writeF(`)5`. It automatically follows thatF is a ho-
meomorphism onR2, since it must be continuous at̀. We
assume throughout this section thatF satisfies the following
assumptions:

A1. F is area-preserving.
A2. Periodicity assumption. If we write (x̄,ȳ)5F(x,y),

thenF(x12p,y)5( x̄12p,ȳ).
A3. There is a nonempty invariant set S, i.e.,F(S)5S,

such that there is a uniform bounds on uyu for all (x,y)
P S. Also, (x,y) P S implies (x12p i ,y) P S for all
i50,61,62,... . For purposes of the Sec. III, we assum
there is a uniformd.0 such that if (x,y)¹S, then the

FIG. 8. In our example the vertical lineL( x̄0) ~shown above with
x-coordinatex̄0) has the property discussed in Fig. 5; in addition each po
q P Q0 for which F(q)¹Q0 hasF

2(q) to the right ofx̄0, and the same is
true ofFn(q) for all n>2, since once a point is to the right ofL( x̄0), it must
stay to the right. The curve shown is the image of this segment show
x5x0.

FIG. 9. This picture shows the first iterateF(Q0) of the quadrilateral, which
is alsoG2(x,y).
CHAOS, Vol. 7,
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x-coordinate ofF(x,y) is greater thanx1d; that is, every-
where outside the stripS, the fluid moves uniformly to the
right.

A4. Let L(x0) be the vertical line with x-coordinatex0.
There is a valuex0 such thatF maps each point onL(x0)
strictly to the right ofL(x0).

Remark.This indicates the flow is generally from left t
right. For our example in the introduction,x0 can be chosen
to be zero or to be the line in Fig. 5~or evenx̄0 in Fig. 8!.

A5. We assume there is a quadrilateralQ0, which has
the following lockout property. That is, ifq P Q0 and for
somek.0, Fk(q)¹Q0, then further iterates ofq remain
outsideQ0; i.e., F

n(q)¹Q0 if n>k. We assumeQ0 lies
betweenL(x0) andL(x012p).

t

at

FIG. 10. The points shown inside the quadrilateralQ0 constitute the Cantor
set, whose trajectories of points remain insideQ0 for all time
t50,61,62,... .

FIG. 11. The horseshoeF on Q0 in Fig. 9 has some isolated fixed points
One of thesep0 is shown here. The stable and unstable manifolds ofp0
intersect at a pointq Þ p0 other thanp0. The closure of the set of such
intersection points is the Cantor set shown in Fig. 10, and it was create
plotting the intersections.
No. 1, 1997
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130 Sanjuan et al.: Indecomposable continua
Remark.See Fig. 12 for a trivial example of a quadrila
eralQ that satisfies the lockout property.

A6. F is a horseshoe map onQ0. WriteA,B,C,D for the
vertices ofQ0 as in Fig. 13. We do not give a full definitio
here, but we assumeF is hyperbolic horseshoe map in th
sense of Smale.2 In particular if G:R2→R2 is a horseshoe
map onQ0, then the topDC and bottomAB have images
G(AB) and G(CD) that lie outsideQ0 and the image
G(Q0) of Q0 stretches at least twice acrossQ0 as shown in
Fig. 13, without intersecting sidesAD or BC. Also for al-
most everyq P Q0 there is ann.0 depending onq for
which Gn(Q0)¹Q0. It follows that every horseshoe ma
must contain at least two saddle fixed points. We will
p0 denote any one of these.

Remark.Recall that in our example there is a mapG
with the property thatF5G2 and our numerical calculation
show thatG is a horseshoe map for whichG(Q0) stretches
twice acrossQ0 ~see Fig. 6! andF is also a horseshoe o
Q0, andF(Q0) stretches four times acrossQ0 ~see Fig. 9!.

2.1 Proposition. For almost every qP Q0, we have
Fn(q)→` as n→`, and in particular the x-coordinate o
Fn(q) tends to1` as n→`.

Sketch of proof. Let B be the setF(Q0)2Q0. ThenB
consists of points that have just leftQ0 andF(B) consists of
the points that leftQ0 exactly two iterates before. SinceF is
one-to-one, ifb P B, thenb¹Q0, and soF(b)¹B. In other
words F(B) is disjoint from B. By the lockout property,
F(B) is also disjoint fromQ0. Applying the same argumen
showsFk(B) is disjoint fromB,F(B), . . . , andFk21(B).
But each of these disjoint sets have the same area aB,
becauseF is area-preserving. LetV be the rectangle inR2

defined byx P @x022pn,x012pn# for somen>1 and
uyu<s, wherex0 is as in A4 ands is as in A3. In particular
Q0,V. Let BV,B be the set such thatb P BV implies that
Fn(b) P V for all n.0. We claimBV has area 0. The set

FIG. 12. This quadrilateralQ, under the linear map (x,y)→(2x,y/2), con-
tains a saddle fixed pointp in its interior. It satisfies the lockout property
once a point leavesQ, it cannot return.
CHAOS, Vol. 7,
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BV ,F(BV),F
2(BV), . . . , are disjoint because

Fk(BV),Fk(B). Furthermore allFk(BV) have area equal to
the area ofBV . Since allFk(BV) lies in V,

area~V!>Sk51
` area~Fk~BV!!5`3area~BV!. ~1!

Hence the area ofBV is 0, since otherwise the union o
all Fk(BV) would have infinite area, proving the claim.
follows that for almost everyq P Q0 the trajectory ofq even-
tually leavesV. By construction ofV, it can only leave
through the right end, and can never return toV because A4
applies tox012pn. Since this holds for everyn, Fn(q) has
x-coordinate tending to1`, andFn(q)→` asn→`.

Definition of L0.We define the setL0 to be the closure
in R2 of the set$u:F2n(u) is in Q0 for all sufficiently large
n%. This set can be viewed as the limit points of the family
setsQ0 ,F(Q0),F

2(Q0),... . We remark thatL0 is the clo-
sure of the unstable manifold ofp0 ~different saddles inQ0

yield the sameL0), wherep0 is defined in A6.
2.2 Theorem.L0 is an indecomposable continuum.
Remark.This result is based on ideas of M. Barge3 who

proved under additional mild assumptions that if a sad
fixed point has stable and unstable manifolds that inters
then the closure of one of the branches of the unstable m
fold is an indecomposable continuum.

By the periodicity assumption A2, thex values
x012p i satisfies A4 for alli50,61,62,... . Hence we will
assumex0 lies to the left ofQ0. We address how the se
L0 is related toS1(x0) defined in the introduction. The
boundary of a compact setS, written bndy~S!, is
S2interior~S!; if S has no interior, thenS5bndy~S!. In our
example it appears as thoughL0 equals bndy(S1(x0)).
These setsS1(x0) and L0 differ significantly in that
S1(x0) contains the cylinders and the invariant bubbles su
as those of Fig. 7. We conjecture that hereL05bndy
(S1(x0)). Our hypotheses imply the following results.

2.3 Proposition. The continuumL0 is contained in
bndy(S1(x0)).

FIG. 13. This figure shows the topological horseshoe map. In particular
G(Q) stretches twice acrossQ and the top and bottom sidesCD andAB are
mapped entirely outside ofQ.
No. 1, 1997
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131Sanjuan et al.: Indecomposable continua
Remarks.Notice that sincep0 is to the right ofx0, its
unstable manifold lies completely to the right ofx0 by A4, so
L0,S1(x0). From the definition of a horseshoe map, it fo
lows thatF21 is also a hyperbolic horseshoe map onQ0, and
consequently the closure of the stable manifold of a fix
point p0 in Q0 is an indecomposable continuum. Note th
F21 automatically satisfies the lockout property.

We defineQi , L i , andpi to be the horizontal translate
by x52p i of Q0, L0, and p0, respectively. These inher
properties because of the periodicity assumption A2. In p
ticular F is a horseshoe map onQi ; Qi satisfies the lockou
property; pi is a saddle fixed point inQi ; and L i is the
closure of the unstable manifold ofpi and is an indecompos
able continuum. While there are no assumptions in this s
tion about cylinders, it is useful to defineCi as the horizontal
translate of a particular cylinderC0 by 2p i . So we ask then
how the indecomposable continua are related to each o
We add another assumption.

A7. The unstable manifold ofp0 crosses the stable man
fold of p1.

2.4 Proposition. The continuumL i11 is contained in,
but is not equal toL i .

Sketch of the proof. First we argue thatL i andL i11

are unequal. By A5, the lineL(x012p( i11)) in A4 lies
strictly betweenpi andpi11. HenceL i11 does not contain
pi , but L i does, so they are not equal. The proof th
L i.L i11 follows from the so-called Lambda Lemma,4 us-
ing assumption A7.

The figures in the introduction suggest the indecomp
able continua in our example are quite complicated. In f
L0 seems to separate the plane into many regions, an
particular we can prove this with the following assumptio

A8. Assume that there is a connected segmentU0 of the
unstable manifold ofp0 and a connected segmentS1 of the
stable manifold ofp1. AssumeU0 andS1 have the same en
points and together they bound a regionJ that contains some
fixed point f 0 in its interior but excludes another fixed poi
f 1 ~as shown in Fig. 14!.

2.5 Theorem.Each connected path from f0 to f1 must
intersectL0.

Remark.In our example, the cylinders consist of fixe
points. If we choosef 0 to be any point of one cylinder an
f 1 a point of the next cylinder, Fig. 15 shows numerica

FIG. 14. Assumption A8 requires the segmentsU0 andS1 to separate one
fixed point f 0 from anotherf 1. Two possible configurations are shown.
CHAOS, Vol. 7,
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that our example has the property A8. Of course all
points of the cylinders are fixed points.

Sketch of the proof. Suppose there is a pathg from
f 0 to f 1 that does not intersectL0. Theng must intersect
S1. There is another similar picture obtained by applyingF
to U0 ,S1 ,J, f 0 , and f 1. Sincef 0 and f 1 are fixed points and
f 0 P J andf 1¹J, it follows thatf 0 P F(J) andf 1¹F(J) and
F(J) is bounded byF(S1) andF(U0). Hence we have an
other geometry equivalent to the first, and it follows thatg
must pass throughF(S1). Applying the argument again re
peatedly, we findg must pass throughFn(S1). Since these
segments are shrinking and converge top1, the pathg comes
arbitrarily close top1, so by compactness it must pa
throughp1. But p1 is inL0 by proposition 2.4. Therefore we
have a contradiction to our supposition. Hence no such p
g exists.

III. PERTURBATIONS OF THE SYSTEM: THE FISH
FACTOR

AssumeF satisfies the hypotheses A1–A8. We consid
a new assumption.

B1. Let e.0. Assume that instead of applyingF at each
time i , we instead require that for eachi , we have an area
preserving homeomorphismFi of R

2 which is close toF in
the sense thatuF(q)2Fi(q)u,e and uDF(q)2DFi(q)u,e
for eachi andq. We refer toe as the ‘‘noise level.’’

The only assumption aboutFi is B1. All conclusions
must follow from our assumptions aboutF and from the fact
that the noise levele is sufficiently small.

For an unperturbed system, we define the traject
through anyq0 to be qn5Fn(q0) and this holds for alln
positive and negative. For our perturbed system, we alw
discuss initial points at time zero for simplicity. The
F(q0) is replaced byF0(q0) and F2(q0) is replaced by

FIG. 15. This figure shows that the assumption A8 is satisfied by our
ample. The cylinder is encapsulated by the segments of the stable an
stable manifolds of the fixed pointsp1 andp0, respectively. The fixed point
f 0 in Theorem 2.5 can be any point of the cylinder andf 1 is any point of any
other cylinder. Of course all cylinder points are automatically fixed poin
This configuration is like in Fig. 14~b! in that the fixed pointsp0 andp1 are
not in the segments used for encapsulation.
No. 1, 1997
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132 Sanjuan et al.: Indecomposable continua
F1(F0(q0)), etc., so that theforward trajectoryof a point
q0 under the new perturbed system consists of the sequ
q0 ,F0(q0),F1(F0(q0)),... . Similarly q215F21(q0) is re-
placed byF21

21(q0), andq22 becomesF22
21(F21

21(q0)), etc.,
and we refer toq0 ,q21 ,q22 . . . , as thebackward trajectory
q0. Notice that automaticallyFi(`)5` since this is true for
any homeomorphism ofR2, that is, if q→` in R2, then it
implies thatFi(q)→`.

We write F̃n(q0) for the analog ofF
n(q0) for all n posi-

tive and negative. More precisely, forn.0, we define
F̃n(q0) to be Fn21( . . . (F0(q0))) and F̃2n(q0) for
Fn

21( . . . (F21
21(q0))). In particular F̃n(q0)5qn for eachn.

See Fig. 16.
Now it no longer makes sense to talk aboutinvariant

Cantor sets,invariant points, orinvariant continua. Perhaps
we should assumeFi(q)[F(q) for q inside the cylinders so
the cylinders themselves are still invariant, except that
results do not involve cylinders explicitly. However, we c
discuss those pointsq in R2 such that the backward trajec
tory’s x-coordinates do not go to2` or those whose for-
ward trajectory’sx-coordinates do not go to1`. The reader
might be considering how we can arrive at conclusions w
there are no invariants sets. Assume there is a quadrila
Q with F linear inQ, as in Fig. 12. Then fore sufficiently
small, there is precisely one pointq ~at time 0!, whose noisy
trajectoryF̃ remains inQ for all time, positive and negative
Notice thatq is not a fixed point since no fixed points exi
in general for allFi . WhenF is a horseshoe map onQ, this
phenomenon is more complex, andF is a horseshoe map o
Q5Q0. Let Z0 be those pointsq P Q0 for which F̃n(q)
P Q0 for all n, positive and negative.

3.1 Proposition. For e.0 sufficiently small, Z0 is a
Cantor set.

Remark.The definition of ‘‘Cantor set’’ concerns only
the shape and topology of the set and not the dynamics
the set.

We let S̃1(x0)5$q P R2: eitherq5` or the trajectory
F̃n(q) throughq at time zero remains to the right ofx0 for
all time, positive and negative%. We similarly define
S̃2(x0), except that the trajectories remain to the left ofx0
for all time. We claim that for everyx0, S̃

1(x0) contains an

FIG. 16. The trajectory with noise throughq0 at time 0.
CHAOS, Vol. 7,
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indecomposable continuum, and so doesS̃2(x0).
Definition of L̃0. We defineL̃0 to be the closure inR2

of the set$u:F̃2n(u) is in Q0 for all sufficiently largen%.
We analogously defineL̃ i usingQi instead ofQ0. Since

Fi is not assumed to satisfy the periodicity assumption A

L̃ i is not in general a translate ofL̃0, though we expect it
could nearly be a translate by 2p i . In particular eachL̃ i is
compact.

The challenge here is to identify hypotheses that
verifiable and are preserved under small perturbations oF.
Assumption A5 is not a hypothesis that is preserved un
small perturbations. We add the following strengthened v
sion of A5.

A58. There is anx̄0P(x0 ,x012p) such thatL( x̄0) sat-
isfies A4 andL( x̄0) lies to the right ofQ0 and there is an
integerN with the property that ifqPQ0 and F(q)¹Q0,
thenFN(q) is to the right ofL( x̄0).

Remark.The integerN must be independent of th
choice ofq. Once a trajectory point moves to the right
x̄0, it cannot return to the left, so it cannot return toQ0. In
our example we can find such a line~Fig. 8! with N52.
Assumption A58 implies that for noise levele sufficiently
small, the lockout property holds for noisy trajectories, th
is trajectories ofF̃.

The horseshoe map property A6 is automatically p
served under small perturbations, so eachFi is a horseshoe
map on eachQi for small e.

3.2 Theorem.For e.0 sufficiently small, eachL̃ i is an
indecomposable continuum.

3.3 Proposition. For e.0 sufficiently small, the con-
tinuum L̃0 is contained in bndy(S̃1(x012p i )).

3.4 Theorem.For e.0 sufficiently small, for each i the
continuumL̃ i11 is contained in, but is not equal toL̃ i .

Remark.Recall from the assumption A8 that the poin
f 0 and f 1 are fixed points forF, but presumably not for
Fi .

3.5 Theorem. For e.0 sufficiently small, each con
nected path from f0 to f1 must intersectL̃0.

The proofs of these results will be published elsewhe

IV. LAGRANGIAN DYNAMICS FOR THE FLUID FLOW

As it has been pointed out in the Introduction, instead
directly solving the corresponding Navier-Stokes equatio
of the fluid flow, we adopt a rather different approach. Wh
the fluid is incompressible, as in our case, we can formu
the problem in terms of an auxiliary function, thestream
function. In such formulation the continuity equation is im
mediately satisfied and can easily be applied to tw
dimensional flows, axisymmetric flows and some very s
cial cases of three-dimensional flows.

When dealing with a complex fluid flow, it is rathe
convenient to find ways of visualizing it. There are traditio
ally three ways of carrying out this task, through streaklin
streamlines, or pathlines. A streakline is the locus of flu
particles originating from the same initial point. A streamlin
No. 1, 1997
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133Sanjuan et al.: Indecomposable continua
is a continuous and smooth curve whose tangent coinc
with the velocity field at each point. The streamlines of t
flow, at a given timet, are simply the level curves of con
stant value of the stream function. The pathlines in turn
the trajectories which follow a simple fluid particle. If th
stream function is time-independent, the system is integra
and the streaklines, the streamlines, and the pathlines c
cide. However, they do not coincide when the stream fu
tion is time dependent.

The equations describing the motion of fluid particles
an incompressible two-dimensional fluid flow take the fo
of Hamilton’s equations,

ẋ5vx[
]c~x,y,t !

]y
, ẏ5vy[2

]c~x,y,t !

]x
, ~2!

where vx and vy are the two components of the veloci
field, andc(x,y,t) is the time-dependent stream functio
that plays the role of a Hamiltonian function. The property
area-preserving in phase space is a consequence of th
compressibility of the fluid.

If the flow is steady,c5c(x,y) is constant along the
pathline, the system has one degree of freedom, and
integrable. If the flowc5c(x,y,t) is time-periodic with pe-
riod T, the system is said to haveone and halfdegrees of
freedom, since time is regarded as an additional 1/2 de
of freedom, in such a way that the whole phase spac
three-dimensional and does not need to be integrable
chaos is possible.

We consider an approximate model for the stream fu
tion c5c(x,y,t), which is time-periodic with periodT51.
Our model choice provides us with reasonably faithful d
namics and is much easier to deal with and much faster c
putationally than solving numerically the Navier-Stok
equation for the problem. The model introduced in5 and used
in6,7 for the fluid flow past one single cylinder is extend
here for the fluid flow past an infinite periodic array of cy
inders.

The parameters involved in the modeling are the follo
ing:

~i! The frequencyf52p of the velocity field.
~ii ! The sizer, wherer21/2 is the characteristic linear siz

of the vortices.
~iii ! The widths, wheres21/2 play the role of the bound

ary layer at the cylinder.
~iv! The ratioa of vortex size inx to size iny.
~v! The heighty0 of the center of the vortices.
~vi! The distanced, where dp is the distance betwee

cylinder centers.
~vii ! The strengthv524 of the vortices.
~viii ! The velocityb514 of the background flow.

The following parameters choice has been used throu
out all the numerical computations:r50.35, s51.0,
a52.0, L52.0, y050.3, d52.0,v524, andb514.0. The
centers of the cylinders are atx50,62p,64p,... . This set
of parameters provides a rather good agreement wit
known solution of the Navier-Stokes equations in the cas
CHAOS, Vol. 7,
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fluid flow behind one cylinder.6,7 In fact for the Navier-
Stokes equations, the boundary layer near the cylinde
quite thin, but in our system we have made the bound
thicker as in.6,7 The stream functionc(x,y,t) of the model is
defined by

c~x,y,t !5 f ~x,y!g~x,y,t !, ~3!

where the functionf (x,y) gives information about the geo
metrical constraints, that is, the ‘‘cylinders’’ for the flow
and the functiong(x,y,t) gives the contributions of the vor
tices and of the background flow. We also require
c(x,y,t) to be a periodic function inx with a period 2p. The
function f (x,y) is given by

f ~x,y!512exp$2s@~sin2~x/2!1~y/2!2!1/221/2#2%.
~4!

This form ensures that the tangential velocity tends linea
to zero as expected in a boundary layer. The radial com
nents of the velocity vanishes quadratically, which sho
that the cylinder surface can be viewed as the union of
infinite number of fixed points.

Our spatial array of ‘‘cylinders’’ is obtained by the locu
of points (x,y) which makesf (x,y)50. In other words, for
these points the stream function is identically zero on
surface of the ‘‘cylinders,’’ yielding then the appropriate n
slip boundary condition. From the above condition it is i
ferred that

sin2~x/2!1~y/2!25~1/2!2, ~5!

wheref(x,y)5sin2(x/2)1(y/2)22(1/2)2 is a periodic func-
tion in x of period 2p. The function f (x,y) is 0 on the
surface and has gradient 0 there. We redefinef (x,y) so that
inside the cylinders it is identically 0. The stream functio
c(x,y,t)5 f (x,y)g(x,y,t) will inherit these properties from
f (x,y). Our array of ‘‘cylinders’’ is periodic inx with period
2p and each ‘‘cylinder’’ has a vertical radius of 1 and
horizontal radius of 1.05, which is very close to a ‘‘rea
cylinder. Since the functionf (x,y) depends only on the pa
rameters, there is only one way to modify this function: b
modifying the width of the boundary layer (s).

We begin by definingg(x,y,t) only for x in @0,2p#. It is
constructed so thatg(x,y,t) has the same values atx50 and
at x52p. The equation forg(x,y,t) involves two more
functionsvor(x,y,t) and b f low(x,y), which are the func-
tions governing the vortices and the background flow,
spectively, as discussed next. It is given by

g~x,y,t !5sin~x/2!vor~x,y,t !1bflow~x,y!. ~6!

For x in @0,2p# the functionvor(x,y,t) is defined as

vor~x,y,t !5v$2h1~ t !g1~x,y,t !1h2~ t !g2~x,y,t !%, ~7!

where

gi~x,y,t !5exp$2r$@x2xi~ t !#
21a2@y2yi~ t !#

2%%. ~8!

The functionvor(x,y,t) is responsible for the birth and
death of vortices and it depends on the strength of the vo
cesv, the functionsh1(t) andh2(t), which in turn depend
on the frequencyf, and the functionsg1(x,y,t) and
g2(x,y,t). The functionsg1(x,y,t) andg2(x,y,t) depend on
No. 1, 1997
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134 Sanjuan et al.: Indecomposable continua
r, which are related to the characteristic linear size of
vortices; anda is the ratio of vortex size inx to size iny.
The functionsg1(x,y,t) and g2(x,y,t) depend also on the
vortex centers, which in turn depend onL, the distance tha
vortices travel before dying out, andy0 , the height of the
center of the vortices. Hence, the functionvor(x,y,t) may be
changed by modifying either the: strengthv of the vortices,
frequencyf of the velocity field, vertical sizer of the vor-
tices, ratioa of vortex size inx to size iny, heighty0 of the
center of vortices, or distanceL that vortices travel before
dying out.

The flow is time-periodic with period 1 and this allow
us to define

h1~ t !5UsinS ft

2 D U, h2~ t !5h1~ t21/2!. ~9!

This implies thatvor(x,y,t) creates two vortices between th
cylinders atx50 andx52p, with the functionsg1(x,y,t)
governing one vortex andg2(x,y,t) governing the other.

The vortex centers move parallel to thex-axis with con-
stant velocity. Thex-coordinates change with time and a
given by

x1~ t !511L@ t mod1#, x2~ t !5x1~ t21/2!. ~10!

Hence thex vortices atx1 andx2 are each created period
cally in time with period 1. They coordinates, on the othe
hand, are constant, withy1 andy2 given by

y1~ t !52y2~ t ![y0 . ~11!

There are thus two vortices, and their behavior entails tr
eling a distanceL during a period and then dying out.

The functionbflow(x,y) is defined as

bflow~x,y!5bys~x,y!, ~12!

wheres(x,y) depends on the vortex ratioa and is given by

s~x,y!512expH 2
1

a2 @x21.05#22y2J . ~13!

It expresses the contribution of the background flow w
uniform velocityb, while the functions(x,y) is introduced
to simulate theshieldingof the background flow right behind
the cylinder. One of the features of this function is that it
identically zero at the rightmost point of each cylinder. T
functionbflow(x,y) may be changed by modifying the: rat
a of vortex size inx to size in y, or velocity b of the
background flow.

So far g(x,y,t) has been defined for 0<x<2p and it
has the important property that it has the same value
(0,y,t) and (2p,y,t). Hence we can make it a continuou
periodic function ofx with period 2p. We take@0,2p# to be
a fundamental period forx and defineg(x,y,t) as follows.
Choosen so thatx22pn is between 0 and 2p. Then define

g~x,y,t !5g~x22pn,y,t !. ~14!

Henceg(x,y,t) is periodic inx with period 2p.
CHAOS, Vol. 7,
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V. CONCLUDING REMARKS

We have explored a numerical example of a fluid flo
ing past an array of cylinders. While one can rigorous
prove that the flow preserves area, almost all of our obse
tions lack rigor. Furthermore we have not studied the Nav
Stokes equations, but rather the computationally much s
pler Lagrangian dynamics of a stream function we ha
imposed. This is similar to the physician who studies can
in mice rather than people. We would prefer to study t
Navier-Stokes equations. Our solution to this quandary is
present rigorous results that are logically independent of
numerical example. The hypotheses are suggested by th
ample but will also be true in many other fluid flows. O
goal is to study fluid flow which is a periodic flow plus
time varying perturbation. Under such circumstances,
bounded invariant sets are preserved~except the cylinders!.
We show that it is nonetheless possible to discuss fractal
that remain. These are often indecomposable sets which
respond to physically observable remnants of dye introdu
earlier into the fluid.
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APPENDIX A: BASIC CONCEPTS OF
INDECOMPOSABLE CONTINUA

Most scientists working in dynamics are aware that
limit sets associated with dynamical systems can be q
complicated. This section discusses some of the topolog
structures of dynamics and shows how far from the us
Euclidean intuition these sets can be. The structure that
terests us most here is an object known to topologists a
indecomposable continuum. While understanding these re
quires gaining a different intuition than most mathematicia
and scientists possess, the good news is that these ob
have been studied since the early part of this century,
there exists a considerable body of literature on them. A b
history of indecomposable continua can be found in Ref
Also, even though they must be dealt with on their ow
terms, they do have structure. That structure is quite r
with strong rules governing their behavior.

We writeR25R21$`% to denote the one point compac
tification of the plane, in such a way that it is topological
equivalent to the two dimensional sphereS2. More generally
we can writeRn5Rn1$`% to be the one point compactifi
cation ofRn.

A closed setA in R2, is said to beconnectedif it cannot
be written as the union of two disjoint, closed nonempty se
A continuum K in Rn is defined as a compact, connect
subset ofRn. In particularRn is a continuum. IfX andY are
No. 1, 1997
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135Sanjuan et al.: Indecomposable continua
spaces~or subsets of a space such asRn), h:X→Y is one-
to-one, continuous, and onto, andh21 is also continuous,
thenh is ahomeomorphism. In these circumstances the se
X and Y are said to behomeomorphic, or topologically
equivalent. An arc is a set that is homeomorphic to the un
interval. A setX is arcwise connectedif for each pairp,q of
points inX, there is an arc contained inX that contains both
p andq. If Y andX are continua, andY#X, then we say
Y is asubcontinuumof X. If in additionY Þ X, then we say
thatY is aproper subcontinuumof X.

~1! A remark and an example. Every continuum inR1 is
an arc or a point, and therefore every continuum inR1 is
arcwise connected. However, this isnot true for subsets of
higher-dimensional spaces. Probably the simplest examp
a continuum that isnot arcwise connected is thetopologist’s
sin(1/x) curve X in the plane, see Fig. 17. DefineX0 to be
$(x,y) P R2:0,x<1 andy5sin(1/x)% andX1 to be the ver-
tical line segment withx50 and21<y<1. ThenX1 is
contained in the closure ofX0 in R2, andX5X0øX1 is the
continuum pictured in Fig. 17. Note that (0,1) an
(1,sin(1)) are inX, but there is no arc from (0,1) to
(1,sin(1)) that is contained inX.

~2! Remark.Any open, connected subset ofRn is arcwise
connected.

A setX is said to belocally connectedif each point has
‘‘arbitrarily small’’ neighborhoods that are connected. Mo
precisely, if for each neighborhoodU of any pointp in X
there is a connected neighborhoodV of p such thatV,U,
then X is locally connected. The interval@21,1# is con-
nected. If we remove the point$0%, what remains is not
connected but is locally connected.

~3! Example. Begin with the middle-thirds Cantor se
C sitting on the unit interval@0,1# on thex axis in the plane.
Themiddle-thirds Cantor set Cis the set which remains afte
iteratively removing the middle-third of the unit interval an
of every remaining subinterval, see Fig. 18. TheCantor fan
consists of the middle-thirds Cantor set, the point at (1/2
plus the line segments that run from each point of the Ca
set to (1/2,1).

The Cantor fan, pictured in Fig. 19, is a continuum
R2 which is arcwise connected, but is not locally connect
Note that it is locally connected at the point (1/2,1)@that is,
there are arbitrarily small connected neighborhoods
(1/2,1) contained in the Cantor fan# although it is not locally

FIG. 17. The topologist’s sin(1/x) curve.
CHAOS, Vol. 7,
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connected at any other point. The topologist’s sin(1/x) curve
is locally connected at each point ofX0, but it is not locally
connected at any point ofX1. There is no arc inX that
connects a point ofX1 to a point ofX0, even though points of
X0 can be found in each neighborhood of each point ofX1.

~4! Remark. While it is not immediately obvious, the
following is true. Every connected, locally connected, sub
of Rn is arcwise connected. Example 3 demonstrates that
converse to this statement is not true.

SupposeX is a continuum andA is a closed subset o
X. A componentK of A is a connected subset ofA which is
not a proper subset of any other connected subset ofA. Each
point ofA is contained in a component ofA, though in some
cases the component might be just a single point.

~5! Example. Suppose thatD is a closed disk inR2 ~i.e.,
a circle and its interior!. Suppose thatX denotes the topolo-
gist’s sin(1/x) curve andM denotes the Cantor fan. What d
the components ofDùX andDùM look like, assuming the
intersection is nonempty and it is not all ofX or M? It
depends, of course, on whichD is considered, but assumin
(1/2,1)¹D andX1 is not a subset ofD, each component o
DùX or DùM is an arc or a point. Further, if we are con
sideringDùX, and the interior ofD contains a point of
X1, thenDùX has countably infinitely many component
all but one of which is an arc.~See Fig. 20!.

If we considerDùM and (1/2,1)¹D, then all, except
possibly one, of the components ofDùM are arcs and there
are uncountably many components inDùM . On the other
hand, if (1/2,1) belongs to the interior ofD, thenDùM is
itself a continuum homeomorphic toM . In this caseDùM
has only one component.

NeitherX nor M is an indecomposable continuum, but
we are heading in that direction. Indecomposable conti
are not arcwise connected and they are not locally conne

FIG. 18. Construction of the middle-third Cantor set. In step 1, the mid
third of the unit interval is removed. In further steps, the middle third
every remaining subinterval is removed. Here three steps are shown.
points that are never removed make up the Cantor middle-third set. Th
marked 0.02 consists of all numbers in the unit interval whose ternary
pansion begins with 0.02.

FIG. 19. Cantor fan.
No. 1, 1997
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136 Sanjuan et al.: Indecomposable continua
atanypoint. The invariant set for the canonical Smale hor
shoe map is a simple example of an indecomposable
tinuum, and we recall the construction of that example
low:

~6! Example. The invariant set of the Smale horses
map.2 The construction begins as follows: Consider t
stadium-shaped region calledD in Fig. 21~a!. The setD
consists of a rectangleR with interior, and two semicircles
A andB ~interiors included!, that are sewn onto the shorte
sides ofR. Now D#R2 and the homeomorphismF on R2

mapsD into itself as pictured in Fig. 21~b!. Think of F
having the following effect onD: the mapF shrinksD ver-
tically, stretchesD horizontally, contracts the semicircle re
gions A and B, and then folds the shrunk, stretched, co
tractedD once and places the acted-uponD back into itself
so thatF(A) andF(B) are in the interior ofA, F(R) is in
the interior ofD, andF(R) intersectsB in a nontrivial way.

SinceF(D),D, F2(D)5F(F(D)),F(D). Figure 22
shows the second iteration ofD, that isF2(D). This process
continues:D$F(D)$F2(D)$... . Since eachFn(D) is a

FIG. 20. ~a! DùX with Xù interior of D, nonempty.~b! The Cantor fan
M . HereD intersectsM with (1/2,1)¹D, andMù interior ofD nonempty.

FIG. 21. ~a! The stadium regionD. ~b! The horseshoe map onD.
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continuum, the sequenceD,F(D),F2(D), . . . is a sequence
of nested continua. An elementary theorem from topolo
tells us that the intersection of nested continua is itsel
continuum. Then it follows thatK5ùn51

` Fn(D) is a con-
tinuum.

Now another theorem from topology states that a
nested intersection of compact sets is nonempty and c
pact. SinceKùA can be writtenùn51

` @Fn(D)ùA# and
KùB can be writtenùn51

` @Fn(D)ùB#, it follows that
KùA andKùB are both nonempty. Thus,K contains more
than one point. A continuum that contains more than o
point is said to benondegenerate. Note that ifq P R2 and
there is some positive integern such thatFn(q) P D, then the
sequenceq,F(q),F2(q), . . . must be getting closer an
closer toK. In other words,K is the global attractor forD in
the sense that all initial points are attracted toK. The con-
tinuum K, so defined, represents the invariant set of
Smale horseshoe map and is also an indecomposable
tinuum.

Precisely, a continuumX is decomposableif it can be
written as the union of two proper subcontinuaH andK. The
setsH andK mustoverlap. A continuum that is not decom
posable isindecomposable. The most commonly encoun
tered continua are decomposable~or so one might believe!.
For example, the interval@0,1# is the union of the two prope
subcontinua@0,1/2# and@1/2,1#. Giving a rigorous proof that
K is indecomposable is tedious. We instead attempt to g
the reader an intuitive idea of what this all means. First
may help to think ofK in another way. A set which is topo
logically equivalent toK is called the Knaster bucket handl
usually denotedK2 , and it may be described as follows.~See
Fig. 23 for a sketch.! SupposeC denotes the middle-thirds
Cantor set sitting on the unit interval@0,1#3$0% in the plane.
Connect the points ofC with semicircles as follows:~1! For
each pairp,q of points ofC such thatp andq are equidistant
from (1/2,0), connectp andq with a semicircle sitting above

FIG. 22. F2(D) in F(D) andD.

FIG. 23. The Knaster bucket handle.
No. 1, 1997
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137Sanjuan et al.: Indecomposable continua
the x axis. ~2! For each pairp,q of points ofC equidistant
from (5/6,0) @the midpoint of (2/3,0) and (1,0)], connec
p andq with a semicircle that extends below thex axis. ~3!
For each pairp,q of points ofC equidistant from the mid-
point (5/18,0) of (2/9,0) and (1/3,0), connectp andq with a
semicircle that extends below thex axis. Continue this pro-
cess until thenth step which consists of connecting each pa
p,q of points of C equidistant from the midpoint
(5/2(3n),0) of (2/3n,0) and (1/3n21,0). The pointsp andq
are to be connected with a semicircle that extends below
x axis. We emphasize that although we give no proof he
thatK andK2 are topologically equivalent, comparing both
constructions after rotatingK2 by 90° clockwise should at
least convince the reader of the plausibility of this equiv
lence.

Now supposeS is a small closed disk in the plane. If the
interior of S intersectsK2 , thenSùK2 consists of an un-
countable collection of arcs~and possibly a couple of points
on the boundary!. If S intersects the interior of the Cantor fan
M , and (1/2,1) is not inS, thenSùM also is an uncountable
collection of arcs, with possibly a couple of points on th
boundary. Locally then, except around the vertex poi
(1/2,1), M and K2 are the same topologically. However
there is one way in whichM andK2 are very different, and
that is the fact thatM has the vertex point (1/2,1) at which
the whole continuum is connected, whileK2 possesses no
such point. A stronger statement can be made: SupposeT is
a closed set inR2 that contains a closed diskS, and that
K2 intersects the interior ofS, but K2 is not contained in
T. ThenK2ùT has uncountably many components. In th
case, each component is either a point or an arc. This
countable component property is the one that makesK2 in-
decomposable andM decomposable. Again, no matter wher
the interior ofS intersectsK2 , as long asK2 is not a subset
of T, it follows thatK2ùT has uncountably many ‘‘pieces.’’
On the other hand, there is one point ofM where this sort of
property does not hold, namely at the vertex point (1/2,1)

The first indecomposable continuum was discovered
1910 by the Dutch mathematician Luitzen E. J. Brouwer as
counterexample to a conjecture of the German mathem
cian Arthur Schoenflies that the boundary between two co
nected open plane sets had to be decomposable. At first th
objects were studied as examples of extreme pathology,

FIG. 24. This diagram shows the map of period 1/2 which maps a point
coordinates (x,y) and a symmetric one (x,2y) under iteration off .
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by the 1920s, members of the fine Polish school of mat
ematics had begun to study them as interesting objects
themselves. From the discussion thus far it follows that a
proper subcontinua contained in an indecomposable co
tinuum must be nowhere dense in that continuum, i.e.,
such subcontinuum can have interior relative to the indeco
posable continuum. One might be tempted to believe th
each such proper subcontinuum would have to be itself
simple continuum such as an arc. This is far from the case
is far from true in the examples in this paper, and it is fa
from true in general.In our cylinder flow example, each in-
decomposable continuum contains an infinite number
proper subcontinua which are themselves indecomposab
This indecomposable-continua-containing-indecomposab
continua phenomenon is common in topology. In fact, R. H
Bing9 proved in 1951 that most continua inR2, or in any
Euclidean space, are indecomposable continua which ha
the property that all their proper subcontinua are indecom
posable. Such a continuum is called ahereditarily indecom-
posablecontinuum. Bymostcontinua inR2, we mean that if
one considers the space of all continua inR2, when that
space of continua is endowed with the topology inherite
from the Hausdorff metric, then the subset of that space co
sisting of the hereditarily indecomposable continua forms
residual subset of the space of continua. Note that since a
are decomposable, hereditarily indecomposable contin
cannot contain arcs.

All indecomposable continua share a certain amount
structure. Suppose thatX is an indecomposable continuum
and xPX. Then the composantof x in X, denoted
Com(x), is the union of the set of all proper subcontinua o
X which contain the pointx. It is not difficult to see that if
x and y are two points of X, then either
Com(x)5Com(y) or Com(x)ùCom(y)5B. Thus, the
collection ofC (X) 5 $Com(x):x P X% forms a partition of
the continuumX. It is always the case thatC (X) is an un-
countable collection of mutually disjoint members, each o
which is dense in the indecomposable continuum. Now ea
proper, nondegenerate subcontinuum ofK2 is an arc, while
each proper subcontinuum of a hereditarily indecomposab
continuum is indecomposable. Our cylinder flow continua
on the other hand, are somewhere between these two
tremes: they contain both simple continua, arcs at the ve

fFIG. 25. This diagram shows how the point of coordinates (x,y) moves
under the action of the mapf .
No. 1, 1997
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138 Sanjuan et al.: Indecomposable continua
least and they also contain proper, indecomposable sub
tinua. All proper subcontinua of an indecomposable c
tinuum must be nowhere dense in that continuum and e
must be contained in one composant of the continuum.

APPENDIX B: SYMMETRY OF THE HORSESHOE MAP

The fluid flow is time periodic with period 1. For an
initial point (x,y) and initial time t0, after timet1 the flow
f maps the point (x,y) to f (t1 ;t0 ,x,y), which represents the
new (x,y) point. In particular if t050 and t151, we then
have a smooth mapF(x,y)5 f (1;0,x,y), which is the
time-1 map.

Since we have a pair of vortices which alternate perio
cally, there is a certain kind of symmetry. The mapF is
actually the square of another mapG, i.e., we can write
F(x,y)5G2(x,y). Our numerical evidence strongly sugges
that the mapG is a horseshoe map. After each period 1/2
vortex is created and after another period 1/2 a vortex
destroyed. In our model vortices move downstream, in
flow, not the time-1 map, from left to right, and they d
before colliding with the next cylinder, since the parame
L of the model stream function is smaller than the dista
between the cylinders. The symmetry occurs because
vortices alternate above and below the horizontal axis. M
precisely, a point with coordinates (x,y) at timet0 is mapped
into f (t;0,x,y), while at time 1/2 another point starting a
(x,2y) is mapped intof (t11/2;1/2,x,2y). Thus, the time
1/2 is just half the period of the fluid motion~see Fig. 24!.

Our time-1 map can be considered as a composition
the following manner. Suppose we follow a trajectory fro
CHAOS, Vol. 7,
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time 0 to time 1, i.e., we start with (x,y) and then consider
f (1/2;0,x,y), and then from that point follow it by anothe
time period 1, so that now the time is 1~see Fig. 25!.

ThenF(x,y)5 f (1;1/2,f (1/2;0,x,y)). So an initial point
(x,y) at time 0 maps intof (1/2;0,x,y) which is mapped
likewise into f (1;1/2,f (1/2;0,x,y)). We may write
(g,h)(x,y) for the coordinates off (1/2;0,x,y) and then
f (1;1/2,x,y)5(g,2h)(x,2y). Thus, summarizing,

f ~1/2;0,x,y!5~g,h!~x,y!, ~B1!

f ~1;1/2,x,y!5~g,2h!~x,2y!, ~B2!

and consequently

f ~1;1/2,f ~1/2;0,x,y!!5 f ~1;1/2,g~x,y!,2h~x,y!!
~B3!

5~g,2h!~g~x,y!,2h~x,y!!.
~B4!

Define the map G(x,y) to be (g,2h)(x,y). Then
G2(x,y)5F(x,y).
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