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Standard dynamical systems theory is based on the study of invariant sets. However, when noise is
added, there are no bounded invariant sets. Our goal is then to study the fractal structure that exists
even with noise. The problem we investigate is fluid flow past an array of cylinders. We study a
parameter range for which there is a periodic oscillation of the fluid, represented by vortices being
shed past each cylinder. Since the motion is periodic in time, we can study a time-1 Poiagare

Then we add a small amount of noise, so that on each iteration the Pomearés perturbed
smoothly, but differently for each time cycle. Fix ancoordinatex, and an initial timet,. We

discuss when the set of initial points at a tilgewhose trajectoryX(t),y(t)) is semiboundedi.e.,

X(t)>X, for all time) has a fractal structure called ardecomposable continuure believe that
theindecomposable continuuwill become a fundamental object in the study of dynamical systems
with noise. © 1997 American Institute of Physids$$1054-15007)01701-1]

Fractal structures appear naturally in nonlinear dynami-
cal systems. These structures are typically invariant sets
in the sense that they are unchanged under the time evo-
lution of the dynamical system. It has been found that
many fractal sets in dynamics can be classified topologi-
cally as being indecomposable continua. In this paper, we
bring fundamental properties from topology, properties
that apply to indecomposable continua, to understand
fractal invariant structures that arise in dynamics. We
choose a specific physical situation, that of a fluid flow
past an array of cylinders, to study the invariant fractal
sets formed in the wake of the cylinders. In particular, we
use topological properties of indecomposable continua to
prove that these fractal structures persist under the in-
fluence of noise.

I. INTRODUCTION

unstable manifolds. In our Lagrangian dynamics we model a
fluid whose velocity field fluctuates periodically, perhaps
with some random fluctuations added. We focus on the dy-
namics and topology inherent in this model.

The model itself is formulated with the help of a stream
function in such a way that the velocity field equations of the
fluid flow are formally identical to Hamilton’s equations. In
these equations, the stream function plays the role of a time-
dependent Hamiltonian. They describe the motion of the tra-
jectories of a fluid particle in an incompressible two-
dimensional flow. A schematic diagram of the numerical
experiment appears in Fig. 1, with extensive details provided
in Sec. IV. Fluid flows downstream, from left to right in the
figure, but points inside and on the boundaries of the cylin-
ders are fixed, and the cylinder obstacles cause the compli-
cations in the flow. Far away from the cylinders, above and
below, the flow is nearly laminar, but of course when the
fluid encounters the cylinders, chaos arigese Fig. 2

The standard approach to studying dynamical systems is Our goal is to study the sets'$x,) and S'(xo). The set
to study invariant sets, such as attractors, basin boundarieg, (Xo) is defined to be the set of poin{s,y) at time
stable and unstable manifolds, fixed points, periodic orbitsto=0 With the property that the trajectorfx(t),y(t)) satis-
and chaotic saddles. When we add a small amount of randofieS Xt) =X for all time (positive and negative). The points
noise, these invariant sets are destroyed. We attempt to dét S™(Xo) have trajectories satisfying(k) <X, for all time.
scribe other sets which remain despite the noise. To illustratdlotice that S (xo) include all the cylinders to the right of
the ideas we investigate a rich example: an incompressiblé. As we explain later we add the pointatin the plane to
flow past an infinite sequence of cylinders. We create a plauthe setsS™(x,) and S™(X), so that they are compact sets.
sible stream function and study its Lagrangian dynamics. UsMost trajectories flow fronx= — o to x=+ . We carry this
ing the Navier-Stokes equations would be preferable, bueven further though, in that our primary aim is to describe
they are computationally too difficult to solve since we fol- the topology of the sets of semibounded trajectories in the
low trajectories for long time periods and compute stable angresence of small random fluctuations in the flow.
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126 Sanjuan et al.: Indecomposable continua
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FIG. 1. The figure shows an array of cylinders, where the fluid flows down-

stream. Vortices are shed periodically behind each cylinder, they move
along the channel and they die out. In most of our pictures the vertical scale
is changed so the cylinders appear highly elliptical. The horizontal lines

show the range of used in all the figures.

We simplify the problem by using the periodicity and
symmetry inherent in the example and then consider the
time-1 Poincareeturn map, since the period of the flow is
T=1. Thus, the flow is converted into a discrete-time map of
the plane to itself. When considering the discrete-time magc. 3. A continuums is indecomposable if for every open sét that
induced by the flow, we study the invariant sets in the dy-intersectS (with some part ofS lying outside the closure d), the inter-
namics, and when we consider perturbations of that flow, weéectionoNs has_infinitely many pieces. This_ figure sh_ow_s a typical strange
study the semibounded trajectories. Our investigation ind12€% 1 2 Pttt e of e pties concce i et
volves numerical studies of the model first, followed by a
rigorous investigation of the sets suggested by the numerical
studies. Of course none of our numerical observations arthe term(see Fig. 3. Indecomposable continua often occur
rigorous so we carefully specify axiomatically in Secs. Il andin dynamical systems. Examples include most connected
[Il what observations would imply what conclusions. strange attractors and many basin boundaries. Here we do

A continuumis a compact, connected metric space. It isnot have attractors or basin boundaries, but we still have
called decomposabléf it is the union of two overlapping indecomposable continua. An introduction to such sets is
proper subcontinua; otherwise, it is calledlecomposable provided in Appendix A at the end of the paper.

The first question that might arise is whether indecompos- Much of the setS*(x,) often can be approximated as
able continua do exist. The continua that automatically jumgollows. At time ty<<0, pour dye into the fluid along the
to mind, such as a line segment or a disk, are decomposableertical line throughk=x,. Most of it is rapidly swept down-

A piece of chalk is a decomposable continuum; if you breakstream but trace amounts remain, and their remnants lie near
it, you have two pieces from which it was composed. On theS" (x,). The more negative the tintg is for introducing the
other hand, every indecomposable continuum has the proglye, the closer the remnants lie $3 (x), but also there is
erty that if it were separated in half, it would shatter into anmuch less dye that has not yet been swept downstream.
uncountable number of pieces, each nowhere as dense as in We conjecture that in many circumstances, if the two-
the original continuum. This property can be used to definalimensional flow is sufficiently fast and irregular, the semi-
bounded sets include indecomposable continlihe set
S*(x,) shown in Fig. 4 is an indecomposable continuum in
our example.

Our efforts to analyze this fluid flow is greatly simplified
when we can find some location, some vertical lines, at
which the flow is strictly downstream. In our example, we
could have chosen the vertical line through the cylinder, but
a less trivial example of such a line is shown in Figs. 4 and
5. When we discusS* (xp), we prefer to think ok, as such
an x-coordinate when the flow is uniformly downstream.

We observe that the time-1 Poincareap has a horse-
shoe and therefore has an invariant set between each pair of
consecutive cylinder&ee Fig. 8. As is well known, such an
invariant Cantor set possesses properties of topological self-
similarity. The indecomposable continuum contains this in-
variant Cantor set and also has these properties of topologi-
cal self-similarity. One of the results we establish is the
following “nesting property.” Between a consecutive pair of
cylinders the time-1 map is a horseshoe map on a quadrilat-
FIG. 2. Several continuous time trajectories are shown, illustrating the chao§@l Qo andQg has an invariant Cantor set and an associated
between cylinders. indecomposable continuury, in S*(x,). We claim(Propo-
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FIG. 6. This figure shows a horseshoe. The crosses are the images of the
vertices of the quadrilater@, under the action of the ma@. This map
FIG. 4. The set showB" (x,) is the set of points whose trajectories remain G is a special map that is the “square root” oF, that is,

for all time (t=0,+1,=2, ...) to theright of the dashed line at=x,. G(G(x,y))=F(x,y) forall (x,y) € Q,. See Appendix B for an explanation
of why F=G?2.

sition 2.9 that in any geometry like that of our example, the
set A, includes the downstream, indecomposable continu&eal-life situation, no periodic process is likely to describe
A, in St(xg+2n7) for n=1,2, ... . In our casé\, is a fluid flow. At the very least, small time-dependent perturba-
horizontal translate of\, translated byx=2zn. Moreover tions from that model occur. Thus, we can think of applying,
we claim (Theorem 3.%4that the addition of a small amount instead of one particular map over and over again, a se-
of random perturbation does not affect the relationshipduence of map§;. These map§; denote the maps applied
S*(Xg) DSt (Xo+2m)D ..., andthese sets must still con- attimei, andF;(u) are close td=(u) for all i and allu, and
tain indecomposable continua. eachF; fixes the points of the cylinder. In this case, it no
In general the essential features $f(x,) are not de- longer makes sense to talk about periodic points and invari-
stroyed by small perturbations in the system. We refer to thi§nt sets, since no single map is involved. It still makes sense
as thefish factor, i.e., how a collection of small fish swim- to talk about the set§"(x;) andS™(xo). We also investi-
ming randomly, nonperiodically, but close to the cylindersgate the connection betwe&i (x,) andS™(xo). The inter-

affects the flow and the sets of semibounded trajectories. In gection of these two indecomposable s&$(x,) and
S (Xgt2) contains Cantor sets, a cylinder and some in-

variant bubbles of fluidsee Fig. 7.

We observe in our example, see Fig. 8, a feature that is
very helpful when analyzing such flows with noise, namely
there is a vertical line at=x, to the right of the quadrilat-
eral Qy with properties described in the figure captions.
These features imply that something very similar must be
true for any procesE, with a small amount of noise, namely
if g e Qp andF(q) & Qq, thenF"(q) is to the right ofx, for
alln=2,345, ... .

While Fig. 6 shows5(Qyg), Fig. 9 shows(Q,). Figure
10 shows the invariant Cantor set@y. This Cantor set is
the intersection of stable and unstable manifolds, see Fig. 11.

The dynamics ofG inside the quadrilateral are exactly
the same, from both a topological and dynamical perspec-
tive, as those of the standard Smale horseshoe map. How-
e ever, thegeometryof what goes oroutsideof that quadrilat-

Xo eral is quite different and more complicated than it is for the
Smale horseshoe. While the geometry associated with the
smallest Smale horseshoe yields the simplest type of inde-
FIG. 5. The valuex, was chosen carefully in Fig. 4 so that all points on it composable continuum(see Appendix A this geometry

are mapped to the right by the time-1 mapThe curve shown is the image yields one with more interesting structure. As described in
of this segment shown at=x,. While it is hard to see, there is a gap .

between this line segment and the image, so that the segment maps stricfjjd- 8, any pointq which |e§VGS _the quadrilater@_m mUSft
to the right. “flow” downstream under iteration by~. In particular, it
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FIG. 7. This figure shows the exit times, the time required to pass to the next cylinder, in different colors in the region<112b and— 0.6<y<0.5. This
region is to the immediate right of a cylinder, the two invariants bubféste) are clearly visible in this region. Solid colored regions have small exit times,
while the brown speckled regions have long exit times.

cannot reentey. It can then either get “stuck” in the details of the stream function which models the velocity field
stream around some downstream invariant (&€ntor set, of the flow past an array of cylinders. Section V provides our
cylinder, or bubblg or, more likely, flow towardse. Points  concluding remarks. Appendix A provides the basic topo-
do not “flow” very far upstream. However, if one considers logical ideas needed to understand indecomposable continua,
the time-reversal mag- ~*, then another indecomposable and Appendix B describes why there is a m@pwith the
continuum S™(x,) results, an upstream continuum again propertyG?=F.

containing the pointe. Of courseS™ (xy+ 27) is a translate

of S7(xg), because the process is periodicximwith period Il INTERMINGLING INDECOMPOSABLE CONTINUA

2. _ _ _ IN THE CYLINDER FLOW
The paper is organized as follows. In the next section we

discuss our main results about how the indecomposable con- In this section we take an axiomatic approach to the fluid
tinua arise in the fluid flow. Section IIl discusses how theseflow. We assume there is a time-1 diffeomorphism
results change when we add a small amount of noise. WE:R°—R?. We employ the so-called one point compactifi-
note that there is a large literature on perturbed dynamicagation of R>. We add the point> to R and we write
systems of various kinds, but it does not address indeconR*=R*U{}. We say the sequenag in R* converges to
posable continua of noisy systems. Section IV explains theo if and only if |u;| - asi—=. The spacd’? is compact.
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F(L{X0)

o

A

FIG. 10. The points shown inside the quadrilatépglconstitute the Cantor
FIG. 8. In our example the vertical lind(X,) (shown above with  set, whose trajectories of points remain insid@, for all time
x-coordinatex,) has the property discussed in Fig. 5; in addition each pointt=0,£1,+2,....
g e Qg for which F(q) ¢ Qo hasF?2(q) to the right ofx, and the same is
true of F"(q) for all n=2, since once a point is to the right bfx,), it must

tay to the right. Th h is the i of this segment shown at . . .
ifi omerns & curve shown is fe image g x-coordinate ofF(x,y) is greater tharx+ §; that is, every-
=Xo.

where outside the strif, the fluid moves uniformly to the
right.
A4d. Let L(xp) be the vertical line with x-coordinate,.
We write F () =. It automatically follows thaF is a ho-  There is a value, such thatF maps each point oh(x)
meomorphism orR?, since it must be continuous & We  strictly to the right ofL (o).

assume throughout this section tiasatisfies the following Remark.This indicates the flow is generally from left to

assumptions: right. For our example in the introductiory can be chosen
Al. F is area-preserving. to be zero or to be the line in Fig. ®r evenx, in Fig. 8).
A2. Periodicity assumption. If we writex(y)=F(x,y), A5. We assume there is a quadrilate€yj, which has

thenF(x+2m,y)=(x+2m,y). the following lockout property. That is, iff € Q, and for

A3. There is a nonempty invariant set S, ile(S)=S, somek>0, FX(q) ¢ Qq, then further iterates of remain
such that there is a uniform boundon |y| for all (x,y)  outside Q; i.e., F"(q) ¢ Qo if n=k. We assumeQ, lies
e S. Also, (x,y) € S implies (x+2i,y) € S for all betweenL (Xy) andL(Xo+27).
i=0,=1,=2,.... For purposes of the Sec. Ill, we assume
there is a uniformé>0 such that if &,y) &S, then the

stable manifold
unstable manifold

7

FIG. 11. The horseshdeé on Q, in Fig. 9 has some isolated fixed points.
One of thesepg is shown here. The stable and unstable manifoldpgpf
intersect at a poiny # p, other thanp,. The closure of the set of such

FIG. 9. This picture shows the first iteraf¢Q,) of the quadrilateral, which  intersection points is the Cantor set shown in Fig. 10, and it was created by

is alsoG?(x,y). plotting the intersections.
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130 Sanjuan et al.: Indecomposable continua
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Y

FIG. 12. This quadrilateraD, under the linear mapx(y)— (2x,y/2), con-
tains a saddle fixed point in its interior. It satisfies the lockout property:
once a point leave®), it cannot return.

Remark.See Fig. 12 for a trivial example of a quadrilat-
eral Q that satisfies the lockout property.

A6. F is a horseshoe map @. Write A,B,C,D for the
vertices ofQq as in Fig. 13. We do not give a full definition
here, but we assumé is hyperbolic horseshoe map in the
sense of Smalé.In particular if G:R?>—~R? is a horseshoe
map onQg, then the topDC and bottomAB have images
G(AB) and G(CD) that lie outsideQ, and the image
G(Qg) of Qg stretches at least twice acra®g as shown in
Fig. 13, without intersecting side&D or BC. Also for al-
most everyqg € Qg there is ann>0 depending org for
which G"(Qg) ¢ Qo. It follows that every horseshoe map

GOQ ~
D C
Q—
A B
L

G(A) G®B) G G(D)

FIG. 13. This figure shows the topological horseshoe map. In particular here
G(Q) stretches twice acro$3g and the top and bottom sid€D andAB are
mapped entirely outside @.

By,F(By),F3(By), ..., are  disjoint because
FX(B,) CFX(B). Furthermore alF¥(B,) have area equal to
the area oB,,. Since allFX(B,) lies inV,

aredV)=3_,aredF¥(By))=xXaredBy). )

Hence the area d8 is 0, since otherwise the union of
all FX(By) would have infinite area, proving the claim. It
follows that for almost everg e Q, the trajectory ofj even-
tually leavesV. By construction ofV, it can only leave
through the right end, and can never returrVtbecause A4
applies toxy+27n. Since this holds for every, F"(q) has
x-coordinate tending te-«, andF"(q) —«~ asn—ce.

_ Definition of A,. We define the seh, to be the closure
in R? of the set{u:F ~"(u) is in Q, for all sufficiently large

must contain at least two saddle fixed points. We will letn}. This set can be viewed as the limit points of the family of

po denote any one of these.

Remark.Recall that in our example there is a mé&p
with the property thaF = G2 and our numerical calculations
show thatG is a horseshoe map for whick(Q,) stretches
twice acrosQ (see Fig.  andF is also a horseshoe on
Qo, andF(Qy) stretches four times acro§¥, (see Fig. 9.

2.1 Proposition. For almost every qe Qg, we have
F"(g)—« as n—«, and in particular the x-coordinate of
F"(q) tends to+« as n—o,

Sketch of proof. Let B be the seF(Qg) —Qp. ThenB
consists of points that have just |€}%, andF(B) consists of
the points that lefQQ, exactly two iterates before. Sinéeis
one-to-one, ib e B, thenb ¢ Qg, and soF(b) & B. In other
words F(B) is disjoint from B. By the lockout property,
F(B) is also disjoint fromQg,. Applying the same argument
showsFX(B) is disjoint from B,F(B), ..., andFK"1(B).
But each of these disjoint sets have the same areB,as
becauseF is area-preserving. Lé¥ be the rectangle ifR?
defined byx e [Xo—2mn,xo+2wn] for somen=1 and
|y|<o, wherexg is as in A4 andr is as in A3. In particular
QoCV. Let By,CB be the set such th&it € By, implies that
F"(b) e V for all n>0. We claimBy, has area 0. The sets

CHAOS, Vol. 7,

setsQq,F(Qo),F?(Qo),.... Weremark thatA, is the clo-
sure of the unstable manifold @f, (different saddles irQ,
yield the same\,), wherep, is defined in A6.

2.2 Theorem.A is an indecomposable continuum.
Remark This result is based on ideas of M. Batgeho
proved under additional mild assumptions that if a saddle
fixed point has stable and unstable manifolds that intersect,
then the closure of one of the branches of the unstable mani-

fold is an indecomposable continuum.

By the periodicity assumption A2, thex values
Xo+ 2 satisfies A4 for ali=0,=1,+2,.... Hence we will
assumex, lies to the left ofQ,. We address how the set
A, is related toS*(x,) defined in the introduction. The
boundary of a compact sefS, written bndyS), is
S—interion(S); if S has no interior, thels=bndyS). In our
example it appears as though, equals bndy§*(xp)).
These setsS*(x,) and A, differ significantly in that
S*(xg) contains the cylinders and the invariant bubbles such
as those of Fig. 7. We conjecture that hekg=bndy
(S*(%0)). Our hypotheses imply the following results.

2.3 Proposition. The continuumA, is contained in
bndy(S*(xp)).

No. 1, 1997
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FIG. 14. Assumption A8 requires the segmeldfsand S, to separate one
fixed pointf, from anotherf,. Two possible configurations are shown.

RemarksNotice that sincepg is to the right ofxg, its
unstable manifold lies completely to the rightgfby A4, so  FIG. 15. This figure shows that the assumption A8 is satisfied by our ex-
AoC S*(XO)_ From the definition of a horseshoe map, it fol- ample. The cylinder is encapsulated by the segments of the stable and un-
lows thatF ~!is also a hyperbolic horseshoe mapQg and stable manifolds of the fixed points andpg, respectively. The fixed point
. . o In Theorem 2.5 can be any point of the cylinder dpds any point of any
Consequ_ently t_he Clo_sure of the stable m_an'f0|d of a fixedhner cylinder. Of course all cylinder points are automatically fixed points.
point py in Qg is an indecomposable continuum. Note thatThis configuration is like in Fig. 1@®) in that the fixed pointp, andp, are
F~! automatically satisfies the lockout property. not in the segments used for encapsulation.
We defineQ;, A;, andp; to be the horizontal translates
by x=2mi of Qq, Ag, and pg, respectively. These inherit
y -7 Qo Ao Po. resp y. that our example has the property A8. Of course all the
properties because of the periodicity assumption A2. In par- . . i :
. ; . s points of the cylinders are fixed points.
ticular F is a horseshoe map @, ; Q; satisfies the lockout Sketch of the proof. Suppose there is a patt from
property; p; is a saddle fixed point irQ;; and A; is the proot. supp P

; ! . fo to f; that does not intersecty. Then y must intersect
closure of the unstable manifold pf and is an indecompos- S,. There is another similar picture obtained by applyfg
able continuum. While there are no assumptions in this sect-ol'u S Jf. andf.. Sincef. andf. are fixed points and
tion about cylinders, it is useful to defiigg as the horizontal Oj aln’dll O’J it follllows thatof Fl(J) andf FI):(J) and
translate of a particular cylinde&, by 27i. So we ask then FO(JE) i boulnie(,:i byF(S,) and g(fjo)_ Hencelveie have an-

how the mdecomposable_contmua are related to each othe(g,[her geometry equivalent to the first, and it follows that
We add another assumption.

. . must pass througk(S;). Applying the argument again re-
fOIdA(;Z.pThe unstable manifold qf, crosses the stable mani peatedly, we findy must pass through™(S,). Since these
l.

2.4 Proposition. The continuumA;, 4 is contained in, segments are shrinking and converge{pthe pqthy comes
: arbitrarily close top;, so by compactness it must pass
but is not equal to\;. n »
. throughp;. But p; is in Ay by proposition 2.4. Therefore we
Sketch of the proof. First we argue that\; and Ay have a contradiction to our supposition. Hence no such path
are unequal. By A5, the liné(xo+2m7(i+1)) in A4 lies P ' P

strictly betweenp; and p;, ;. HenceA;, ; does not contain Y exists.
p;, but A; does, so they are not equal. The proof that
A; DA, follows from the so-called Lambda Lemriajs-
ing assumption A7.
The figures in the introduction suggest the indecompos- AssumeF satisfies the hypotheses A1-A8. We consider
able continua in our example are quite complicated. In fac new assumption.
A, seems to separate the plane into many regions, and in B1. Lete>0. Assume that instead of applyifigat each
particular we can prove this with the following assumption. time i, we instead require that for eachwe have an area-
A8. Assume that there is a connected segnignof the  preserving homeomorphisf, of R? which is close toF in
unstable manifold op, and a connected segme®i of the  the sense thdtF(q) —Fi(q)|<e and|DF(q) —DF;(q)|<e
stable manifold op;. AssumeU, andS,; have the same end for eachi andq. We refer toe as the “noise level.”
points and together they bound a regibthat contains some The only assumption abow; is B1. All conclusions
fixed pointfg in its interior but excludes another fixed point must follow from our assumptions abdatand from the fact
f1 (as shown in Fig. 14 that the noise levet is sufficiently small.
2.5 Theorem.Each connected path frony to f; must For an unperturbed system, we define the trajectory
intersectA . through anyqg to be g,=F"(qo) and this holds for alh
Remark.In our example, the cylinders consist of fixed positive and negative. For our perturbed system, we always
points. If we chooséd to be any point of one cylinder and discuss initial points at time zero for simplicity. Then
f, a point of the next cylinder, Fig. 15 shows numerically F(q,) is replaced byFy(qo) and F2(qo) is replaced by

IIl. PERTURBATIONS OF THE SYSTEM: THE FISH
FACTOR

CHAOS, Vol. 7, No. 1, 1997
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2 Time

FIG. 16. The trajectory with noise througfy at time 0.

F1(Fo(do)), etc., so that théorward trajectory of a point

Sanjuan et al.: Indecomposable continua

indecomposable continuum, and so d&e¢xo).

Definition of A, We defineA, to be the closure iR?
of the set{u:F~"(u) is in Q, for all sufficiently largen}.

We analogously defind; usingQ; instead ofQ,. Since
F; is not assumed to satisfy the periodicity assumption A2,
Ki is not in general a translate of,, though we expect it
could nearly be a translate byr2. In particular each\; is
compact.

The challenge here is to identify hypotheses that are
verifiable and are preserved under small perturbatioris. of
Assumption A5 is not a hypothesis that is preserved under
small perturbations. We add the following strengthened ver-
sion of A5.

A5’. There is arxge (Xq,Xo+ 27) such thatl (x,) sat-
isfies A4 andL(x,) lies to the right ofQ, and there is an
integer N with the property that ifge Qg and F(q) ¢ Qo,
thenFN(q) is to the right ofL(xo).

0o under the new perturbed system consists of the sequence Remark. The integerN must be independent of the

do.Fo(do).F1(Fo(o)), ... Similarly q_;=F~*(qo) is re-

placed byF~1(q,), andq_, becomesF~3(F_1(qo)), etc.,

and we refer tay,q_1,9_» . . . , as thebackward trajectory
Jo- Notice that automaticallf;() = since this is true for
any homeomorphism oR?, that is, if q— in R?, then it

implies thatF;(q) — .

We write F"(q,) for the analog of"(qy) for all n posi-
tive and negative. More precisely, far>0, we define
F'do) to be Fn_a(...(Fo(do))) and F~"(qp) for
F;l( o (Fii(qo))). In particularF"(qq) =q, for eachn.
See Fig. 16.

Now it no longer makes sense to talk abdotariant
Cantor setsinvariant points, orinvariant continua. Perhaps
we should assumi;(q)=F(q) for q inside the cylinders so

the cylinders themselves are still invariant, except that OUL,n
results do not involve cylinders explicitly. However, we can
discuss those pointg in R? such that the backward trajec-

tory’s x-coordinates do not go te-« or those whose for-
ward trajectory’sx-coordinates do not go té . The reader

might be considering how we can arrive at conclusions when
there are no invariants sets. Assume there is a quadrilatera

Q with F linear inQ, as in Fig. 12. Then foe sufficiently
small, there is precisely one poigt(at time 0, whose noisy
trajectoryF remains inQ for all time, positive and negative.

choice ofq. Once a trajectory point moves to the right of
Xo, it cannot return to the left, so it cannot return@g. In
our example we can find such a lirfBig. 8 with N=2.
Assumption A5 implies that for noise levek sufficiently
small, the lockout property holds for noisy trajectories, that
is trajectories of-.

The horseshoe map property A6 is automatically pre-
served under small perturbations, so e&¢hs a horseshoe
map on eacl®; for small e. _

3.2 Theorem.For €>0 sufficiently small, eachA; is an
indecomposable continuum.

3.3 Proposition. For €>0 sufficiently small, the con-
tinuum A is contained in bndi§" (xo+ 2i)).

3.4 Theorem.For €>0 sufficiently small, for each i the
tinuumA, 1 is contained in, but is not equal t&; .
Remark.Recall from the assumption A8 that the points
fo and f; are fixed points forF, but presumably not for

i .

3.5 Theorem. For €>0 sufficiently small, each con-
nFcted path from §to f; must intersect\ .
The proofs of these results will be published elsewhere.

Notice thatq is not a fixed point since no fixed points exist V- LAGRANGIAN DYNAMICS FOR THE FLUID FLOW

in general for allF; . WhenF is a horseshoe map @, this
phenomenon is more complex, aRds a horseshoe map on
Q=0Qy. Let Z, be those pointg] € Qg for which F"(q)
e Qo for all n, positive and negative.

3.1 Proposition. For €>0 sufficiently small, £ is a
Cantor set.

Remark.The definition of “Cantor set” concerns only

As it has been pointed out in the Introduction, instead of
directly solving the corresponding Navier-Stokes equations
of the fluid flow, we adopt a rather different approach. When
the fluid is incompressible, as in our case, we can formulate
the problem in terms of an auxiliary function, tlstream
function In such formulation the continuity equation is im-
mediately satisfied and can easily be applied to two-

the shape and topology of the set and not the dynamics Offmensjonal flows, axisymmetric flows and some very spe-

the set.

_ We letS*(xg)={q € RZ eitherq=-oo or the trajectory
F"(qg) throughq at time zero remains to the right &f for
all time, positive and negatiye We similarly define
S (Xo), except that the trajectories remain to the leftxgf
for all time. We claim that for every,, S*(X,) contains an

cial cases of three-dimensional flows.

When dealing with a complex fluid flow, it is rather
convenient to find ways of visualizing it. There are tradition-
ally three ways of carrying out this task, through streaklines,
streamlines, or pathlines. A streakline is the locus of fluid
particles originating from the same initial point. A streamline
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is a continuous and smooth curve whose tangent coincideftuid flow behind one cylinde?.’ In fact for the Navier-

with the velocity field at each point. The streamlines of theStokes equations, the boundary layer near the cylinder is

flow, at a given timet, are simply the level curves of con- quite thin, but in our system we have made the boundary

stant value of the stream function. The pathlines in turn ar¢hicker as ir®”’ The stream functiom(x,y,t) of the model is

the trajectories which follow a simple fluid particle. If the defined by

stream function is time-independent, the system is integrable _

and the streaklines, the streamlines, and the pathlines coin- Pxy,D=1xy)gxy.0), ©

cide. However, they do not coincide when the stream funcwhere the functiorf(x,y) gives information about the geo-

tion is time dependent. metrical constraints, that is, the “cylinders” for the flow;
The equations describing the motion of fluid particles inand the functiorg(x,y,t) gives the contributions of the vor-

an incompressible two-dimensional fluid flow take the formtices and of the background flow. We also require for

of Hamilton's equations, ¥(X,y,t) to be a periodic function ir with a period 2r. The
function f(x,y) is given by
_, 2y Gy @ f(x,y)=1—exp{ — o[ (SIF(x/2) + (y/2)2) >~ 1/2]2}.
X ay 1 y (9X L] (4)

This form ensures that the tangential velocity tends linearly
to zero as expected in a boundary layer. The radial compo-

field, and ¢(x,y,t) is the time-dependent stream function . . : :
. : nents of the velocity vanishes quadratically, which shows
that plays the role of a Hamiltonian function. The property of . . .
that the cylinder surface can be viewed as the union of an

area-preserving in phage space is a consequence of the < e number of fixed points.
compressibility of the fluid.

. . Our spatial array of “cylinders” is obtained by the locus
If the flow is steadyy=(x,y) is constant along the . . _
pathline, the system has one degree of freedom, and it i%:c points .(x,y) which makes‘(x.,y)—.o.. In ther words, for
integrable. If the flowy= y(x.y.t) is time-periodic with pe- these points the stream function is identically zero on the
riod T thé system is said té) 'ha\lme and halfdegrees of surface of the “cylinders,” yielding then the appropriate no

freedom, since time is regarded as an additional 1/2 degr slip boundary condition. From the above condition it is in-
. ferred that
of freedom, in such a way that the whole phase space is
three-dimensional and does not need to be integrable. So Sir?(x/2)+(y/2)?=(1/2)?, 5)
chaos is possible. . 2 5. -
, ) where¢(x,y) =sirf(x/2) + (y/2)?— (1/2)? is a periodic func-
We consider an approximate model for the stream funcfion in x of period 2. The functionf(x,y) is O on the

tion = w(x,y,t)_, which _is time-pe_riodic with period_'=1, surface and has gradient O there. We redefipgy) so that
Our _model c_h0|ce prowdes us W|th_reasonably faithful dy-jnsige the cylinders it is identically 0. The stream function
namics and is much easier to deal with and much faster COMy(x,y,t) = F(x,y)g(x,y,t) will inherit these properties from

putatipnally than solving numerical_ly the Naayier'StOkesf(x,y).Ourarray of “cylinders” is periodic in with period
equation for the problem. The model introducedand used 27 and each “cylinder” has a vertical radius of 1 and a

in®7 for the fluid flow past one single cylinder is extended horizontal radius of 1.05, which is very close to a “real”

here for the fluid flow past an infinite periodic array of cyl- cylinder. Since the functiofi(x,y) depends only on the pa-

inders. ) , , rametero, there is only one way to modify this function: by
The parameters involved in the modeling are the foIIow-modifying the width of the boundary layer].

wherev, andv, are the two components of the velocity

ing: We begin by definingy(x,y,t) only for x in [0,27]. Itis

(i)  The frequencyp= 2 of the velocity field. constructed so thaj(x,y,t) has the same values»t 0 and

(i)  The sizep, wherep™2is the characteristic linear size at x=2#. The equation forg(x,y,t) involves two more
of the vortices. functionsvor(x,y,t) andbflow(x,y), which are the func-

(i) The widtho, whereo Y2 play the role of the bound- tions governing the vortices and the background flow, re-
ary layer at the cylinder. spectively, as discussed next. It is given by

(iv) The ratioa of vortex size inx to size iny. X.V.1) = sin(x/2)vor(x.v.t) + bflow x.v). 6

(v)  The heighty, of the center of the vortices. o ,y,- )= sinxiz)vert ,y-, ) W ,y-) _ ©

(vi) The distanced, whered is the distance between Forx in [0,27] the functionvor(x,y,t) is defined as
cylinder centers. vor(x,y,t)=o{—hy(t)g:(X,y,t) + ha(t)ga(x,y,1)}, (7)

(vii) The strengthw= 24 of the vortices.
(viii) The velocity 3= 14 of the background flow.

The following parameters choice has been used through- gi (Y.t =exp{—p{[x—x (O] + Ty -yi(O]?}}. ()
out all the numerical computationsp=0.35, o=1.0, The functionvor(x,y,t) is responsible for the birth and
a=2.0,L=2.0,y,=0.3,d=2.0,0w=24, andB=14.0. The death of vortices and it depends on the strength of the vorti-
centers of the cylinders are a&=0,=27,+44,.... This set  cesw, the functionsh;(t) andh,(t), which in turn depend
of parameters provides a rather good agreement with an the frequency®, and the functionsg;(x,y,t) and
known solution of the Navier-Stokes equations in the case of,(x,y,t). The functiongy,(x,y,t) andg,(x,y,t) depend on

where
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134 Sanjuan et al.: Indecomposable continua

p, which are related to the characteristic linear size of the/. CONCLUDING REMARKS
vortices; andx is the ratio of vortex size ix to size iny.
The functionsg,(x,y,t) and g,(x,y,t) depend also on the
vortex centers, which in turn depend banthe distance that
vortices travel before dying out, ang,, the height of the
center of the vortices. Hence, the functioor(x,y,t) may be
changed by modifying either the: strengthof the vortices,
frequency¢ of the velocity field, vertical size of the vor-
tices, ratioa of vortex size inx to size iny, heighty, of the
center of vortices, or distande that vortices travel before

We have explored a numerical example of a fluid flow-
ing past an array of cylinders. While one can rigorously
prove that the flow preserves area, almost all of our observa-
tions lack rigor. Furthermore we have not studied the Navier-
Stokes equations, but rather the computationally much sim-
pler Lagrangian dynamics of a stream function we have
imposed. This is similar to the physician who studies cancer
in mice rather than people. We would prefer to study the
Navier-Stokes equations. Our solution to this quandary is to

dying out. . ) .
L o . . present rigorous results that are logically independent of our
us t:)-:lee]filr?(\:iv is time-periodic with period 1 and this allows numerical example. The hypotheses are suggested by the ex-
ample but will also be true in many other fluid flows. Our
ot goal is to study fluid flow which is a periodic flow plus a
h,(t)=|sin 7)‘ h,(t) =h,(t—1/2). (9)  time varying perturbation. Under such circumstances, no

bounded invariant sets are preseryegcept the cylindejs

This implies thator(x,y,t) creates two vortices between the We show that it is nonetheless possible to discuss fractal sets

cylinders atx=0 andx=24r, with the functionsg,(x,y,t) that remain. These are often indecomposable sets which cor-

governing one vortex angd,(x,y,t) governing the other. respond to physically observable remnants of dye introduced
The vortex centers move parallel to tkeaxis with con-  €arlier into the fluid.

stant velocity. Thex-coordinates change with time and are
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There are thus two vortices, and their behavior entails trav-
eling a distancé. during a period and then dying out. APPENDIX A: BASIC CONCEPTS OF
The functionbflow(x,y) is defined as INDECOMPOSABLE CONTINUA

_ Most scientists working in dynamics are aware that the
bflow(x,y)= By s(x.y), (12) limit sets associated with dynamical systems can be quite
wheres(x,y) depends on the vortex ratie and is given by ~ complicated. This section discusses some of the topological
structures of dynamics and shows how far from the usual
_ 1 2 Euclidean intuition these sets can be. The structure that in-
s(x,y)=1-exp — ?[X_ 105y (13 terests us most here is an object known to topologists as an
indecomposable continuunwhile understanding these re-

It expresses the contribution of the background flow withquires gaining a different intuition than most mathematicians
uniform velocity 8, while the functions(x,y) is introduced and scientists possess, the good news is that these objects
to simulate theshieldingof the background flow right behind have been studied since the early part of this century, and
the cylinder. One of the features of this function is that it isthere exists a considerable body of literature on them. A brief
identically zero at the rightmost point of each cylinder. Thehjstory of indecomposable continua can be found in Ref. 1.
functionbflow(x,y) may be changed by modifying the: ratio Also, even though they must be dealt with on their own
a of vortex size inx to size iny, or velocity 8 of the  terms, they do have structure. That structure is quite rich,
background flow. with strong rules governing their behavior.

So farg(x,y,t) has been defined for<Ox<2m and it We write RZ= R2+ {0} to denote the one point compac-
has the important property that it has the same values affication of the plane, in such a way that it is topologically
(0y,t) and (2m,y,t). Hence we can make it a continuous equivalent to the two dimensional sph&% More generally

periodic function ofx with period 2. We take[0,27] tobe  \ye can writeR"=R"+{} to be the one point compactifi-
a fundamental period fox and defineg(x,y,t) as follows.  ation of R".

Choosen so thatx—27n is between 0 and 2. Then define A closed sefA in RZ, is said to beconnectedf it cannot
be written as the union of two disjoint, closed nonempty sets.

XY, 1)=g(x—2mn,y,t). 14 . . . .
90y =g( ™™yt 4 A continuum Kin R" is defined as a compact, connected
Henceg(x,y,t) is periodic inx with period 2. subset oR". In particularR" is a continuum. IiX andY are
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FIG. 18. Construction of the middle-third Cantor set. In step 1, the middle
third of the unit interval is removed. In further steps, the middle third of
every remaining subinterval is removed. Here three steps are shown. The
points that are never removed make up the Cantor middle-third set. The set

FIG. 17. The topologist's sin(2) curve. marked 0.02 consists of all numbers in the unit interval whose ternary ex-
pansion begins with 0.02.

spacegor subsets of a space suchRY, h:X—Y is one-
to-one, continuous, and onto, amd ! is also continuous,
thenh is ahomeomorphismin these circumstances the sets
X and Y are said to behomeomorphic or topologically
equivalent An arc is a set that is homeomorphic to the uni
interval. A setX is arcwise connected for each pairp,q of
points inX, there is an arc contained ¥ithat contains both
p andq. If Y and X are continua, an¢ C X, then we say
Y is asubcontinuunof X. If in additionY # X, then we say
thatV is aproper subcontinuunof X.

(1) A remark and an exampl&very continuum irR* is
an arc or a point, and therefore every continuumRihis

connected at any other point. The topologist’s six)furve
is locally connected at each point ¥f, but it is not locally
connected at any point aK;. There is no arc inX that
{ connects a point ok, to a point ofX,, even though points of
Xo can be found in each neighborhood of each poinX of
(4) Remark While it is not immediately obvious, the
following is true. Every connected, locally connected, subset
of R" is arcwise connected. Example 3 demonstrates that the
converse to this statement is not true.
SupposeX is a continuum and? is a closed subset of
X. A componenK of A is a connected subset Afwhich is

arcwise connected. However, thisrist true for subsets of 1Ot @ proper subset of any other connected subst &ach

higher-dimensional spaces. Probably the simplest example PNt Ofr'? is contained |n.ahcobmp.onent & tr|10ugh In some
a continuum that isot arcwise connected is thepologists ~ ¢2Ses the component might be just a single point.

. - . 2 .
sin(1k) curve Xin the plane, see Fig. 17. Defing, to be ,(5) Examplg SUPpose thal is a closed disk iR (i.e.,
{(x,y) e R%:0<x=1 andy=sin(1k)} andX, to be the ver- a circle and its interigr Suppose thaX denotes the topolo-
tical line segment wittx=0 and —1<y=<1. ThenX, is gist's sin(1k) curve andM denotes the Cantor fan. What do

contained in the closure of, in R?, andX=X,UX; is the f[he compongnts dbnNX andDﬂ.Mllook like, assuming the
continuum pictured in Fig. 17. Note that (0,1) and intersection is nonempty gnd_ it is n_ot all of or M? It_
(1,sin(1)) are inX, but there is no arc from (0,1) to depends, of course, on whidh is considered, but assuming
(1,sin(1)) that is contained iK. (1/2,1)¢ D and)_(1 is not a subse_t ob, each c_omponent of
DNX or DNM is an arc or a point. Further, if we are con-

sideringDN X, and the interior ofD contains a point of
X1, thenDNX has countably infinitely many components,
all but one of which is an ar¢See Fig. 20

If we considerDNM and (1/2,1)% D, then all, except
possibly one, of the componentsBf1M are arcs and there
are uncountably many componentsim M. On the other
hand, if (1/2,1) belongs to the interior &f, thenDNM is
itself a continuum homeomorphic #d. In this caseDNM
has only one component.

(2) Remark Any open, connected subsetRf is arcwise
connected.

A setX is said to bdocally connectedf each point has
“arbitrarily small” neighborhoods that are connected. More
precisely, if for each neighborhodd of any pointp in X
there is a connected neighborhoddof p such thatvCU,
then X is locally connected. The interval-1,1] is con-
nected. If we remove the poifi0}, what remains is not
connected but is locally connected.

(3) Example Begin with the middle-thirds Cantor set

C sitting on the unit interval0,1] on thex axis in the plane. NeitherX. nor M is an.inde_composable continuurbut_
Themiddle-thirds Cantor set @ the set which remains after W€ are heading in that direction. Indecomposable continua

iteratively removing the middle-third of the unit interval and are not arcwise connected and they are not locally connected

of every remaining subinterval, see Fig. 18. T®antor fan
consists of the middle-thirds Cantor set, the point at (1/2,1)
plus the line segments that run from each point of the Cantor
set to (1/2,1).
The Cantor fan, pictured in Fig. 19, is a continuum in
R? which is arcwise connected, but is not locally connected.
Note that it is locally connected at the point (1/2[fhat is,
there are arbitrarily small connected neighborhoods of
(1/2,1) contained in the Cantor faalthough it is not locally FIG. 19. Cantor fan.
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136 Sanjuan et al.: Indecomposable continua

: )

(1,0) FIG. 22. F?(D) in F(D) andD.

continuum, the sequend®,F(D),F?(D), ... is a sequence
of nested continua. An elementary theorem from topology
tells us that the intersection of nested continua is itself a

(1/2,1) (b) continuum. Then it follows thaK=nN,_,F"(D) is a con-
M tinuum.
Cantor D Now another theorem from topology states that any
set nested intersection of compact sets is nonempty and com-
~ pact. SinceKNA can be writtenN/_,[F"(D)NA] and

KNB can be writtenN,_;[F"(D)NB], it follows that
FIG. 20. (8 DNX with XN interior of D, nonempty.(b) The Cantor fan KNA andKO B are bOth nonempty. ThuK, contains more
M. HereD intersectsM with (1/2,1)¢ D, andM N interior of D nonempty. ~ than one point. A continuum that contains more than one
point is said to benondegenerateNote that ifq e R? and
there is some positive integersuch thaF"(q) € D, thenthe
atanypoint. The invariant set for the canonical Smale horsesequenceq,F(q),F2(q), ... must be getting closer and
shoe map is a simple example of an indecomposable coreloser toK. In other wordsK is the global attractor foD in
tinuum, and we recall the construction of that example bethe sense that all initial points are attractedkto The con-
low: tinuum K, so defined, represents the invariant set of the
(6) Example. The invariant set of the Smale horsesho&male horseshoe map and is also an indecomposable con-
map? The construction begins as follows: Consider thetinuum.
stadium-shaped region calldd in Fig. 21(a). The setD Precisely, a continuunX is decomposabléf it can be
consists of a rectanglB with interior, and two semicircles written as the union of two proper subcontirdaandK. The
A andB (interiors included, that are sewn onto the shorter setsH andK mustoverlap. A continuum that is not decom-
sides ofR. Now DCR? and the homeomorphisti on R>  posable isindecomposableThe most commonly encoun-
mapsD into itself as pictured in Fig. 2b). Think of F  tered continua are decomposalte so one might belieye
having the following effect o>: the mapF shrinksD ver-  For example, the intervéD,1] is the union of the two proper
tically, stretchedD horizontally, contracts the semicircle re- subcontinug0,1/2] and[1/2,1]. Giving a rigorous proof that
gions A and B, and then folds the shrunk, stretched, con-K is indecomposable is tedious. We instead attempt to give
tractedD once and places the acted-ugdnback into itself  the reader an intuitive idea of what this all means. First, it
so thatF(A) andF(B) are in the interior ofA, F(R) is in  may help to think oK in another way. A set which is topo-
the interior ofD, andF(R) intersectsB in a nontrivial way. logically equivalent tK is called the Knaster bucket handle,
Since F(D)CD, F3(D)=F(F(D))CF(D). Figure 22 usually denoted ,, and it may be described as followSee
shows the second iteration BY, that isF?(D). This process Fig. 23 for a sketch.SupposeC denotes the middle-thirds
continues:DDF(D)DF?*(D)D.... Since eactF"(D) is a  Cantor set sitting on the unit intervigd, 1] x {0} in the plane.
Connect the points of with semicircles as follows(1) For
each paimp,q of points ofC such thap andq are equidistant
from (1/2,0), connegb andq with a semicircle sitting above

A R B
F(A) (b)
F(B)
FIG. 21. (a) The stadium regio®. (b) The horseshoe map dn. FIG. 23. The Knaster bucket handle.
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) ft+1/2:1/2,%:y) =0 (xy) (130,%,)=F(151/2,81/230,%,y)

£(1/2;0,x,y)
(x,-¥) f(t;0,x,y)

FIG. 24. This diagram shows the map of period 1/2 which maps a point ofFIG. 25. This diagram shows how the point of coordinates/ moves
coordinates X,y) and a symmetric onex(—y) under iteration off. under the action of the maf

the x axis. (2) For each paip,q of points of C equidistant by the 1920s, members of the fine Polish school of math-
from (5/6,0) [the midpoint of (2/3,0) and (1,0)], connect ematics had begun to study them as interesting objects in
p andq with a semicircle that extends below tkeaxis.(3)  themselves. From the discussion thus far it follows that all
For each paip,q of points of C equidistant from the mid- proper subcontinua contained in an indecomposable con-
point (5/18,0) of (2/9,0) and (1/3,0), conngrandq witha  tinuum must be nowhere dense in that continuum, i.e., no
semicircle that extends below tlxeaxis. Continue this pro- such subcontinuum can have interior relative to the indecom-
cess until thenth step which consists of connecting each pairposable continuum. One might be tempted to believe that
p,q of points of C equidistant from the midpoint each such proper subcontinuum would have to be itself a
(5/2(3"),0) of (2/3',0) and (1/8371,0). The pointsp andq  simple continuum such as an arc. This is far from the case. It
are to be connected with a semicircle that extends below this far from true in the examples in this paper, and it is far
x axis. We emphasize that although we give no proof herdrom true in generalln our cylinder flow example, each in-
thatK andK, are topologically equivalent, comparing both decomposable continuum contains an infinite number of
constructions after rotatinf, by 90° clockwise should at proper subcontinua which are themselves indecomposable.
least convince the reader of the plausibility of this equiva-This indecomposable-continua-containing-indecomposable-
lence. continua phenomenon is common in topology. In fact, R. H.
Now suppose is a small closed disk in the plane. If the Bing® proved in 1951 that most continua R?, or in any
interior of S intersectsk,, then SNK, consists of an un- Euclidean space, are indecomposable continua which have
countable collection of aro@nd possibly a couple of points the property that all their proper subcontinua are indecom-
on the boundary If Sintersects the interior of the Cantor fan posable. Such a continuum is calledhereditarily indecom-
M, and (1/2,1) is not itS, thenSNM also is an uncountable posablecontinuum. Bymostcontinua inR?, we mean that if
collection of arcs, with possibly a couple of points on theone considers the space of all continuaRA, when that
boundary. Locally then, except around the vertex pointspace of continua is endowed with the topology inherited
(1/2,1), M and K, are the same topologically. However, from the Hausdorff metric, then the subset of that space con-
there is one way in whiciM andK, are very different, and sisting of the hereditarily indecomposable continua forms a
that is the fact thaM has the vertex point (1/2,1) at which residual subset of the space of continua. Note that since arcs
the whole continuum is connected, white, possesses no are decomposable, hereditarily indecomposable continua
such point. A stronger statement can be made: Suppdse cannot contain arcs.
a closed set irR? that contains a closed dis®, and that All indecomposable continua share a certain amount of
K, intersects the interior 08, but K, is not contained in structure. Suppose that is an indecomposable continuum
T. ThenK,NT has uncountably many components. In thisand xe X. Then the composantof x in X, denoted
case, each component is either a point or an arc. This ureom(x), is the union of the set of all proper subcontinua of
countable component property is the one that makesn- X which contain the poink. It is not difficult to see that if
decomposable and decomposable. Again, no matter wherex and y are two points of X, then either
the interior ofS intersectK,, as long a, is not a subset Com(x)=Com(y) or Com(x)NCom(y)=J. Thus, the
of T, it follows thatK,NT has uncountably many “pieces.” collection of (X) = {Com(x):x e X} forms a partition of
On the other hand, there is one pointMfwhere this sort of the continuumX. It is always the case thaf(X) is an un-
property does not hold, namely at the vertex point (1/2,1). countable collection of mutually disjoint members, each of
The first indecomposable continuum was discovered irwhich is dense in the indecomposable continuum. Now each
1910 by the Dutch mathematician Luitzen E. J. Brouwer as @roper, nondegenerate subcontinuunkgfis an arc, while
counterexample to a conjecture of the German mathemateach proper subcontinuum of a hereditarily indecomposable
cian Arthur Schoenflies that the boundary between two coneontinuum is indecomposable. Our cylinder flow continua,
nected open plane sets had to be decomposable. At first thesa the other hand, are somewhere between these two ex-
objects were studied as examples of extreme pathology, bitemes: they contain both simple continua, arcs at the very
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least and they also contain proper, indecomposable subcotime 0 to time 1, i.e., we start withx(y) and then consider

tinua. All proper subcontinua of an indecomposable con{(1/2;0x,y), and then from that point follow it by another

tinuum must be nowhere dense in that continuum and eactime period 1, so that now the time is(dee Fig. 2%

must be contained in one composant of the continuum. ThenF(x,y)=1(1;1/2,f(1/2;0x,y)). So an initial point
(x,y) at time 0 maps intof(1/2;0x,y) which is mapped
likewise into f(1;1/2f(1/2;0x,y)). We may write

APPENDIX B: SYMMETRY OF THE HORSESHOE MAP (g,h)(x’y) for the coordinates Oﬂ(l/Z,OX,y) and then

The fluid flow is time periodic with period 1. For any f(1;1/2x.y)= (g, ~h)(x,~y). Thus, summarizing,

initial point (x,y) and initial timet,, after timet, the flow f(1/2;0x,y)=(g,h)(x,y), (B1)
f maps the pointX,y) to f(t;;tg,X,y), which represents the _ _
new (x,y) point. In particular ift,=0 andt;=1, we then f(1:172%,y)=(9,—h)(x, ), (B2)

have a smooth magd(x,y)=f(1;0x,y), which is the and consequently

time-1 map. ) . v

Since we have a pair of vortices which alternate periodi- F(1; 1721 (1/2,0x,y)) = 1(1:1/729(x,y), = h(x,y) (B3)
cally, there is a certain kind of symmetry. The mapis
actually the square of another m#&, i.e., we can write =(g,—h)(g(x,y),—h(x,y)).
F(x,y) =G?(x,y). Our numerical evidence strongly suggests (B4)

that the mapG is a horseshoe map. After each period 1/2 apefine the map G(x,y) to be (@, —h)(x,y). Then

vortex is created and after another period 1/2 a vortex i%z(x,y)zF(x,y).

destroyed. In our model vortices move downstream, in the

flow, not the time-1 map, from left to right, and they die 1. !(ennedy, “A brief history of indecomposable continua,” @ontinug '
. . . . edited by H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek, and P. Minc

before colliding with the next cylinder, since the parameter . ce| Dekker, New York, 1995 pp. 103—126.

L of the model stream function is smaller than the distance2s. smale, Bull. Am. Math. Sod3, 747 (1967.

between the cylinders. The symmetry occurs because théM. Barge, Proc. Am. Math. Sod01, 541 (1987.

. ) . 4 ; . )
vortices alternate above and below the horizontal axis. More K- T- Alligood, T. Sauer, and J. A. YorkeChaos: An Introduction to
Dynamical System&Springer-Verlag, New York, 1996

precisely, a point with Coqrdinatex,(y) at timetQ is map_ped SE. Ziemniak, C. Jung, and T. TePhysica D76, 123 (1994.
into f(t;0X,y), while at time 1/2 another point starting at °A. Pentek, . Toroczkai, T. Tle C. Grebogi, and J. A. Yorke, Phys. Rev.
(x,—y) is mapped intdf(t+1/2;1/2x,—Yy). Thus, the time E 51, 4076(1995.

P : : : ; ’C. Jung, T. Tk and E. Ziemniak, Chao8, 555 (1993.
1/2 is just half the period of the fluid motioisee Fig. 24 8 IlEJ gNusse!3 and J. ,IA YlorkeDynamics: (Nurr?erical Explorations

Our time—l map can be considered as a cgmposition iN (Springer-Verlag, New York, 1994
the following manner. Suppose we follow a trajectory from °R. H. Bing, Duke Math. J1, 43 (1951).
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