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We discuss a topological property which we believe provides a useful conceptual characterization of a
variety of strange sets occurring in nonlinear dynamics (e.g., strange attractors, fractal basin boundaries,
and stable and unstable manifolds of chaotic saddles). Sets with this topological property are known as
indecomposable continua. As an example, we give detailed results for the case of an indecomposable
continuum that arises from the entrainment of dye advected by a fluid flowing past a cylinder.
We show for this case that the indecomposable continuum persists in the presence of small noise.
[S0031-9007(97)02530-1]
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Sets that are loosely called “strange” occur commo
in nonlinear dynamics. Examples are strange attrac
of chaotic systems, fractal basin boundaries, the st
and unstable manifolds of chaotic scattering sets (or o
chaotic transients), and strange nonchaotic attractors.
singular fine-scaled structure of such sets is most c
monly characterized by saying that these sets are fra
In this paper we wish to introduce a concept from top
ogy with we believe provides another useful character
tion of many (not all) sets that would commonly be call
strange. In particular, we discuss the applicability of
concept ofindecomposable continua[1] in nonlinear dy-
namics. We also provide a detailed example involv
the indecomposable continuum arising from the entra
ment of dye advected by a fluid flowing past a cylind
and for that example we show that the existence of an
decomposable continuum persists in the presence of s
noise. In formulating the latter result, the concept of
decomposable continuum is essential, because the u
approach to the noise-free problem is to show the p
ence of a fractal chaotic invariant set, and with noise th
are no invariant sets.

A continuumis a compact, connected [2] set. It is call
decomposablewhen it can be regarded as the union of t
overlapping subcontinua. For example, the shaded
in Fig. 1(a) is a continuum. It is decomposable beca
we can divide it into two subsets by the line shown
the figure, and each of the two subsets are continua (
overlap if we take the two subsets to each include
dividing line). Other examples of decomposable contin
are a line segment, the three-dimensional volume on a s
cube, and the surface of the cube. On the other h
every indecomposable continuum has the strange prop
that if you attempt to divide it into two parts, then ea
of those parts has an uncountable number of conne
pieces. That is, the division causes the original objec
“shatter” into an infinite number of pieces [3].

As an example of an indecomposable continuum, c
sider the strange attractor in Fig. 1(b). This set is clea
892 0031-9007y97y78(10)y1892(4)$10.00
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compact and connected [2], and is hence a continu
It is also indecomposable. For example, consider
component subsets lying inside and outside the divid
oval shown in the figure. Noting the Cantor structure
the attractor transverse to the apparent smooth varia
along the unstable direction, we surmise that the com
nent subsets contain an uncountable number of disj
pieces (corresponding to the uncountable number of
joint points in a Cantor set). Note that, by definitio

FIG. 1. (a) Example of a decomposable continuu
(b) A strange attractor exemplifying an indecomposab
continuum which arises from the Ikeda mapzn11 
1 1 0.9zn exphif0.4 2 6s1 1 jznj2d21j, z  x 1 iy.
© 1997 The American Physical Society
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this applies for any smooth division of an indecomp
able continuum. In particular, assume that we constru
tiny square about a point on the attractor in Fig. 1(b), a
take the division of the attractor to be the inside and o
side of the tiny square. Then the tiny square must con
an infinite number of disconnected components. Thus
always see structure as we examine stronger and stro
magnifications about the point [see the inset in Fig. 1(
Hence, the indecomposable continuum property imp
structure on an arbitrarily small scale.

As another example, which we pursue further in t
paper, we consider a two-dimensional incompress
fluid flowing past a cylinder. As the flow velocity (i.e
Reynolds number) increases, it is well known that
steady flow becomes unstable, and the flow beco
time periodic,vsj, td  vsj, t 1 T d, wherej  sx, yd, T
denotes the period, andv is the Eulerian fluid velocity. In
this time periodic regime, vortices are alternatively sh
from either side of the cylinder and advected downstre
This situation has been extensively considered from
dynamical systems point of view [4–6]. In these wor
evidence has been presented that the dynamics of
trajectories given bydjydt  vsj, td yields a chaotic
invariant set for the associated time-T map. Furthermore
it has also been noted that this should lead to fra
properties of tracer particles originally placed upstre
from the chaotic invariant set.

An example is shown in Fig. 2 with the flow specifie
by a stream functioncsx, y, td. Hereyx  2≠cy≠y and
yy  ≠cy≠x, and for csx, y, td we use a form given in
Ref. [4] to model the previously described periodic vort
shedding flow. Imagine that att  0 the fluid in the

FIG. 2. (a) The fluid atn  3. Particles of dye whose initia
positions are inx , 0, y . 0 are marked black and the re
are marked white. (b) The vertical line of dye is advected
the fluid and accumulates on the unstable manifold of a cha
saddle, which is also an indecomposable continuum. The i
in (b) shows a blowup of the small rectangle in (b). T
cylinder is shown crosshatched.
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region,x , 0, y . 0, is dyed [we takesx, yd  s0, 0d to be
the center of the cylinder] and that the flow is in the positi
x direction. Figure 2(a) shows a depiction of a snapsh
of the fluid taken at a later timenT , wheren is an integer.
The dyed fluid is shown as black. Asn is increased the
boundary of the black region asymptotes to a set wh
includes the fractal unstable manifold of a chaotic invaria
set. This set is also an indecomposable continuum
The focus of the present Letter is the question of wh
happens when the periodic flow is perturbed by noi
That is, the fluid velocity is nowv  v0 1 dv, where
v0 is the original time periodic flow anddv is a small
nonperiodic fluctuating perturbation. If one integrates t
trajectory equation,djydt  v, forward from timenT to
time sn 1 1dT , then a map which is explicitly dependen
on n results,jn11  Fnsjnd, jn  jsnT d. In the case of
a time periodic flow,dv  0, the map isn independent,
jn11  Fsjnd. We shall show that fractal properties, a
in Fig. 2(a), persist for smalldv. (In this case the map
deviation from the purely periodic case,Fnsjd 2 Fsjd, is
small and varies irregularly with timen; see also [8].)

In particular, assume that a finite cloud of dye
initialized upstream from the cylinder. As time proceed
it is swept toward the cylinder, and most, not all, of it
subsequently advected downstream from the cylinder.
small amount (which continually decreases with time)
entrained by the flow in the region of the cylinder. A
time increases the pattern formed by this entrained d
asymptotes to a fractal indecomposable continuum wh
we call the “entrainment set.” Note that, in the presen
of noisedv this set is not invariant but “jumps around” in
a temporally irregular manner.

To begin, we first present an analysis of the casedv 
0 with v0 specified by the time periodic stream functio
used in Ref. [4] and Fig. 2(a). There is a symmetry of t
time periodic flow inherent in our description of alterna
shedding of vortices from the top and bottom of th
cylinder, namely,csx, y, td  csx, 2y, t 1 Ty2d. This
has the consequence that the mapF has a “square root”
G, that is,F  G2. To show this, we writeF  HbHa,
where HasHbd is the map obtained via integratio
of djydt  v from time t  nT to time t  sn 1

1
2 dT

[from t  sn 1
1
2 dT to t  sn 1 1dT ]. If we write Ha

as Hasx, yd  fpsx, yd, qsx, ydg, then, by the symmetry,
Hbsx, yd  fpsx, 2yd, 2qsx, 2ydg. Hence, Fsx, yd 
fpssspsx, yd, 2qsx, ydddd, 2qssspsx, yd, 2qsx, yddddg, which
can be expressed asF  G2 with Gsx, yd  fpsx, yd,
2qsx, ydg. We can numerically generate the mapG
by integrating the flowdjydt  v from t  nT to
t  sn 1

1
2 dT and then reflecting the resulting positio

about thex axis, y ! 2y. Doing this, we numerically
find that the mapG has a horseshoe. That is, there
a rectangleQ such thatGsQd horizontally stretchesQ
completely acrossQ at least two times (in this case
three times), andGsQd does not intersect the horizonta
sides ofQ. Using a theorem of Barge [9], the existenc
of a horseshoe implies that there is an indecomposa
1893
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continuum for the mapG, and hence also for the mapF.
We numerically obtain a picture of the indecomposab
continuum resulting from this horseshoe as follows. W
find that each point on the vertical line segment sho
in Fig. 2(b) is mapped strictly to the right of the lin
segment and that the segment is to the left ofQ. Thinking
of the line segment as a line of dye, we take it forwa
many iterates ofF and obtain the entrainment set show
in Fig. 2(b). The fine-scaled structure is verified for th
entrainment set by the blowup shown in the inset.

We now discuss the case where the original tim
periodic flow v0 is perturbed by the small noisedv.
We assume thatjFnsjd 2 Fsjdj , e and jDFnsjd 2
DFsjdj , e for all n and j, and we calle the “noise
level.” In particular, sinceF is a horseshoe map on th
regionQ, each of the perturbed mapsFn are individually
horseshoe maps onQ for sufficiently smalle. Below, we
shall state and discuss a rigorous result applicable w
this hypothesis for smalle is satisfied. Proofs will be
provided elsewhere [6].

Let eS1sx0d be the set ofj such that the noisy trajectory
points (generated by the sequenceFn starting fromj at
time n  0 remain to the right ofx0 for all positive and
negative timen [7].

Theorem.—For every x0 to the left of Q, eS1sx0d
contains an indecomposable continuum.

In the casee  0, the set eS1sx0d contains the un-
stable manifold of the chaotic invariant set, and for
there  0 or e fi 0 the seteS1sx0d can be identified with
an entrainment set. We can give some of the key f
tures leading to this theorem by considering a simp
but essentially equivalent, problem. In particular, we co
sider a sequence of mapsMn (analogous to our sequenc
Fn). The Mn are random, but we choose them all to i
dividually have the property that they map the stadiu
shaped regionD  A

S
B

S
C shown in Fig. 3(a) to a

region of the form shown crosshatched in Fig. 3(b). W
emphasize that the exact location and shape of the cr
hatched region in Fig. 3(b) is different for eachn, but
the general property thatMnsCd stretches twice acrossC,
and thatMnsAd and MnsBd are both located inA, holds
for eachMn. We now introduce the notationfMmsjd 
M0sssM21sM22sss . . . M2sm21dsjdddd . . .dddd. That is, we look at
the trajectory starting fromj2sm21d at the negative time
2sm 2 1d and ask, “‘What is the trajectory location a
time zero j0?” (In the usual case where all the map
are equal,fMm reduces toMm, the mth iterate of M.)
The action offMm on the regionD  A

S
B

S
C is illus-

trated in Fig. 3(c) form  1 and m  2. In particular,fM1 ; M0 mapsD to a region contained withinD, andfM2

mapsD to a region contained withinfM1sDd. In general,fMm11sDd , fMmsDd. Each of thefMmsDd is a compact
continuum. We now consider the setS 

T`
m1

fMmsDd.
An elementary theorem from topology tells us that the
tersection of nested continua is itself a continuum. Th
S is a continuum. In particular, another theorem fro
1894
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FIG. 3. Horseshoe illustration for the random ma
sequenceMn.

topology states that any nested intersection of comp
sets is nonempty and compact. Finally, we can surm
from the fractal structure evident from the process of su
cessively intersecting the setsfMmsDd that S is indecom-
posable. ThusS is an indecomposable continuum.

We now discuss the applicability of the model sequen
Mn illustrated in Fig. 3 to the sequenceFn realized
by our noisy flow [10]. The most important differenc
betweenMn andFn arises because the mapsFn are area
preserving. On the other hand, we see from Fig. 3(b) th
Mn mapsA into a subset ofA. Thus the mapsMn are
area decreasing onA. While we do not give the argumen
here, it can be shown that the construction in Fig. 3 can
recast in such a way as to make it topologically equivale
to the area preserving case. (This is done by allowi
the regionsA and B to extend toj  ` [7] and to have
infinite area. ThusFnsAd and FnsBd, while of infinite
area, can both be contained withinA.)

In conclusion, we have explored a numeric
example of a fluid past a cylinder. Our goal ha
been to study a fluid flow which is temporally periodi
flow plus a time varying perturbation. Under suc
circumstances, no bounded invariant sets are preser
We show that it is nonetheless possible to discuss frac
sets that remain. These are indecomposable conti
which correspond to physically observable remnants
dye introduced earlier into the fluid. More generally
we suggest that the concept of indecomposable conti
may be useful for characterizing a variety of types of se
commonly occurring in chaotic dynamics.

The figures have been created using theDYNAMICS
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