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Using nonharmonic forcing to switch the periodicity in nonlinear systems
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Once the parameters of a dynamical system are fixed, specific patterns of stable equilibrium, periodicity,
quasiperiodicity, or chaos are obtained. Keeping the same parameters and simply modifying the wave form and
periodicity of the driving force allows switching from one orbit to another. In this way the options to select a
more desirable periodic orbit are increased. This is particularly important in some systems where changing the
internal parameters of the system is not possible or at least very inconvd&i2663-651X98)08209-9

PACS numbe(s): 05.45+b

I. INTRODUCTION this parameter changes continuously irsf<1. To be
faithful to the original systemf(t,m) should be such that
Many physical phenomena are modeled by periodicallym=0 coincides with the original driving. If this were pos-
driven dynamical systems. They may appear in fields such asible, using the same set of parametersrfor 0, we could
lasers [1,2], mechanical engineering3], superconductor still have a new degree of freedom
junctions[4], etc., which illustrates the broad applicability of ~ One family of functions that possesses this property are
studying these systems. In the following we assume we havhe Jacobi elliptic functionsThese are precisely the natural
a periodically driven dynamical system. Think of a one-solutions to many nonlinear oscillators, such as those with a
dimensional, damped and nonautomous nonlinear oscillatqgsolynomial restoring force, like Duffing oscillators and
for definiteness. The general equation of motion, with dissivariations including quadratic nonlinearities, and the nonlin-
pation and external periodic forcing, may be written as  ear pendulum. The main advantage to using them as drivers
_ of dynamical systems lies in the very nature of these func-
X+ &x+dV/dx=f(t), (1) tions and consequently they have been already used by some
authors[5-7]. So, the fact of using them as drivers is not
where we may assume the driving force to be the harmonicapricious, as it could be perceived by the reader who is very
function f(t)=y coswt of period T=27/w. The variable much used to seeing trigonometric functions to drive sys-
X(t) is the position at timé and § is the damping coefficient. tems. There are simple and deep reasons for doing it. They
The parametery and w are the amplitude and frequency of are periodic functions whose period and wave form depend
the perturbation. The potential of the restoring forc¥ (). onm. Furthermore, it has an increasing number of modes as
The system depends on several parameters that determineincreases, and its Fourier spectrum is more complicated
the asymptotic dynamical states. Once all the parameters atiean the usual trigonometric functions.
fixed the solutions are uniquely determined. In general the The main goal of this paper is to show, with the example
possibilities are stable equilibrium states, periodic, quasiperief a nonlinear pendulum parametrically forced with a Jacobi
odic, and chaotic solutions. Generally, harmonic functionselliptic function, that we can switch the periodicity of a so-
are used to excite dynamical systems either externally oiution by simply changing the wave form and periodicity of
parametrically. Moreover harmonic or trigonometric func- the driving force, but without changing the rest of the param-
tions are the simplest solutions of the linear harmonic oscileters. Transitions from chaotic states into periodic states by
lator and are commonly used to drive linear oscillators. Everperiodic driving has been previously demonstrdted?], but
though they are not in general solutions of more complicatedhere in addition we have transitions among periodic states.
nonlinear dynamical systems, they are extensively used a&nother point of interest of this paper is to throw light on a
general drivers of nonlinear oscillators, as well. In the case obetter understanding of this kind of driving. In cases in
a nonlinear oscillator things are known to be more complexwhich changing other parameters of the system could be dif-
In simple nonlinear oscillators such as the pendulum or thdicult or impossible, this gives an alternative way of modify-
Duffing oscillator the solutions are Jacobi elliptic functions, ing the periodicity of the solutions of the system. We show
and hence it seems natural to use these functions as driveso this possibility by comparing the result of using a trigo-
instead of a harmonic function. nometric function and a Jacobi elliptic function of equivalent
One of the main questions we address here is the investamplitude and period, in such a way that only the wave form
gation of the effect on the dynamics of using Jacobi ellipticof the driver permits these periodic transitions. The paper is
functions as drivers, while the rest of the parameters of therganized as follows: Sec. Il reports on some characteristics
system are kept fixed. In particular we want to show how inof Jacobi elliptic functions. With them, we perturb a pendu-
these circumstances, its use allows new accessible states.lum parametrically and the model is described in Sec. lll.
To clarify this idea, we could think of driving the system The model depends on a series of parameters, and the
with a more general periodic functidift,m)=f(t+T,m) of  asymptotic dynamical properties of the system are analyzed
period T, with an “extra” parametem. Let us assume that with the help of the chaotic parameter set, which is con-
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structed by varying two parameters simultaneously and to 1OF =
which is devoted Sec. IV. To show further evidence of the : m=0.999
effect of using nonharmonic driving to switch the periodic- __  05¢
ity, we compare the effect of using two different drivers with

tm

equal amplitude and period, but different wave form in Sec. k= 091 1
V. Finally, Sec. VI includes a summary of results and con- —05F 3
clusions. . ]
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II. JACOBI ELLIPTIC FUNCTIONS Time

The parametric perturbation we consider is the cosine am-

plitude Jacobi elliptic function crgt,m) of frequencyw and 1.0F _
elliptic parametem [8], and its use has the advantage of 055 m=0.5 3
providing a new degree of freedom in the parameter space. ¢ F ]
Furthermore, it has a more sophisticated Fourier spectrum = 0.0F .
than the trigonometric functions and the exact analytical so- & g ]
lutions of the pendulum without forcing term are of this type. —0.5¢

The most common Jacobi elliptic functions are @tym) —1.0f
and snt,m), 0=m=1, and they are periodic functions of 0 5 10 15 20
period T=4K(m)/w, whereK(m) is the complete elliptic Time

integral of the first kind10,11] and is defined as

w2 dd
0 1-msigd

There are two natural limits for these functions: thigono-
metric limit, m=0, which gives cost and sinwt, respec-
tively, and thehyperbolic limit, m=1, which gives seclwt
and tanhwt, respectively{9].

A physical and intuitive picture of the meaning mf may o _
be obtained by th|nk|ng of the unperturbed orbits in phase FIG. 1. The variations of the cn,(m) vs time for some values of
space inside a separatrix orbit. The parameteis used to ™M are shown. Observe the change of the wave form and the period
label the energy of the orbits inside the separatrix. For orbit§f the wave.
with energy very small in absolute terms, i.ea—0, the )
complete elliptic integral of the first kiné&(m)— /2 and Where—m= @< represents the angle of displacement and
then the period becomés— 2. This is obviously the pe- ¢ the damping coefficient. The trigonometric limi=0,
riod for the linear oscillations around the elliptic fixed point. has been studied previously numericdll, 13, analytically
However, for values of the energy close to the separatrixLlA']’ and experimentally15] by several authors. Analytical
which meansn— 1, the complete elliptic integral of the first results showing estimations of the homoclinic bifurcations
kind diverges Iog,arithmically{lo 11 and the period be- and subharmonic bifurcations, using Melnikov’s theory, for
comes infinity. ’ the nonharmonic perturbation of the parametric pendulum

Figure 1 provides a more clear idea of the nature of thére found in(16]. _ _
driving we are using, showing the dependence versus time of " SPite of its simplicity, this system is known to have for
cn(t,m) for some values ofn. The periodic functiorf (t) of m=0 a rich variety of dynamical solutions including stable
periodT that is used as a driver in E€L) could be written as equilibria, periodic oscillations, rotations, and chaotic solu-
f(t)=1 cn(Qt;m), whose frequency varies witm and is tions, depending strongly on the parameters of t_he system
given by Q(m)=4K(m)/T. Assuming we keef constant 7¥,®,é and the initial conditions, that is§(ts) and 6(to).
and equal to Z/w, (w>0, a constant this implies that the The oscillations around the positigh=0 are bounded in the
functions f(t) =y cn(2eK(m)t/;m) and g(t)=y cost) region—w<0<m. Rotatiqns, however, are unbounded, go-
have equal period and amplitude and they only differ on théng above = = 7. When 6(t)>0 they are clockwise and

parametem. when 6(t)<0 they are anticlockwise. More information
about the parametrically forced pendulum using a trigono-
Ill. PARAMETRIC PENDULUM metric function as driver can be found [ih7].

K(m)= 3]

en(t,m)

VAV

10 , 15 20
Time

The physical system under consideration is a pendulum
moving in a plane whose pivot is subjected to a nonharmonic
vertical periodic displacement ca¢,m) of amplitudey and For the numerical computations and for conveniedce
frequencyw; see Fig. 2. The equation of motion reads =0.1 andw= 1.5 are set, hence only the parametgandm

. are free. Fixingn=0 means that a circular function is used
6+ 86+[1+ v cn(wt,m)]sin =0, (3)  to perturb the system and consequently only one parameter is

IV. CHAOTIC PARAMETRIC SET
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f(t) = yen(®t,m) chaotic systems by Barretet al. [18] and they conjecture
S that these kinds of windows should appear commonly in dy-
; ; namical systems.

Each horizontal line crossing the figure may be also un-
derstood as a kind of bifurcation diagram. In particular if we
draw a horizontal line byn=0.2 and we varyy from —5 to
5, we see that there are two chaotic regions corresponding to
the black dots traversed by this line. On the other hand, we
may draw a vertical line at a certain fixed value pfand
vary m from 0 to 1. In particular and as we will see later,
drawing a vertical line ayy= — 4 we see that this line crosses
the black region only in a small range of valueswtlose to

FIG. 2. Simple pendulum with a nonharmonic vertical oscillat- jn=1. Fixing the attention on this last vertical line at=
ing support given by the cosine amplitude elliptic function. —4, we realize that for most values of the Lyapunov ex-

ponents are negative, however, many different periodic or-

free. In the general case we can study the chaotic parametrits “live” through this line.
set by varying the two parameters simultaneously. Figure 3 The boundaries of the chaotic islands are basically
shows thechaotic parametric sefor the parameterg andm ~ smooth. From an “island,” with a positive Lyapunov expo-
of Eq. (3) and it is constructed as follows. Take a grid of nent, we can go to the “sea” by modifying either the ampli-
240x 200 points in the rectangle of parameter value§  tude of the perturbatiory or the elliptic parametem. Nu-
<y<5 and km<O0. For each pair of parameterg,(n) in  Merical evidence shows that most transitions from a chaotic
the parameter plane the differential equation is solved bysland to the periodic sea are via saddle-node bifurcations.
using a fourth order Runge-Kutta integrator, using"eriod-doubling b|furf:at|ons are obsef)/ed, rlowever_, In tran-

8(to). B(t;)]=(1.0) as initial condition. The Lyapunov ex- sitions b_etW(_een thg channels.” The Iakes contain peri-
[6(to). 6(to ' . L yap dic orbits, in particular the small lake in the bottom left
ponent of the corresponding orbit is evaluated by standarg| 4 is a period-4 lake.

methc_)ds and then a different color is assigned dgpendmg ON Note that in the region of parameterg, tn) considered in
the sign of th_e Lyapun(_)v exponent. Those points in thq:ig. 3, once a value of is fixed, we can always find a
(7,m) plane with a negative Lyapunov exponent are markederiodic solution by simply selecting the appropriate elliptic
white, while those with a positive Lyapunov exponent areparametem.

black. As the reader may imagine, this process is heavily Next, we consider some examples of orbits for the para-
time consuming. The resulting plot displays global informa-metrically excited pendulum with all the parameters fixed.
tion about the parameter regions with periodic or nonperi-Only the elliptic parametem is modified, allowing the char-
odic behavior. acter of the solution to be changed. In Fig. 4 periodic orbits

From Fig. 3, it can be infered that there is a “periodic for some values ofn are shown. Due to the symmetry of the
sea” and there are *“chaotic islands” similar to the onessystem every orbit has a symmetric counterpart with the
described iri6,7] for the single-well Duffing oscillator. “Pe-  gymmetry §— — ¢ and #— — 6. For some values ofn we
riodic lakes” and “periodic channels” in some of the cha- have found up to five different coexisting periodic attractors.
otic islands are also observed. Notice the striations in some | Fig. 5 some periodic oscillations of different periods

of the islands; these are windows of periodicity inside thefor gistinct values ofm are shown. Also a chaotic strange
chaotic islands. Similar windows have been described angyiractor that exists for a very narrow parameter region be-
analyzed very recently in the context of higher-dimensionalyeen 0.9 m<0.999 is shown. This means that once all the
parameters are set, one can still change the dynamics of the
system with the nonharmonic perturbation.

Extensive numerical computations give evidence of this
phenomenon and how by simply changimgwe can switch
from one periodic state to another one. In fact the multiplic-
ity of coexisting attractors inside the periodic sea is consid-
erable, presenting a very rich variety of periodic states.

It should be stressed, however, that even though for cer-
tain parameter values many periodic attractors may coexist,
the basins of attraction of most of them are very small and
difficult to detect unless a fine resolution is used. This im-
_ plies that selecting a specific stable periodic orbit is experi-
1 e —— mentally very difficult because noise would tend to push the

5 Y 5 trajectory away from these small basins. Moreover, coexist-
ing attractors appear in a narrow zone in parameter space.

0

FIG. 3. Chaotic parameter set for the two parametesdm.
The vertical variable is £m<0 while the horizontal one is-5 V. USING DRIVERS OF EQUAL PERIOD AND
<y<5. Those points with a negative Lyapunov exponent are AMPLITUDE, BUT DIFFERENT WAVE FORM
marked white, while those with a positive Lyapunov exponent are
black. The upper line correspondsio=0 and —5< y<5, show- As observed in Fig. 1, the period of the Jacobi elliptic
ing a kind of bifurcation diagram. function varies continuously witm. Consequently a forcing
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FIG. 4. Phase-space portraits of four different periodic orbits for
v=—4 and different values of the elliptic parameterare shown.
The horizontal scale is- w<6<, while the vertical scale is 0
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of equal period and amplitude as the cosine function could
be considered. Then it is possible to compare the effects on FiG. 6. Plot of the drivers, with equal amplitude and period,
the dynamics of the parametric pendulum with the use of theised to perturb the parametric pendulum, vs tifagcos(1.5} and
harmonic function versus the nonharmonic function as forc{p) cn (3/=)K(m)t;m] (m=0.999).
ings. This provides further evidence of the effect of the wave

form in making possible transitions among periodic statesfynction corresponds tm=0.999. Next, we introduce these
since the rest of the parameters are all equal. functions in Eq.(3) and integrate the differential equations

The period of the cosine function =2m/w and the ysing a fourth order Runge-Kutta integrator, with initial con-
period of the cn function i =4K(m)/Q(m). If both func- ditions[ 6(to), A(to)]= (1,0)

tions are of equal period, this implies thal(m) Using standard methods, we calculate the Lyapunov ex-

=20K(m)/7. . . . ponents with respect to the amplitude of the forcing for the
We can compare the effects of using as_dnvers wo dlf'two cases mentioned before, and for the values of the ampli-
ferent perturbations cast and c{(m)t;m] with equal pe- tude comprised between<0y<5, and they are depicted in
riod and equal amplitude. In this case the only real diﬁerenc%ig_ 7 '
bet_ween both perturbations is the elliptic parameme,r_ From the figure it can be observed that the regions corre-
which accounts for _the shape of the wave. The fum?t'onssponding to positive Lyapunov exponents are different, the
both of them of periodlr =2m/w (w=1.5), used 10 drive 540 \where the Jacobi elliptic function is used being a little
the parametric pendulum are shown in Fig. 6. The cosing,, o complicated. It could be thought that no difference
function corresponds tm=0 and the selected Jacobi elliptic ;5,14 exist in the common parameter regions of negative
Lyapunov exponents, that is, of periodic states. However,
this is not the case, and what is verified is that the accessible
states do not have the same periodicity. As a matter of fact,
once all the parameters are fixed, we may compare the out-
puts for the same particular value of the amplitude and they
correspond to periodic states of different periodicity for the
same initial condition(1,0). Table | shows the variety of
) m=0.999 1 (@) oy possible states available for different values of the amplitude
v, for the cosine driverri=0) and for the Jacobi elliptic
function (m=0.999). For a given initial condition, the pos-
@@ © sible transitions among periodic states are evidenced for a
given amplitude by simply using a Jacobi elliptic function
with the appropriate parametar. Similarly to the case with
m=0, many attractors of different periodicity coexist when

FIG. 5. The figure shows phase-space portraits of four differenf?=0.999 for a given value of the amplitude.
orbits for y=—4 and different values of the elliptic parametar

(a) m=0.9

The horizontal scale is- m=60<, while the vertical scale is V1. CONCLUSIONS
—5=<¢<5. (a) Period-4 oscillation fom=0.9. (b) Strange attractor _ _
for m=0.99. (c) Period-6 oscillation form=0.999. (d) Period-2 This work uses the parametric pendulum example to dem-

oscillation form=1. onstrate the possibility of using nonharmonic perturbations
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FIG. 7. Evolution of the Lyapunov exponents with respect to the

variation of the amplitude of the drivey in the interval G<vy
<5. (@) When the function cos(1.6)is used as a driver, an(h)
when the function dr(3/7)K(m)t;m] (m=0.999) is used.
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TABLE I. The solutions of the parametrically forced pendulum,
for the initial condition(1,0) and for several values of the amplitude
v, 0=<y<5, are shown. The first columm=0) shows the solu-
tions when the cosine function is used as driver and the second
column (m=0.999) shows the solutions when a cn Jacobi elliptic
function of equal period is used. Note that for most cases the use of
the nonharmonic driver implies a switch of periodiciBn means a
periodic orbit of perioch.

y m=0 m=0.999
0.65 P2 P1
1.2 chaos P1

2 chaog chao?
0.7 P4 P1
0.8 P1 P2
25 P1 chaos
3 P1 chaos
4 P2 P1
45 P2 P1

5 P2 P1

Maximal Lyapunov exponentl.329.
PMaximal Lyapunov exponentl.276.

from a periodic to a chaotic trajectory. Further evidence of
this fact is shown when two different functions of equal pe-
riod and amplitude, but of different shape, are used. Such an
approach may be useful in experimental situatigsch as
modulated laser§7]) in which it is hard to modify system
parameters.
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