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Using nonharmonic forcing to switch the periodicity in nonlinear systems

Miguel A. F. Sanjua´n
Escuela Superior de Ciencias Experimentales y Tecnologı´a, Universidad Rey Juan Carlos, Camino de Humanes 63,

28936 Móstoles, Madrid, Spain
~Received 8 July 1997; revised manuscript received 1 June 1998!

Once the parameters of a dynamical system are fixed, specific patterns of stable equilibrium, periodicity,
quasiperiodicity, or chaos are obtained. Keeping the same parameters and simply modifying the wave form and
periodicity of the driving force allows switching from one orbit to another. In this way the options to select a
more desirable periodic orbit are increased. This is particularly important in some systems where changing the
internal parameters of the system is not possible or at least very inconvenient.@S1063-651X~98!08209-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Many physical phenomena are modeled by periodica
driven dynamical systems. They may appear in fields suc
lasers @1,2#, mechanical engineering@3#, superconductor
junctions@4#, etc., which illustrates the broad applicability o
studying these systems. In the following we assume we h
a periodically driven dynamical system. Think of a on
dimensional, damped and nonautomous nonlinear oscill
for definiteness. The general equation of motion, with dis
pation and external periodic forcing, may be written as

ẍ1d ẋ1dV/dx5 f ~ t !, ~1!

where we may assume the driving force to be the harmo
function f (t)5g cosvt of period T52p/v. The variable
x(t) is the position at timet andd is the damping coefficient
The parametersg andv are the amplitude and frequency
the perturbation. The potential of the restoring force isV(x).

The system depends on several parameters that deter
the asymptotic dynamical states. Once all the parameters
fixed the solutions are uniquely determined. In general
possibilities are stable equilibrium states, periodic, quasip
odic, and chaotic solutions. Generally, harmonic functio
are used to excite dynamical systems either externally
parametrically. Moreover harmonic or trigonometric fun
tions are the simplest solutions of the linear harmonic os
lator and are commonly used to drive linear oscillators. Ev
though they are not in general solutions of more complica
nonlinear dynamical systems, they are extensively used
general drivers of nonlinear oscillators, as well. In the case
a nonlinear oscillator things are known to be more compl
In simple nonlinear oscillators such as the pendulum or
Duffing oscillator the solutions are Jacobi elliptic function
and hence it seems natural to use these functions as dri
instead of a harmonic function.

One of the main questions we address here is the inv
gation of the effect on the dynamics of using Jacobi ellip
functions as drivers, while the rest of the parameters of
system are kept fixed. In particular we want to show how
these circumstances, its use allows new accessible state

To clarify this idea, we could think of driving the syste
with a more general periodic functionf (t,m)5 f (t1T,m) of
periodT, with an ‘‘extra’’ parameterm. Let us assume tha
PRE 581063-651X/98/58~4!/4377~6!/$15.00
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this parameter changes continuously in 0<m<1. To be
faithful to the original system,f (t,m) should be such tha
m50 coincides with the original driving. If this were pos
sible, using the same set of parameters form50, we could
still have a new degree of freedomm.

One family of functions that possesses this property
the Jacobi elliptic functions. These are precisely the natur
solutions to many nonlinear oscillators, such as those wit
polynomial restoring force, like Duffing oscillators an
variations including quadratic nonlinearities, and the nonl
ear pendulum. The main advantage to using them as dri
of dynamical systems lies in the very nature of these fu
tions and consequently they have been already used by s
authors@5–7#. So, the fact of using them as drivers is n
capricious, as it could be perceived by the reader who is v
much used to seeing trigonometric functions to drive s
tems. There are simple and deep reasons for doing it. T
are periodic functions whose period and wave form dep
on m. Furthermore, it has an increasing number of modes
m increases, and its Fourier spectrum is more complica
than the usual trigonometric functions.

The main goal of this paper is to show, with the examp
of a nonlinear pendulum parametrically forced with a Jac
elliptic function, that we can switch the periodicity of a s
lution by simply changing the wave form and periodicity
the driving force, but without changing the rest of the para
eters. Transitions from chaotic states into periodic states
periodic driving has been previously demonstrated@5–7#, but
here in addition we have transitions among periodic sta
Another point of interest of this paper is to throw light on
better understanding of this kind of driving. In cases
which changing other parameters of the system could be
ficult or impossible, this gives an alternative way of modif
ing the periodicity of the solutions of the system. We sho
also this possibility by comparing the result of using a trig
nometric function and a Jacobi elliptic function of equivale
amplitude and period, in such a way that only the wave fo
of the driver permits these periodic transitions. The pape
organized as follows: Sec. II reports on some characteris
of Jacobi elliptic functions. With them, we perturb a pend
lum parametrically and the model is described in Sec.
The model depends on a series of parameters, and
asymptotic dynamical properties of the system are analy
with the help of the chaotic parameter set, which is co
4377 © 1998 The American Physical Society



he
ic-
th
ec
n

am

o
ac
ru
so
e

f

s

bi

t.
tri
t

th
e

th

lu
n

nd

l
ns
or
um

r
le
lu-
tem

o-

n
no-

d
er is

riod

4378 PRE 58MIGUEL A. F. SANJUÁN
structed by varying two parameters simultaneously and
which is devoted Sec. IV. To show further evidence of t
effect of using nonharmonic driving to switch the period
ity, we compare the effect of using two different drivers wi
equal amplitude and period, but different wave form in S
V. Finally, Sec. VI includes a summary of results and co
clusions.

II. JACOBI ELLIPTIC FUNCTIONS

The parametric perturbation we consider is the cosine
plitude Jacobi elliptic function cn(vt,m) of frequencyv and
elliptic parameterm @8#, and its use has the advantage
providing a new degree of freedom in the parameter sp
Furthermore, it has a more sophisticated Fourier spect
than the trigonometric functions and the exact analytical
lutions of the pendulum without forcing term are of this typ

The most common Jacobi elliptic functions are cn(vt,m)
and sn(vt,m), 0<m<1, and they are periodic functions o
period T54K(m)/v, whereK(m) is the complete elliptic
integral of the first kind@10,11# and is defined as

K~m!5E
0

p/2 dq

A12m sin2q
. ~2!

There are two natural limits for these functions: thetrigono-
metric limit, m50, which gives cosvt and sinvt, respec-
tively, and thehyperbolic limit, m51, which gives sechvt
and tanhvt, respectively@9#.

A physical and intuitive picture of the meaning ofm may
be obtained by thinking of the unperturbed orbits in pha
space inside a separatrix orbit. The parameterm is used to
label the energy of the orbits inside the separatrix. For or
with energy very small in absolute terms, i.e.,m→0, the
complete elliptic integral of the first kindK(m)→p/2 and
then the period becomesT→2p. This is obviously the pe-
riod for the linear oscillations around the elliptic fixed poin
However, for values of the energy close to the separa
which meansm→1, the complete elliptic integral of the firs
kind diverges logarithmically@10,11# and the period be-
comes infinity.

Figure 1 provides a more clear idea of the nature of
driving we are using, showing the dependence versus tim
cn(t,m) for some values ofm. The periodic functionf (t) of
periodT that is used as a driver in Eq.~1! could be written as
f (t)5g cn(Vt;m), whose frequency varies withm and is
given by V(m)54K(m)/T. Assuming we keepT constant
and equal to 2p/v, (v.0, a constant!, this implies that the
functions f (t)5g cn(2vK(m)t/p;m) and g(t)5g cos(vt)
have equal period and amplitude and they only differ on
parameterm.

III. PARAMETRIC PENDULUM

The physical system under consideration is a pendu
moving in a plane whose pivot is subjected to a nonharmo
vertical periodic displacement cn(vt,m) of amplitudeg and
frequencyv; see Fig. 2. The equation of motion reads

ü1du̇1@11g cn~vt,m!#sin u50, ~3!
to
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where2p<u<p represents the angle of displacement a
d the damping coefficient. The trigonometric limit,m50,
has been studied previously numerically@12,13#, analytically
@14#, and experimentally@15# by several authors. Analytica
results showing estimations of the homoclinic bifurcatio
and subharmonic bifurcations, using Melnikov’s theory, f
the nonharmonic perturbation of the parametric pendul
are found in@16#.

In spite of its simplicity, this system is known to have fo
m50 a rich variety of dynamical solutions including stab
equilibria, periodic oscillations, rotations, and chaotic so
tions, depending strongly on the parameters of the sys
g,v,d and the initial conditions, that is,u(t0) and u̇(t0).
The oscillations around the positionu50 are bounded in the
region2p<u<p. Rotations, however, are unbounded, g
ing aboveu56p. When u̇(t).0 they are clockwise and
when u̇(t),0 they are anticlockwise. More informatio
about the parametrically forced pendulum using a trigo
metric function as driver can be found in@17#.

IV. CHAOTIC PARAMETRIC SET

For the numerical computations and for convenienced
50.1 andv51.5 are set, hence only the parametersg andm
are free. Fixingm50 means that a circular function is use
to perturb the system and consequently only one paramet

FIG. 1. The variations of the cn(t,m) vs time for some values of
m are shown. Observe the change of the wave form and the pe
of the wave.
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free. In the general case we can study the chaotic param
set by varying the two parameters simultaneously. Figur
shows thechaotic parametric setfor the parametersg andm
of Eq. ~3! and it is constructed as follows. Take a grid
2403200 points in the rectangle of parameter values25
,g,5 and 1,m,0. For each pair of parameters (g,m) in
the parameter plane the differential equation is solved
using a fourth order Runge-Kutta integrator, usi

@u(t0),u̇(t0)#5(1,0) as initial condition. The Lyapunov ex
ponent of the corresponding orbit is evaluated by stand
methods and then a different color is assigned dependin
the sign of the Lyapunov exponent. Those points in
(g,m) plane with a negative Lyapunov exponent are mark
white, while those with a positive Lyapunov exponent a
black. As the reader may imagine, this process is hea
time consuming. The resulting plot displays global inform
tion about the parameter regions with periodic or nonp
odic behavior.

From Fig. 3, it can be infered that there is a ‘‘period
sea’’ and there are ‘‘chaotic islands’’ similar to the on
described in@6,7# for the single-well Duffing oscillator. ‘‘Pe-
riodic lakes’’ and ‘‘periodic channels’’ in some of the cha
otic islands are also observed. Notice the striations in so
of the islands; these are windows of periodicity inside
chaotic islands. Similar windows have been described
analyzed very recently in the context of higher-dimensio

FIG. 2. Simple pendulum with a nonharmonic vertical oscill
ing support given by the cosine amplitude elliptic function.

FIG. 3. Chaotic parameter set for the two parametersg andm.
The vertical variable is 1,m,0 while the horizontal one is25
,g,5. Those points with a negative Lyapunov exponent
marked white, while those with a positive Lyapunov exponent
black. The upper line corresponds tom50 and25,g,5, show-
ing a kind of bifurcation diagram.
ric
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chaotic systems by Barretoet al. @18# and they conjecture
that these kinds of windows should appear commonly in
namical systems.

Each horizontal line crossing the figure may be also
derstood as a kind of bifurcation diagram. In particular if w
draw a horizontal line bym50.2 and we varyg from 25 to
5, we see that there are two chaotic regions correspondin
the black dots traversed by this line. On the other hand,
may draw a vertical line at a certain fixed value ofg and
vary m from 0 to 1. In particular and as we will see late
drawing a vertical line atg524 we see that this line crosse
the black region only in a small range of values ofm close to
m51. Fixing the attention on this last vertical line atg5
24, we realize that for most values ofm the Lyapunov ex-
ponents are negative, however, many different periodic
bits ‘‘live’’ through this line.

The boundaries of the chaotic islands are basica
smooth. From an ‘‘island,’’ with a positive Lyapunov expo
nent, we can go to the ‘‘sea’’ by modifying either the amp
tude of the perturbationg or the elliptic parameterm. Nu-
merical evidence shows that most transitions from a cha
island to the periodic sea are via saddle-node bifurcatio
Period-doubling bifurcations are observed, however, in tr
sitions between the ‘‘channels.’’ The ‘‘lakes’’ contain per
odic orbits, in particular the small lake in the bottom le
island is a period-4 lake.

Note that in the region of parameters (g,m) considered in
Fig. 3, once a value ofg is fixed, we can always find a
periodic solution by simply selecting the appropriate ellip
parameterm.

Next, we consider some examples of orbits for the pa
metrically excited pendulum with all the parameters fixe
Only the elliptic parameterm is modified, allowing the char-
acter of the solution to be changed. In Fig. 4 periodic orb
for some values ofm are shown. Due to the symmetry of th
system every orbit has a symmetric counterpart with
symmetryu→2u and u̇→2 u̇. For some values ofm we
have found up to five different coexisting periodic attracto

In Fig. 5 some periodic oscillations of different period
for distinct values ofm are shown. Also a chaotic strang
attractor that exists for a very narrow parameter region
tween 0.9<m<0.999 is shown. This means that once all t
parameters are set, one can still change the dynamics o
system with the nonharmonic perturbation.

Extensive numerical computations give evidence of t
phenomenon and how by simply changingm we can switch
from one periodic state to another one. In fact the multipl
ity of coexisting attractors inside the periodic sea is cons
erable, presenting a very rich variety of periodic states.

It should be stressed, however, that even though for
tain parameter values many periodic attractors may coe
the basins of attraction of most of them are very small a
difficult to detect unless a fine resolution is used. This i
plies that selecting a specific stable periodic orbit is exp
mentally very difficult because noise would tend to push
trajectory away from these small basins. Moreover, coex
ing attractors appear in a narrow zone in parameter spac

V. USING DRIVERS OF EQUAL PERIOD AND
AMPLITUDE, BUT DIFFERENT WAVE FORM

As observed in Fig. 1, the period of the Jacobi ellip
function varies continuously withm. Consequently a forcing

e
e
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4380 PRE 58MIGUEL A. F. SANJUÁN
of equal period and amplitude as the cosine function co
be considered. Then it is possible to compare the effects
the dynamics of the parametric pendulum with the use of
harmonic function versus the nonharmonic function as fo
ings. This provides further evidence of the effect of the wa
form in making possible transitions among periodic stat
since the rest of the parameters are all equal.

The period of the cosine function isT52p/v and the
period of the cn function isT54K(m)/V(m). If both func-
tions are of equal period, this implies thatV(m)
52vK(m)/p.

We can compare the effects of using as drivers two
ferent perturbations cosvt and cn@V(m)t;m# with equal pe-
riod and equal amplitude. In this case the only real differe
between both perturbations is the elliptic parameterm,
which accounts for the shape of the wave. The functio
both of them of periodT52p/v (v51.5), used to drive
the parametric pendulum are shown in Fig. 6. The cos
function corresponds tom50 and the selected Jacobi ellipt

FIG. 4. Phase-space portraits of four different periodic orbits
g524 and different values of the elliptic parameterm are shown.
The horizontal scale is2p<u<p, while the vertical scale is

25<u̇<5. ~a! Period-1 rotation f orm50. ~b! Period 2 form
50.1. ~c! Period-6 rotation form50.5. ~d! Period-1 oscillation for
m50.75.

FIG. 5. The figure shows phase-space portraits of four differ
orbits for g524 and different values of the elliptic parameterm.
The horizontal scale is2p<u<p, while the vertical scale is

25<u̇<5. ~a! Period-4 oscillation form50.9.~b! Strange attractor
for m50.99. ~c! Period-6 oscillation form50.999. ~d! Period-2
oscillation form51.
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function corresponds tom50.999. Next, we introduce thes
functions in Eq.~3! and integrate the differential equation
using a fourth order Runge-Kutta integrator, with initial co
ditions @u(t0),u̇(t0)#5(1,0).

Using standard methods, we calculate the Lyapunov
ponents with respect to the amplitude of the forcing for t
two cases mentioned before, and for the values of the am
tude comprised between 0<g<5, and they are depicted in
Fig. 7.

From the figure it can be observed that the regions co
sponding to positive Lyapunov exponents are different,
case where the Jacobi elliptic function is used being a li
more complicated. It could be thought that no differen
would exist in the common parameter regions of negat
Lyapunov exponents, that is, of periodic states. Howev
this is not the case, and what is verified is that the access
states do not have the same periodicity. As a matter of f
once all the parameters are fixed, we may compare the
puts for the same particular value of the amplitude and t
correspond to periodic states of different periodicity for t
same initial condition~1,0!. Table I shows the variety o
possible states available for different values of the amplitu
g, for the cosine driver (m50) and for the Jacobi elliptic
function (m50.999). For a given initial condition, the pos
sible transitions among periodic states are evidenced fo
given amplitude by simply using a Jacobi elliptic functio
with the appropriate parameterm. Similarly to the case with
m50, many attractors of different periodicity coexist whe
m50.999 for a given value of the amplitude.

VI. CONCLUSIONS

This work uses the parametric pendulum example to de
onstrate the possibility of using nonharmonic perturbatio

r

t

FIG. 6. Plot of the drivers, with equal amplitude and perio
used to perturb the parametric pendulum, vs time.~a! cos(1.5)t and
~b! cn@(3/p)K(m)t;m# (m50.999).
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to switch from one dynamic state to another without mo
fying the internal parameters of a system. This could c
ceivably allow shifting from one periodic orbit to another

FIG. 7. Evolution of the Lyapunov exponents with respect to
variation of the amplitude of the driverg in the interval 0<g
<5. ~a! When the function cos(1.5)t is used as a driver, and~b!
when the function cn@(3/p)K(m)t;m# (m50.999) is used.
ge
-
-

from a periodic to a chaotic trajectory. Further evidence
this fact is shown when two different functions of equal p
riod and amplitude, but of different shape, are used. Such
approach may be useful in experimental situations~such as
modulated lasers@7#! in which it is hard to modify system
parameters.
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e

TABLE I. The solutions of the parametrically forced pendulum
for the initial condition~1,0! and for several values of the amplitud
g, 0<g<5, are shown. The first column (m50) shows the solu-
tions when the cosine function is used as driver and the sec
column (m50.999) shows the solutions when a cn Jacobi ellip
function of equal period is used. Note that for most cases the us
the nonharmonic driver implies a switch of periodicity.Pn means a
periodic orbit of periodn.

g m50 m50.999

0.65 P2 P1
1.2 chaos P1
2 chaosa chaosb

0.7 P4 P1
0.8 P1 P2
2.5 P1 chaos
3 P1 chaos
4 P2 P1
4.5 P2 P1
5 P2 P1

aMaximal Lyapunov exponent51.329.
bMaximal Lyapunov exponent51.276.
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@15# J. Starret and R. Tagg, Phys. Rev. Lett.74, 1974~1995!.
@16# M. A. F. Sanjua´n, Chaos Solitons Fractals7, 435 ~1996!; 9,

995 ~1998!.
@17# S. R. Bishop, D. L. Xu, and M. J. Clifford, Proc. R. So

London, Ser. A452, 1789 ~1996!; S. R. Bishop and M. J.
Clifford, J. Sound Vib.189, 142 ~1996!; R. Van Dooren,ibid.
200, 105 ~1997!; D. Acheson,From Calculus to Chaos~Ox-
ford University Press, Oxford, 1998!, Chap. 12.
@18# E. Barreto, B. R. Hunt, C. Grebogi, and J. A. Yorke, Phy
Rev. Lett.78, 4561~1997!.

@19# H. E. Nusse and J. A. Yorke,Dynamics: Numerical Explora-
tions, 2nd ed.~Springer-Verlag, New York, 1998!.

@20# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
Flannery, Numerical Recipes in C~Cambridge University
Press, Cambridge, 1992!.


