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This paper presents fundamentals of a theory to characterize chaos-based communication. We describe the
amount of information a dynamical system is able to transmit, the dynamical channel capacity, which takes into
account the information that a dynamical system generates.
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Among the works on chaos-based communication, a
@1–5#, have suggested the use of chaos to enhance com
nication efficiency: security, transmission rate, and probl
solving. The idea of using the capability of chaotic syste
to code some source of information was experimentally de
onstrated in Ref.@1#. In that work, the authors made arb
trarily small time-dependent perturbations manipulating
chaotic system, in order to generate a desired encoding
nal which codes some information to be transmitted.

We show that the dynamical channel capacity, which m
sures the amount of information transfered in chaos-ba
communication, assumes for very small Gaussian noise v
ance values multiples of theHKS @6#.

Recent works@2,4#, showed, among other things, that c
pability dynamical systems have to filter noise. That is, giv
a chaotic orbit corrupted by additive Gaussian noise, th
are ways to transform this noisy orbit into an orbit mu
closer to the non-noisy trajectory. We show that the dyna
cal filter is able to act only on the noisy, preserving the r
transmitted trajectory. In addition, for very small noise va
ances, the dynamical filter succeeds in completely reduc
the noise.

Chaos-based communication can be summarized i
three-step process.Sampling the input signal,filtering the
output signal, and finally,predictingwith the filtered signal.
By samplingwe mean that one has to find an appropri
partition of the phase space with which encoding of the m
sage is possible. For example, one could use a coarse-gr
partition as suggested in@4# in order to have the symbolic
encoded stream and the message with a similar trans
statistic. We do not treat this problem here, but we assum
partition is known by both the transmitter and the receiv
So, from now on, a chaotic wave signal is, in fact, a set
points obtained through a discreting process~a mapping! of
the higher-dimensional continuous trajectory, a traject
which is the wave-signal used to transmit information ove
channel. Byfiltering we mean that one has to recover t
wave signal after it is transmitted and corrupted by noise
distorted by the strictly band-limited frequency, physic
limitations imposed by the channel. In this paper, we o
deal with noise filtering because we consider that the pr
lem of eliminating the noise from the output signal is simi
to recovering the input signal from a distorted output.
nally, to transmit a large amount of information, we on
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transmit pieces of the signal that after thefiltering process
enables the receiver to fully recover the trajectory throu
prediction, what leads to recovering of the message.

We assume that our chaotic signal is a one-dimensio
Bernoulli shift mapping, the Baker’s mapF defined as,
xn1152xn1j0 if xn<0.5 or xn1152xn211j0 if xn.0.5,
wherej0 is a Gaussian noise perturbation with varianceh0

5@10212,0.001#, and zero mean. The reason for the no
term is to maintain the orbit of the mapping onto a set ve
close to the chaotic set. Also, this perturbation is respons
to affect the long-term evolution of the map. With this, w
simulate a real control application~as done in@1#! which
drives the trajectory such that it encodes arbitrary messa

We encode binary information using this mapping. F
that we partition the phase-space domainJ5@0,1#, into a
generating partitionw composed of two partitions,v1
5@0,0.5# and v25]0.5,1]. Trajectory points falling in par-
tition v0 encodes for the symbolR05 ‘ ‘0,’ ’ and points fall-
ing in v1 encodes for the symbolR15 ‘ ‘1,’ ’ The probability
with which the orbit stay in the partitionvk is s(vk)50.5.
The message to be transmitted,X5X1 ,X2 , . . . , thechannel
input, is composed by a symmetric discrete binary alpha
S, with componentsR0 ,R1, appearing in the message wit
frequenciesp050.5 andp150.5. The choice of the Baker’s
map is due to the fact that it represents a Bernoulli shift, a
therefore, its trajectory encodes any sequence of symbo

To measure the amount of information transferred us
chaotic signals, we introduce the Shannon entropy,Hs @7#,
the Kolmogorov-Sinai~KS! entropy@6#, HKS, and the topo-
logical entropy,HT @8#. To quantify the amount of informa
tion of the message, we use the Shannon’s entropy,Hs , with
the natural logarithm. This is so, because we want to co
pare the information carried by the message, with the in
mation produced by the dynamical trajectory, which is c
culated using the natural logarithm. So,Hs(S)
5(k50

k51pk ln(1/pk). One important property of the entrop
Hs(S) is that 0<Hs(S)< ln 2, where the upper limit is
reached if and only ifpk51/K for all k. Note that a typical
message~with large enough symbols! encoded by the Bak-
er’s map will have a Shannon entropy equal to the Shan
entropy of the message. If the source has an entropy of ln
the typical encoded message should have an entropy clo
ln(2). If v is a generation partition thenHKS can be repre-
sented byHKS5(k50

k51s(vk)ln(1/s(vk)). The HKS is also
©2002 The American Physical Society01-1
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connected to metric characteristics of the dynamical syst
It was shown by Ruelle@9# that HKS<(l i.0l i , wherel i ’s
are the positive Lyapunov exponents of the dynamical s
tem. Our chaotic system is one dimensional, therefore, it
only one positive Lyapunov exponentl5 ln(2). For this map,
HKS5 ln(2) @9#.

In communication with chaos another important entro
is the topological entropyHT , which is based on the fact tha
the numberE(P) of periodic orbits grows exponentially with
the periodP, as E(P);expHTP. This entropy measures th
information the dynamical system can encode with v
small manipulations on the trajectory. Such manipulatio
are required in order to have the messageX coded by the
system’s trajectory. What is important here is thatHT
>HKS(vk). In order to better understand the relation b
tweenHKS, HT , andHs , with the amount of noise and th
amount of information received, we study a particular ca
where the message~input symbol stream! is optimized for
the maximum information transfer, i.e., the messageX is
actually the natural symbol sequence of the nonpertur
Baker’s map. This choice is also made in order to simul
the use of vanishingly small controlling perturbations~very
small h! what would thus lead to the following equality
HT5HKS5Hs5 ln(2) , in casevK is a generating partition
This equality also means that the Baker’s map trajectory
encode as much information as a random independent
crete source of information.

We now consider a noisy channel. For that, an import
variable is the signal-to-noise ratioz5P/h, whereP repre-
sents the power of the signal, andh the variance of the
Gaussian noise with zero mean~which is also the power o
the signal!. In a noisy channel, the channel capacityCs , i.e.,
the average maximal amount of information an independ
discrete source is able to transmitper transmissionis given
by Shannon’s channel theorem@7#, which states that

Cs50.5 ln~11z!. ~1!

To show the limits in transfering information in nois
channels, using chaos, we add to the trajectoryx, noise with
varianceh, creating a noisy trajectoryy. Placement ofy in
the partitionswk decodesy into the channel outputY. The
quantification of how much information is lost when noise
introduced is measured byHe52p10 ln(p10)2p01 ln(p01)
~this is so, forp115p00). The error probabilitypi j represents
the probability with which one sends the symbol ‘‘i ’’ and
decodes the symbol ‘‘j .’’ Once, s(v1)5s(v2), and the
noise is Gaussian,p10>p01. In a noisy channel, the amoun
of information that reaches the receiver,per transmission, is
given by the mutual informationI (h)5Hs(S)2He .

The trajectoryx has lengthl 519 000 iterations. From this
trajectory, we construct the noisy trajectoryy. For different
values ofh, varying from 0 up to 1/3~note that the power o
x is 1/3), we show in Fig. 1 the mutual information betwe
channel input and the channel output. We see that for a v
small h, the mutual information isI (h)5 ln(2).

Now, we use the sensibility to initial conditions to filte
the noisy trajectory. Consequently, this filtered trajectory
used to guess~predict! orbit points that were not transmitted
05520
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It is known that two neighboring trajectories,e distant from
each other, when iterated forward in time,n iterations, di-
verge exponentially proportionally toe expln. On the other
hand, applying backward iterations, two neighboring traj
tories,d distant from each other, converge exponentially p
portionally toe exp2ln. So, we iterate backward points of th
noisy trajectoryy obtaining a filtered trajectoryz with points
closer to points of the noiseless trajectoryx. This backward
process is not so easy because the Baker’s map is invert
and each backward iteration has two solutions. Therefore
b backward iterations, 2b backward trajectories are possibl
The task is identifying from all these trajectories, the one t
is closer to they. We proceed as follows. Suppose we want
obtain z, applying b backward iterations. One backward i
eration of yn1b , generates two solutions:wn1b21

j , with j
51, . . . ,2: wn1b21

1 5yn1b/2 and wn1b21
2 5yn1b/211.

We calculate the distance between both pointswn1b21
1 and

wn1b21
2 , with the noisy pointyn1b21. Two backward itera-

tion of yn1b , generates four solutions:wn1b22
j , with j

51, . . . ,22: wn1b22
1 5wn1b21

1 /2 andwn1b22
2 5wn1b21

1 /2
11, wn1b22

3 5wn1b21
2 /2 and wn1b22

4 5wn1b21
2 /211. We

calculate the distances between these four solutions with
noisy point yn1b22. In this way, b backward iteration of
yn1b , generates 2b solutions,wn

j , with j 5$1, . . . ,2b%. We
have to define from all these 2b backward trajectoriesw,
which one is closer to the noisy trajectoryy. Let us say that
the chosen backward trajectory iswn

4 ,wn11
2 . Thus,zn5wn

4

and zn115wn11
2 . We expect that the pointszn and zn11

decodes for the same symbol of the noiseless pointsxn and
xn11. This filtering process is an improvement of the meth
used in@2,4#.

Doing this filtering process, the mutual information is ca
culated considering the filtered trajectoryw, and not the
noisy trajectoryy. So, it is appropriate to name the unce
tainty of the dynamical channel, by applyingb backward
iterations, byHe(h,b,x,z). Therefore, the mutual informa
tions is given byI e(h,b,x,z)5Hs(S)2He(h,b,x,z). In Fig.
1, we show by dashed line the mutual information of t
dynamical channel forb51. We see that up to a certai

FIG. 1. The solid line represents the mutual information witho
using any information of the dynamical system, and the dashed
represents the mutual information using the dynamics, filtering
noise trajectoryy by applying one backward iteration (b51). h is
the noise level.
1-2
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noise level, the mutual information is kept constant. As
increase the value ofb, we get an increase in the mutu
information. However, the average distance between the
jectory x and the filtered trajectoryz(b), defined as
he(x,z)5@1/(l 21)#(n51

l (xn2zn)2 decreases. This distanc
is in fact the effective noise of the dynamical channel. In F
2, we show by dashed line the average amount of noise
arrives in the receiver, and by solid lines the amount of no
he(x,z), after the filtering process for different backwa
iterationsb.

After the filtering process, we proceed with the predicti
process, to recover nontransmitted trajectory points. Dif
ent from random variables, whose elements are independ
dynamical variables are dependent. Therefore, one elem
contains information of the one that generated it. This pr
erty can be explored such that not all the trajectory is tra
mitted, what results in an increase of the mutual informat
per transmission. Another use of the dynamical variable
communication is that they offer a natural way to overco
dropouts in the transmission once the missing informat
would be recovered by looking at the received informatio
What we do is withdrawingg points out ofg11 points. So,
we introduce another parameter in the calculation of the m
tual information, that is the length of the gapg of the trans-
mitted signal. For example, ifg51, we transmitxn , xn12,
andxn14, and so on. So, for a gap of lengthg, we transmit
xn , xn1(g11) , xn12(g11) , . . . ,xn1q(g11) , with q(g
11)1n< l . The backward trajectories are calculated cons
ering the received pointsyn , yn1(g11) , yn12(g11) , . . . , and
yn1q(g11) . From these points, we calculate the filtered t
jectory,zn , zn1(g11) , zn12(g11) , . . . , andzn1q(g11) . Thus,
every point of the gap-filtered trajectory, is used to pred
the nontransmitted points. So, assuming thatg51 and b
52, we reconstruct the trajectory by doingzn115F(zn) and
zn135F(zn12). Note that, if g5” 0, b cannot assume an
value, otherwise the reconstruction of the trajectory mi
create a distorted signal. Therefore, forg5” 0, b should as-
sume the valuesk(g11)], for k51,2,3, . . . . In this paper,
we limit our analysis tob5g11. Using the fact that every

FIG. 2. By the dotted line we show the average distan
he(x,y), between the noiseless trajectoryx and the noisy trajectory
y. By the solid lines we showhe(x,z), with the filtered trajectoryz
obtained for different backward iterationsb.
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iteration generatesHKS of information, the mutual informa-
tion for g.0, namedI g(h,b,g) is calculated byI g(h,b,g)
5I e(h,b)(g11).

When we start using the prediction property of dynami
systems, the mutual information between the channel out
obtained from the filtered and predicted trajectory increa
for an interval of the noise variance values. In Fig. 3, w
show the mutual informationI g for different values of the
parameterg. For an interval ofh values, we see that ther
are no errors in the decoding of the transmitted signal, as
increase the noise variance within a small length interva

In order to explain this step function in the mutual info
mation, which means that for intervals ofh the mutual in-
formation is constant, we have to understand the effec
noise in the reconstruction of the transmitted trajectory.
to some maximum noise levelhm(g), there might be no
errors in transmission, i.e.,He50. The reason for the rare
occurrence of errors is that we bound the received trajec
to be within the domain of the Baker’s map, i.e.,@0,1#, what
has the effect of making the noise to be bound when app
to a point close to the boundaries of the map domain. To
more specific, if the point 1.01 is received, we consider t
the point 1.00 was received before the filtering process
performed. Even though there is a small amount of no
~even for the filtered trajectory!, that amount is very unlikely
to make the receiver decode a wrong message. In gener
should be expected that for very small noise, there are
errors andI g5(g11)HKS. For this noise level, the signal
to-noise rate iszm(g)5P/hm(g).

We define thedynamical channel capacity Cd as the
maximum amount of mutual information between the cha
nel input X and the filtered channel outputZ over all the
parametersb andg, and for a given interval of the signal-to
noise rateDz5@zm(g),zm(g11)#,

Cd~g,Dz!5~g11!HKS. ~2!

Doing Cd5I g , we obtain thatzm(g)5exp(g13)HKS21. Using

,

FIG. 3. The mutual information for many configurations of th
parameterg that represents the length of the gap in the transmit
trajectory.Cd represents the dynamical channel capacity.
1-3
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zm(g) in Eq. ~2! we see that the dynamical channel capac
for an specific dynamical system, characterized byHKS, is a
step function which assumes the values given by Eq.~2!, for
the interval of @zm(g),zm(g11)#. In fact, the finding of
zm(g) is the most important information to define the d
namical channel capacity of a dynamical system. With t
one learns how much robust to noise the specific dynam
system is. Note thatzm(g11)5@zm(g)11#expHKS21,
which is approximately given byz(g11)52z(g)11. We
may also express the dynamical information capacity
seconds, using the proposed sampling. Iff c is giving in
hertz,Cd(snr)52 f c(g11)HKS per seconds. One could sa
that we can haveg as great as we want and then, have
communication system with infinite capacity for informatio
transfer. Butg should be bounded according to the size of
controlling perturbationj. Note that while Eq.~1! shows that
the channel capacity decreases with the increasing of
noise amplitude, in the chaos-based communication p
posed, noise up to a maximum variance valuehm , does not
affect the dynamical channel capacity introduced in Eq.~2!.
In Fig. 3, we also show that as the noise variance increa
for h.hm , there is still an interval of values for which th
E
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dynamical channel capacity is constant, although sma
thanCd(g,Dz).

Increasing of the noiseh0, and the usage of higherg
values, does not change the results described by Eq.~2!. Our
results are also not affected by the slight change in the po
of the channel output, due to use of noiseh0 with higher
variance.

Thus, the concept of dynamical channel capacity may b
key component for the description of communication p
cesses that, like the biological ones, present this partic
type of behavior.

In conclusion, with the introduction of chaos in comm
nication, the channel should be defined by not only
power of the signal, the frequency bandwidth, and the no
level, but also by the Kolmogorov-Sinai entropy of the d
namical system. However, the dynamical channel capa
does not violate the Shannon capacity, which means its v
is always smaller than the upper bound imposed by Eq.~1!.

This work is partially supported by FAPESP. The fir
author thanks A. Rodrigues for useful discussions. The
thors thank the Max-Planck-Institute Fu¨r Physik Komplexer
Systeme at Dresden for their hospitality and financial s
port.
f

.

@1# S. Hayes, C. Grebogi, E. Ott, and A. Mark, Phys. Rev. Lett.73,
1781 ~1994!.

@2# E. Rosa, Jr., S. Hayes, and C. Grebogi, Phys. Rev. Lett.78,
1247 ~1997!.

@3# M. Hasler, Int. J. of Bifurcation and Chaos8, 647 1998!.
@4# M. S. Baptista, E. E. Macau, C. Grebogi, Y.-C. Lai, and

Rosa, Phys. Rev. E62, 4835~2000!.
@5# M. S. Baptista, E. Rosa, Jr., C. Grebogi, Phys. Rev. E61, 3590

~2000!.
.

@6# A. N. Kolmogorov, Dokl. Akad. Nauk SSSR119, 861 ~1958!.
@7# C. E. Shannon and W. Weaver,The Mathematical Theory o

Communication ~The University of Illinois Press, Illinois
1949!.

@8# R. C. Adler, A. C. Konheim, and M. H. McAndrew, Trans. Am
Math. Soc.114, 309 ~1965!.

@9# D. Ruelle, Chaotic Evolution and Strange Attractors~Cam-
bridge University Press, New York, 1989!.
1-4


