0-7803-7503-3/02/817.00 ©2002 IEEE

A NOVEL CHANNEL CODING SCHEME BASED ON CONTINUGOUS-TIME CHAOTIC
DYNAMICS

Inés P. Marifio}, Luis Lopez*, Joagufn Miguez?, Miguel A. F. Sanjudn’

INonlinear Dynamics and Chaos Group, Universidad Rey Juan Carlos
Escuela Superior de Ciencias y Tecnologia, ¢/ Tulipan s/n, 28933 Méstoles, Madrid (SPAIN)
e-mail: iperez@escet.urjc.es, liopez@escet.urjc.es, msanjuan @escet.urjc.es
2Departamento de Electronica e Sistemas, Universidade da Coruiia, Facultade de Informdtica
Campus de Elvifia s/n, 15071 A Corufia (SPAIN), e-mail: jmiguez@udc.es

ABSTRACT

One of the most outstanding properties of chactic dynamical
systems is their extreme sensitivity to small perturbations.
Far from being a disadvantage, this feature can be exploited
to devise a simple technique that allows to control the
symbolic dynamics of a chaotic system by applying small
perturbations 1o the system trajectory. In this paper, we
show how this procedure can be employed to differentially
encode an arbitrary binary message within a continuous-
time chaotic waveform generated by a chaotic system.
This chaotic waveform is an information-bearing signal
that naturally presents a high degree of redundancy. By
exploiting this property, we introduce a mnovel chaotic
channel code with error-correcting capabilities.

1. INTRODUCTION

Recent developments in communication with chaos have
provided a great variety of potential practical applicaticns,
which include transmitter-receiver synchronization [1],
signal masking and recovery [2]. reconstruction
of information signals [3, 4] and encoding/decoding
algorithms that allow to embed an arbitrary digital message
into the symbolic dynamics of a chaotic system [3, 4, 5,
6]. The latter contributions show that it is possible to
guide the evolution of a chaotic signal by applying small
perturbations on the system variables. This feature allows
to generate controlled chaotic waveforms whose symbolic
representation corresponds to a desired message. Thus,
these techniques are specially appealing because they take
advantage of the most outstanding property of chaolic
systems, their extreme sensitivity to the initial conditions,
which had been previously seen as an obstacle for practical
applications.

In this manuscript, we elaborate on the control
technique reported in Ref. [3] and make a first effort to
investigate its potential application to the important task of
channel coding [7], since little attention has been devoted to
this topic from the point of view of chaotic dynamics [8, 9].
We focus our atiention in exploiting the natural redundancy
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of a continuous-time chaotic signal that bears a desired
message within its symbolic dynamics. As a result, a novel
error-correcting code is proposed, whose performance is
illustrated through computer simulations.

The remaining of the paper is organized as follows.
In Section 2 we review the control technique of [3]} and
discuss some details relevant to the error-correcting code
proposed in Section 3. Finally, Section 4 is devoted to the
conclusions.

2. CONTROLLING THE SYMBOLIC DYNAMICS
OF A CHAOTIC SYSTEM

As shown in [3, 5, 6], small perturbations applied to the
system trajectory of a chaotic attractor can be used to
make the output waveform carry a desired symbol sequence
representing a message. The chaotic Lorenz system,

de/dt = —olz—y),
dy/dt = Rr-~y-—zz, 1y
dzfdt = bz+zy,

provides a good framework for investigating the idea of
controlling the chaotic dynamics in this way. Recall that,
for the standard parameter values, ¢ = 10, B = 28,
and b = 8/3, the state coordinate (x{t), y(t), z(t}) moves
on a chaotic attractor in a three-dimensional state space
forming two lobes. The standard parameters will be used
all throughout the paper. In order to control the system,
let us also consider the two Poincaré surfaces of section
given by the half-planes y = &/B{R—1) and |z| >

b(R — 1), each one defined on a different lobe (see
Fig. 1). When the system crosses the surface with y =
—/bB(R =1} in a previously fixed directicn it is said to
generate a symbol “A” and when the system crosses the
surface with y = +/b{R —1) it is said o generate a
symbol “B”. Thus, a direct relationship exists between
the system time evolution and the symbol string resulting
from the successive crossings, which is referred to as the
symbalic dynamics of the system.

Since the system is deterministic, there is a one-to-
one correspondence between the point where the three-
dimensional state coordinate crosses one of these surfaces
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Fig. 1. Projection onto the x-z plane of the chaotic
Lorenz attractor crossed by the Poincaré surfaces defined
by y = +bR-1) and |g|] > /WR-1) and by
y=—/WR~-1)and|z| > /B(R - 1).

of section and the future n-symbol sequence, s1... 85,
generated after the crossing. The first symbol, 51, indicates
the present crossing and s,, represents the surface that is
being crossed n — 1 oscillations later. When the system
runs free, the long-term temporal evolution of the state
coordinate yields a random-like symbol string. This is
easily observed in the scalar continuous-time signal x(t)
shown in Fig. 2, where the symbols “A” and “B” appear
as a random-like sequence of positive and negative peaks.
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Fig. 2. Temporal evolution of variable z(1) in the Lorenz
system.

In [3], a control technique was first introduced that
allows to determine the symbol string generated by the
chaotic system after crossing a Poincaré surface of section.
Control is exercised by applying small perturbations to cne
single system variable, z(t). In order to correctly determine
the perturbation signal a learning process is needed. Let
us assume that we want to control the n-symbaol string

0.2 0.4 0.6 0.8 1
fs,... 8g)

Fig. 3. Values of z,,,,, associated to cach 8-symbol
sequence, represented by #{(s; ... s3).

51...8, generated after a crossing. The learning process is
characterized by the value of n and works as follows: We
let the system run freely for a long enough period of time
and observe both the valugs that variable z(¢) takes at the
crossings with the surfaces of section and the subsequent
n-symbol strings generated by the system. In that way, we
can associate a range of values of z, hereinafter referred to
as a bin, to each one of the 2" different possible n-symbol
sequences. Once the bins are identified, an average of all
z in the same bin, referred to as Zy,.qn, can be calculated
(notice that all z in the same bin have been observed to
generate the same n-symbol sequence). The value of 2y g0
associated to each bin completely determines the future
n-symbol sequence, represented by the real magnitude
7(s1...80) = Y F{8:)27" < 1, where f(A) = 0
and f(B) = 1. When this association is done for all
bins, the learning process is complete. As an example, the
dependence belween zpeq, and 7(s;...8,) forn = 8 is
plotted in Fig. 3.

The procedure lo control the symbolic dynamics is
examined next. Let us suppose that we want the
chaotic waveform x(t) to represent some binary message,
as, for example, m = 00111010110100.... We
can associate the bit “0” with a change of symbol in
two consecutive crossings with the Poincaré surfaces of
section (i.e., AB or BA} and the bit 17 with the
repetition of the same symbol (ie., A4 or BB). In
this way, the same message can be represented cither
by the symbol sequence ABAAAABBAAABBARB. .,
begining with symbol “A”, or by the complementary string
BABBEBBAABBBAABA. ., begining with “B”. This is
useful in order to avoid problems related to the symmetry of
function zyeqn (r) (sce Fig. 3: every value of 2,400, (r) is
associated with two complementary binary sequences) and
is usually referred to as a differential bit encoding in the
context of digital communications [7].

The aim of the symbol encoder is to introduce small
perturbations in the variable z(f) at each crossing with
the surfaces of section in order to generate the desired n-
symbol sequence. This desired sequence, s;...8,, consists
of n — 1 symbols which are predetermined plus one new
information symbol, i.e., 51 is given by the current crossing
and §3...8,-1 must be the same symbols that would be
generated by the system if we did not apply any perturbation
at all. Therefore, the perturbation we apply in the k-th
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crossing sets the value of the (¥ - n)-th symbol generated
by the system, the perturbation in the (k -+ 1)-th crossing
sets the (k + n + 1)-th symbol and so on. From a practical
point of view, each perturbation consists of moving the z
coordinate to the central point in the bin corresponding to
the desired n-bit sequence, i.¢., the Z;ne4,, value of the bin.

3. CHANNEL CODING SCHEME

Once a desired message is encoded into the chaotic
waveform x{t) the most straightforward design of a
communication system consists of transmitting this chaotic
signal () through a communication channel. At the
receiver, the message could be recovered just by observing
the sequence of positive and negative peaks of the variable
#(t), possibly corrupted by thermal noise and other sources
of distortion, This approach has already been described in
the literature [3, 4], where signal reconstruction methods
are proposed to account for the existence of impulsive noise
in the channel by exploiting the properties of the encoding
method and the chaotic signal. Here, we explore a different
approach where the signal z({) is not transmitted itself.
Instead, the transmission patt of the communication system
is implemented by conventional engineering methods, while
the controlled Lorenz system is used to consiruct a novel
channel code [7], i.c., a redundant representation of the
message to be transmitted, that enables the receiver to
partially detect and correct the transmission errors caused
by channel noise and other sources of distortion.

Due to the control procedure that has been described
to encode the desired message into the chaotic waveform
x(t), it is apparent that knowing the initial conditions for
the Lorenz systern, z(0}, y(0), 2{0), with a sufficient degree
of accuracy, all the relevant information of the signal z(¢)
(and, therefore, the message) is contained in the value
of the perturbations applied to the variable z{t) at each
crossing with a Poincaré surface. Hence, we propose
the communication scheme where only the values of the
SUCCESIVE SPOLS Zmean (k). (K = 0, 1, ...), that indicate where
the variable z() must be placed by the control algorithm,
are transmitted. Notice that index k& = 0,1,... represents
the crossing or symbol number.

The communication system flakes the following
successive steps:

o The information bits (i.c., the message), by bo.. by...,
arc converted into a sequence of real values
Zmean (0)Zmean (1) Zmean{k)... using the learned
relationship between variable z and the symbolic
dynamics of the system,

® A conventional analog-to-digital converter {A/D)
transforms this sequence of real values into digital
words, wiws...twy.... Bach of these words is
a signal in digital format that may be easily
transmitted through the communication channel.
This is a classical problem that can be solved in
several different ways using well-tested engineering
methods.

* A conventional digital receiver detects the digital
words. Let us refer to the derected words as
W1Wy...10g.... The reason to use a different notation
is that digital detection is subject to errors due to
channel noise and distortion, hence, the detected
word, g, may be different from the transmitted one,
Wi

s A conventional digital-to-analog (D/A) converter
transforms the detected words into a real sequence
Emecm(0)2:raeurm(1}----"Ewwun(k)---’ where émeun(k) =
Ziean (k) if, and only if, @y, = wy.

The real sequence zhyrtcun(u)ﬁnwurl(l)--jmcun(k;)‘“
is used to reconstruct the temporal evolution of the
variable (¢} from a perturbed Lorenz system using
the contrel algorithm described in Section 2. If
no errors occurred during the transmission of the
digital words, the recovered message, 131 62..,5k,,. will
coincide with the original one., byb;...b.... Notice
that the recovered message is observed in the peaks
of the variable z(t} of the reconstructed perturbed
system.

Overall, the proposed communication scheme can be seen
as splitting the control algorithm into two parts: at
the transmitter, we take the message and compute the
perturbations (actually, the z,,04n (k} values) to be applied
on the Lorenz system. This information regarding the
perturbations is passed to the receiver conventionally,
meaning that we use standard digital communication
techniques. At the receiver, we apply the perturbations to
the Lorenz system and observe the time evolution of the
variable (t) in order to recover the message.

Since the perfect recovery of the message at the receiver
using the scheme described above depends on wether there
are errors of hot in the conventional digital transmission
step, the obvious question is: why is this scheme better
than simply transmitting the information bits byby.. by...
conventionally? The answer is that the proposed form
of transmission turns out to provide protection against
transmission errors because the 2p,.4,, (k) values are highly
redundant. Indeed, if the perturbations are small enough,
the deterministic behavior of the system allows to predict,
from the value of the variable z(¢) at any crossing with
the Poincaré surfaces of section, which symbels will be
generated in the n — 1 subsequent crossings. This is the
basis of the symbol encoding method. As explained in
the previous section, the perturbation applied in the k-th
crossing with a Poincaré surface modifies the symbol s(k +
n — 1) produced by the system, but symbols s(k} ... s(k +
n — 2) are the same as if the perturbation had not been
applied.

What is the effect of this property on the receiver?
Recall that z,..,(k) is the central value of the bin
associated with the n-symbol string gencrated after the k-
th crossing with a surface of section. Therefore, even if
there arc some mismatch, i.e., if Znean(k) # Zmeen (k) duc
to transmission errors, 2,,..,, (k) may still be within the bin
associated with the same n-symbol string as z,,eq, (k) and
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we will still recover the same information without error.
But more importantly, even if £,,.,, (k) does not belong
to the same bin as z,,eca (k). it is likely to belong to a
neighbouring bin which. by construction, is associated to
a symbol sequence that only differs in the last symbols.
Hence, errors can still be avoided.

In order to clarify how the receiver can work we
show the following example for 3-symbol control. At the
transmitter, there is a local Lorenz oscillator with standard
parameters that is controlled using the procedure in Section
2 to differentially encode a desired binary message. After
the k-th crossing (with k = 0, 1,2, ...), the resulting value
of zyean(k) is converted into a binary word, wy, which
is digitally transmitted. Just to illustrate the method (a
more sophisticated algorithm should be used in practice)
we add a single parity bit to wy (this vields wy, p as the
new word to be fransmitted). This parity bit allows to
easily detect lransmission errors of exactly one bit, When
no error is detected, the received word is converted back
into a real form to yield the corresponding z,nean (k) value,
which is used to control the local Lorenz system. When
an error is detected, no perturbation is applied at the &-th
crossing of the oscillator and we let the redundancy of the
system to account for this absence. Notice that the previous
perturbation already fixed the next two symbols, so we are
not actually losing infermatien unless two perturbations
in a row are absent. Clearly, this is a very simple way
of implementing the proposed channel coding methed, but
it serves to the purpose of illustrating its error-correcting
capability.

The performance of 2 system using the described
channel code is shown in Fig. 4. We plot the coded
Bit Error Rate (BER), which is the BER attained by the
system when the proposed channel code with n = 3 is
applied versus the uncoded BER of the digital channel,
i.e., the BER of the binary transmission system when no
channel code is used either to detect or to correct errors.
In the plot, the diagonal line represents the performance
of the uncoded system. After decoding, points over the
diagonal indicate a performance loss, meaning that the BER
has worsened, and values below the diagonal indicate a
performance improvement, i.e., a reduction in BER after
channel decoding. We obscrve that a gain of up to three
orders of magnitude is achieved when the uncoded BER
is 107% We would like to remark that the coded BER is
always equal to or better than the uncoded BER. This is not
the case with many conventional channel coding techniques,
that lead to a noticeable performance degradation when the
uncoded BER is low [7].

4. CONCLUSIONS

We have introduced a novel channel code with error-
correcling capabilities based on the dynamics of a
continuous-time chaotic system. This channel code takes
advantage of the natural redundancy contained in the
perturbations applied to the system in order to encode a
desired message in the symbolic dynamics of the ehaotic
waveform. The performance of this chaotic channel code

%

Coded BER

10 10° 10 107 10°

Uncoded BER

Fig. 4. Coded BER as a function of the uncoded BER when
3-symbol control is used.

has been illustrated through computer simulations for the
case of the Lorenz system.
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