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Abstract

This Letter analyzes the role played by harmonic noise on the chaotic advection of passive tracers of a fluid flow model in
order to show that noise is able to recover intrinsic dynamical properties of some nonlinear systems. Stroboscopic maps of the
fluid flow are analyzed by using an appropriate time-periodic stream function, deterministic versus stochastic, and a method
consisting in the computation of a probability density. We show that under certain conditions the noise-induced behavior closely
resembles the effect of a deterministic time-periodic external perturbation, including the appearance of KAM tori. 2002
Published by Elsevier Science B.V.

The study of nonlinear phenomena has constituted
one of the principal topics of research in the past few
years. A special role has been played by the counter-
intuitive ability of noise to induce order in nonlinear
nonequilibrium systems. In fact, the randomness of
the environment of an open nonequilibrium dynami-
cal system, which has been considered in the past only
as a nuisance, may be used now for positive purposes.
Perhaps the best example of such a noise-induced phe-
nomenon is stochastic resonance [1,2], although other
important effects of noise in nonlinear dynamical sys-
tems such as noise-induced transitions [3–5], stochas-
tic transport in ratchets [6], coherence resonance [7]
and noise-induced pattern formation [8] might be cited
as well.
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Another interesting aspect of these studies is the
ability of noise to excite a dynamical behavior in the
nonlinear system which closely resembles its behav-
ior in a deterministic case. This effect is a manifesta-
tion of the fact that under certain conditions noise is
able to recover intrinsic dynamical properties of the
nonlinear system. In this case an external noisy per-
turbation excites only natural motions of the system.
Hence, surprisingly, despite the random character of
the excitation, the behavior of the system looks like
the motion excited by a harmonic external force [9] or
a self-excitation mechanism [10]. In many cases the
distinction between noise-induced stochastic oscilla-
tions and deterministic behavior is rather difficult to
establish and requires special methods of analysis [5].

Following this idea, our goal here is to analyze
the influence of noise on the chaotic advection of
passive tracers of a fluid flow, where an external
deterministic forcing is applied. The phenomenon of
chaotic advection has attracted the interest of many
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researchers (see, for instance [11,12]), where time-
periodic two-dimensional fluid flows have been used.
This is precisely the case in which we are interested.
We review shortly the model introduced in [13,14]
before the results of our numerical simulations are
outlined and discussed.

The influence of noise is studied on a simple fluid
model which originates from experiments which are
described in Refs. [15–18] and by numerical investi-
gations of the two-dimensional Navier–Stokes equa-
tions in [19–21]. Instabilities and transitions in a lin-
ear chain of electrically driven vortices were studied in
these experiments and could be recovered by computa-
tions of the externally forced two-dimensional Navier–
Stokes equations. Numerical simulations gave strong
evidence that the essential dynamics, at least for mod-
erate Reynolds numbers, may be described by a low-
dimensional, five-mode, stream function model [13].
This five-mode approximation was analyzed by Witt
et al. in Ref. [14] in order to study the chaotic advec-
tion of passive tracer particles injected into the fluid.
An external deterministic time-periodic perturbation
on the stream function was applied in order to simu-
late the dynamics of the flow beyond the Hopf bifur-
cation in the case that the Reynolds number exceeded a
critical value. This time-periodic flow consists of a se-
ries of corotating vortices and a shear component. But
the dynamics of the passive tracers has got already a
chaotic nature in a thin layer which separates the vor-
tices from the shear flow. The main result was to show
the existence of a chaotic saddle (also called nonat-
tracting chaotic set) which is believed to be the respon-
sible of the tracer dynamics in this chaotic layer. In
fact, the transient chaos which is present in the dynam-
ics of the fluid flow, is a consequence of this nonat-
tracting chaotic set, which is composed by the inter-
section of the unstable and the stable manifolds of a
fixed point in the phase space.

For our purposes and in order to keep the essential
properties of the flow studied in [14], we make a
further simplification and retain only the two more
important modes in the stream function model. The
stream function is given then by

(1)ψ(x, y)=ψ01sin(y)+ψ21sin(2x)sin(y),

whereψ01 measures the strength of the shear flow and
ψ21 represents the flow component of the driven vor-
ticity. Moreover, it shows qualitatively a good agree-

ment with the dynamics resulting from the Navier–
Stokes computations in [21] and reflects essential fea-
tures of the experiments we have mentioned above.

For a stationary flow the pathlines of the tracers co-
incide with the streamlines and provide a direct visu-
alization of the velocity field. In the time-dependent
regime, which is the one we are interested, the situa-
tion is more complicated and the pathlines have to be
determined by the integration of the nonautonomous
equations of motion of the velocity field of the fluid
flow which are given by

(2)ẋ = ∂ψ(x, t)
∂y

, ẏ = −∂ψ(x, t)
∂x

,

where x = (x, y) represent the coordinates of the
points in the two-dimensional phase space of the tracer
particle. Note that these equations are simply Hamil-
ton’s equations, since the stream functionψ(x, t)
might be viewed as a Hamiltonian function. More-
over for time-dependent periodic flows the pathlines
show a very complicated, wrinkled, and chaotic form,
a phenomenon also known as Lagrangian chaos or La-
grangian turbulence.

Matching the investigations in [14], we introduce
a particular time-dependence of the flow varying
only the coefficientψ01. This model also reflects the
dynamics of the flow of driven vortices which results
from the Navier–Stokes simulations performed in [13,
21]. For the deterministic situation we modulateψ01
as

(3)ψ01(t)=ψ01
[
1+µsin(ω0t)

]
,

whereµ is a constant and measures the strength of
the harmonic excitation. Specifying the coefficients
ψ01 = 8.35 andψ21 = −2.55 as in [14], the resulting
flow reproduces qualitatively the same streamlines as
the Navier–Stokes flow described in [13,21].

For the visualization of the dynamics of externally
driven systems, we use the standard technique of
stroboscopic maps. The trajectories are mapped on
the Poincaré section by sampling them at multiple
times of the driving period. A stroboscopic map for
a set of tracers driven by the pure deterministic
forcing is shown in Fig. 1, which is in accordance
to Eq. (3) and governed by Eq. (2). The dynamics
of the fluid flow is analyzed in the spatial domain
Ω = [0,π] × [0,π], once we have taken into account
symmetry considerations of the stream function. The
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Fig. 1. Stroboscopic map for a set of tracer particles in the pure
deterministic situation forω0 = π andµ= 0.2 according to Eq. (3).

flow consists of one vortex in the middle and a shear
flow on top and bottom that are separated by a chaotic
layer. The regular tracer motion near the center of
the vortex and in the shear region is mirrored by
smooth lines. Due to the Hamiltonian structure of
Eq. (2), that are periodically perturbed by Eq. (3), one
expects surviving KAM tori. The layer is interspersed
by infinitely many KAM tori, but only the largest
of them are discernible. In Fig. 2 a blow-up of the
chaotic region appears, where one of these typical
KAM tori is shown in detail, in order to make it clear
the appearance of these surviving structures in the
stochastic layer.

The aim of this Letter is to study the effect of
noise on the system governed by the stream function
in Eq. (1) when we replace the deterministic time-
dependent term in Eq. (3) by a stochastic excitation

(4)ψ01(t)=ψ01
[
1+ χ(t)

]
.

The χ(t) used here is the so-calledharmonic noise
which is described by the stochastic differential equa-
tion

(5)χ̈ (t)+ 2δχ̇(t)+ω2
0χ(t)= ξ(t),

whereξ(t) is a zero mean, Gaussian white noise with
a time correlation function given by

(6)
〈
ξ(t)ξ

(
t ′
)〉 =∆δ

(
t − t ′

)
.
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Fig. 2. Blow-up of the stochastic layer around the lower KAM torus
of Fig. 1.

Fig. 3. A sample realization of harmonic noise forω0 = 1, δ = 0.03
and∆= 0.0002. In the inset, the spectral power density of the noise
for this set of parameters is plotted.

The spectral density of the processχ(t) is then

(7)S(ω)= ∆

(ω2 −ω2
0)

2 + 4δ2ω2
.

A realization of harmonic noise for the parameter
valuesω0 = 1, δ = 0.03 and∆ = 0.0002 is plotted
in Fig. 3. The important point is that despite its short
temporal span, this realization clearly shows both
the stochastic oscillatory component and the slower
random modulation in amplitude. In the inset, a plot
of the spectral density of the noise,S(ω), for the same
set of parameters is depicted. It is straightforward to
obtain from Eq. (7) that the maximum value forS(ω)
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reads

(8)S(ωmax)= ∆

4δ2ω2
0(1− (δ2/ω2

0))
,

which can be considered as the harmonic noise inten-
sity.

The role of the damping parameterδ on the behav-
ior of the system is considered first, focusing our at-
tention in the analysis of the fluid flow by the use of
the stroboscopic maps. In our case, where the system
is driven by a stochastic signal, the role of the driving
period is played byT0 = 2π/ω0, whereω0 is the mean
frequency of the harmonic noise (see Eq. (5)). Four
stroboscopic maps corresponding to different values
of δ are depicted in Fig. 4. We have fixedω0 = π for
all cases, whereas∆ changes in order to keep con-
stant the value ofS(ωmax) as δ varies. This is done
in order to assure that the obtained results are depen-
dent only on the bandwidth and independent of the
noise intensity. In particular, we have fixedS(ωmax) to
the corresponding value for∆= 0.001,δ = 0.03 and
ω0 = π . For the smallest noise intensityδ = 0.0001
(see Fig. 3(d)), the stroboscopic map resembles much
the deterministic case, as shown in Fig. 1. Especially,
some resemblances with the KAM tori that occur in
the deterministic case can be seen here, although the

boundaries between the KAM tori and the rest of the
stochastic layer are not so clear as in the determinis-
tic case. Asδ increases, features corresponding to the
deterministic case tend to disappear, as it is seen in
the previous three panels (Fig. 3(a)–(c)): KAM tori are
not present in these cases and the stochastic layer and
the shear part of the flow are less distinguishable asδ

grows (see, for example, panel (a) which corresponds
to δ = 0.1). This is easily understood if we take into
account thatδ is related to the width of the peak of
the harmonic noise spectrum (see Fig. 3), where the
peak is wider asδ increases. This means that more fre-
quencies contribute to the noise generation, i.e., the
harmonic noise and the deterministic sine wave signal
differ more asδ increases.

For a better description of the behavior of the
system asδ varies the following approach is used.
We have determined the location of the upper and
lower KAM tori in the deterministic case, to be
situated approximately at(0.61,1.95) for the upper
torus and at(0.95,1.18) for the lower one. Then
we define a narrow band parallel to they axis
that crosses the lower KAM torus and divide it in
bins in order to compute the probability of having
points of the stroboscopic map inside this band.
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Fig. 4. Stroboscopic maps for the stochastic model, showing the behavior of the system whenδ changes. In all casesω0 = π andS(ωmax) is a
constant. The corresponding values ofδ are (a) 0.1, (b) 0.01, (c) 0.001 and (d) 0.0001. Notice the presence of KAM tori for smallδ.
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The same procedure can be repeated with the upper
KAM torus giving similar results. This probability
density is expected to give an insight of how the
stroboscopic map is modified whenδ varies. We
compute these histograms for different values ofδ

keeping S(ωmax) constant. One would expect the
probability distribution to be almost constant for high
values ofδ along the line crossing the KAM torus,
which would correspond to a rather homogeneous
distribution of the points in the stroboscopic map. We
have computed explicitly this probability distribution
for a sufficiently high value ofδ = 0.3, with the result
that no relevant structure is apparent, as expected
(data not shown). On the other hand, some structures
should appear in the histogram asδ decreases. This
expectation is clearly confirmed in our simulations
and is visible in Fig. 5(a),(b), where two histograms
corresponding toδ = 0.01 andδ = 0.0001 are shown.

If we observe the histogram corresponding toδ =
0.0001 (Fig. 4(b)); three zones are clearly discernible.
In the approximate region of 0< y < 1 and 2.25<
y < π , several sharp peaks appear which clearly
correspond to the streamlines reflecting the shear part
of the flow. Between these two similar regions, we find
the part of the histogram which mirrors the stochastic
layer from the stroboscopic map. In this zone we can
distinguish the KAM torus location neary = 1.18,
where the probability density drops to 0 abruptly.
Around this value, large fluctuations in the probability
distribution occur, whereas in the rest of this region
the probability density is nearly a constant. We believe
that they might give an indication for the creation of
the KAM torus. In the other histogram forδ = 0.01
(Fig. 5(a)), these structures are much less apparent
or simply disappear. In particular, no evidence of
the presence of a KAM torus can be seen from this
histogram. We have also noticed that a change in the
bin width used for the computation of the probability
densities does not alter substantially our results.

As shown above, computations of the probability
distributions can be a useful tool in describing the be-
havior of the system when a parameter is varied. Next,
we apply this technique to the analysis of what, from
our point of view, is a particularly interesting question.
This consists on the differences and/or similarities be-
tween the stochastic and the deterministic cases, when
the parameters for the harmonic noise are set to val-
ues such that the stroboscopic map for the stochastic
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Fig. 5. (a) Histogram corresponding to the case of Fig. 3(b); (b)
to the case of Fig. 3(d); (c) to the deterministic case of Fig. 1.
The results correspond to the lower KAM tori (x = 0.95). Its y
coordinate is shown by the arrow. Notice how the KAM torus
location and fluctuations referred to in the text are clearly visible
in (b). Note also the close similarity of the stochastic case (b) and
the deterministic case (c). In the insets, large scaled regions showing
the lower KAM tori location in all cases are depicted.

case is very similar to the deterministic one. We com-
pare the case of the noisy excitation shown in the stro-
boscopic map of Fig. 4(d) with the deterministic case
shown in Fig. 1. The corresponding probability den-
sity histograms are depicted in Fig. 4(b) and Fig. 4(c).
It is clearly seen that, despite the fact that the system is
driven by a purely stochastic term in Fig. 4(b) and by a
deterministic signal in Fig. 4(c), no substantial differ-
ences can be observed between the two cases, neither
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in the stroboscopic map nor in the histograms, except
the fluctuations around the KAM torus location men-
tioned above. This behavior might be explained by the
fact that the system automatically chooses an excita-
tion frequency from the noise spectrum. This means
that narrow-band noise is able to recover the intrin-
sic dynamics of the system, which can be also induced
by a external periodic force. In the case of wide-band
noise (δ is large enough), this effect will be hidden due
to the interplay of other frequencies in the noise spec-
trum and the nonlinearity of the system. It is worth
noticing that the large fluctuations around the KAM
torus location, seen in Fig. 5(b), disappear if we fur-
ther decreaseδ. It seems that these fluctuations take
place when the KAM tori are about to form, but dis-
appear when they are already present in the strobo-
scopic map. In this sense, these fluctuations could be
seen as a sign of KAM tori formation. These fluctua-
tions near the KAM torus should be considered only as
a qualitative difference between the deterministic and
the stochastic cases, and it could not be considered as
a quantitative measure.

Finally, we consider how the behavior of the
system is modified when the central frequency of
the harmonic noiseω0 changes. For this purpose we
have performed some numerical computations having
fixed δ = 0.03 and∆ = 0.001, whereasω0 has been
changed fromω0 = π to ω0 = 10π andω0 = 100π .
The result in this case is that the stroboscopic map
is very similar to the pure deterministic one when
ψ01 is time-independent, that is,µ = 0 in Eq. (3).
This fact can be considered as a stronger argument in
favor of the explanation that the system itself chooses
an excitation frequency from the noise spectrum.
However, in this case, this excitation frequency does
not carry any energy, because it is far away from the
peak frequency of the harmonic noise. This means,
that despite the noise excitation, an effective action of
the noise on the flow model appears to be zero.

In conclusion, we have considered the influence
of harmonic noise on the chaotic advection of fluid
flow for different bandwidths of the noise. The main
result obtained here is that the stochastic system
can excite a behavior which resembles very closely
that of the pure deterministic situation. This fact
shows that the dynamics is mainly controlled by in-
trinsic properties of the system rather than by ex-
ternal factors. The fluctuations in the probability

distribution of noisy excitations around the KAM
tori location are a phenomenon associated with the
generation of the KAM tori under the influence of
noise.

Acknowledgements

We acknowledge financial support from The Max-
Planck-Gesellschaft (A.Z.), the Spanish Ministry of
Science and Technology under project BFM2000-
0967 and Acción Integrada Hispano-Alemana under
project HA2000-0018 (J.P.B. and M.A.F.S.) and from
the Deutsche Forschungsgemeinschaft (SFB 555)
(J.K.).

References

[1] R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14 (1981) L453.
[2] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod.

Phys. 70 (1998) 223.
[3] W. Horsthemke, R. Lefever, Noise-Induced Transitions,

Springer, Berlin, 1984.
[4] J. García-Ojalvo, J.M. Sancho, Noise in Spatially Extended

Systems, Springer, New York, 1999.
[5] P. Landa, A. Zaikin, Phys. Rev. E 54 (1996) 3535;

P. Landa, A. Zaikin, V.G. Ushakov, J. Kurths, Phys. Rev. E 61
(2000) 4809.

[6] F. Marchesoni, Phys. Lett. A 237 (1998) 126.
[7] A. Pikovksy, J. Kurths, Phys. Rev. Lett. 78 (1997) 775.
[8] J.M.R. Parrondo, C. Van der Broeck, J. Buceta, F.J. de la Rubia,

Physica A 224 (1996) 153.
[9] P. Landa, A. Rabinovitch, Phys. Rev. E 61 (2000) 1829.

[10] P. Landa, Europhys. Lett. 36 (1996) 401.
[11] H. Aref, J. Fluid Mech. 143 (1984) 1.
[12] J.M. Ottino, The Theory of Mixing: Stretching, Chaos and

Transport, Cambridge University Press, Cambridge, 1989.
[13] R. Braun, Ph.D. Thesis, University of Potsdam, 1997.
[14] A. Witt, R. Braun, F. Feudel, C. Grebogi, J. Kurths, Phys. Rev.

E 59 (1999) 1605.
[15] P. Tabeling, B. Perrin, S. Fauve, Europhys. Lett. 3 (1987) 459.
[16] P. Tabeling, O. Cardoso, B. Perrin, J. Fluid Mech. 213 (1990)

511.
[17] O. Cardoso, H. Willaime, P. Tabeling, Phys. Rev. Lett. 65

(1990) 1869.
[18] H. Willaime, O. Cardoso, P. Tabeling, Phys. Rev. E 48 (1993)

288.
[19] J.M. Finn, J.F. Drake, P.N. Guzdar, Phys. Fluids B 4 (1992)

2758.
[20] P.N. Guzdar, J.M. Finn, A.V. Rogalsky, J.F. Drake, Phys. Rev.

E 49 (1994) 2062.
[21] R. Braun, F. Feudel, P.N. Guzdar, Phys. Rev. E 58 (1998) 1927.


	Noise-induced effects on the chaotic advection of fluid flow
	Acknowledgements
	References


