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Abstract

We introduce a novel chaotic channel code with error-correcting capabilities. This channel code takes advantage of the natural
redundancy contained in the perturbations applied to a chaotic system, in order to encode a desired message in the symbolic
dynamics of the chaotic waveform. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent developments in communicating with chaos
have provided a great variety of potential practical
applications, which include transmitter-receiver syn-
chronization [1–4], signal masking and recovery [5,6],
noise filtering [7], encryption [5], reconstruction of in-
formation signals [8,9] and encoding/decoding algo-
rithms that allow to embed an arbitrary digital mes-
sage into the symbolic dynamics of a chaotic system
[8–14]. The latter contributions show that it is possible
to guide the evolution of a chaotic signal by applying
small perturbations on the system variables. This fea-
ture allows to generate controlled chaotic waveforms
whose symbolic representation corresponds to a de-
sired message. Thus, these techniques are specially ap-
pealing because they take advantage of the most out-
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standing property of chaotic systems, their extreme
sensitivity to the initial conditions, which had been
previously seen as an obstacle for practical applica-
tions. Moreover, this control approach has already suc-
cessfully provided new solutions for some classical
problems in digital communications, such as the de-
sign of a robust transmission system in the presence of
impulsive noise [8,9].

In this Letter, we elaborate on the control technique
reported in Ref. [8] and make a first effort to investi-
gate its potential application to the important task of
channel coding [15]. Channel coding consists of delib-
erately introducing redundancy in the transmitted sig-
nal in a way that enables the receiver to detect and,
sometimes, correct the bit errors caused by channel
noise and/or distortion. Although relatively little at-
tention has been devoted to this topic from the point of
view of chaotic dynamics, a remarkable contribution is
the paper by Baptista et al. [16], where a communica-
tion scheme fully based on chaos theory is proposed,
including the implementation of a channel dynami-
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cal encoder. We would also like to mention the work
by Chen and Wornell [17], where interesting results
on the design of channel codes using discrete-time
chaotic systems are shown, as well as their connection
to conventional coding methods. In this Letter, a differ-
ent approach is introduced that consists of exploiting
the natural redundancy of a continuous-time chaotic
signal that bears a desired message within its symbolic
dynamics. As a result, a novel error-correcting code
is proposed, whose performance is illustrated through
computer simulations.

In Section 2 we review the control technique of [8]
and discuss some details, basically dealing with the
robustness of the method, that had not been studied
before and are relevant to the error-correcting code
proposed in Section 3. Finally, Section 4 contains
some final remarks and conclusions.

2. Controlling the symbolic dynamics of a chaotic
system

As shown in [8,10,11], small perturbations applied
on the system trajectory of a chaotic attractor can be
used to make the output waveform carry a desired
symbol sequence representing a message.

The chaotic Lorenz system,

ẋ = −σ(x − y),

ẏ = Rx − y − xz,

(1)ż = bz + xy,

provides a good framework for investigating the idea
of controlling dynamics with small perturbations to
the system trajectory. Recall that, for the standard pa-
rameter values,σ = 10, R = 28, andb = 8/3, the
state coordinate(x(t), y(t), z(t)) moves on a chaotic
attractor in a three-dimensional state space forming
two lobes. The standard parameters will be used all
throughout the Letter. In order to control the system,
let us also consider the two Poincaré surfaces of sec-
tion given by the half-planesy = ±√

b(R − 1) and
|x| � √

b(R − 1), each one defined on a different lobe
(see Fig. 1). When the system crosses the surface with
y = −√

b(R − 1) in a previously fixed direction it is
said to generate a symbol “A” and when the system
crosses the surface withy = +√

b(R − 1) it is said to
generate a symbol “B”. Thus, a direct relationship ex-

Fig. 1. Projection onto thex–z plane of the chaotic Lorenz attractor
crossed by the Poincaré surfaces defined byy = +√

b(R − 1) and
|x| �

√
b(R − 1) and byy = −√

b(R − 1) and |x| �
√

b(R − 1).
These surfaces are represented, respectively, by the symbols “A”
and “B”.

ists between the system time evolution and the symbol
string resulting from the successive crossings, which
is referred to as thesymbolic dynamics of the system.

Since the system is deterministic, there is a one-
to-one correspondence between the point where the
three-dimensional state coordinate crosses one of these
surfaces of section and the futuren-symbol sequence,
s1 . . . sn, generated after the crossing. The first sym-
bol, s1, indicates the present crossing andsn repre-
sents the surface that is being crossedn−1 oscillations
later. When the system runs free, the long-term tempo-
ral evolution of the state coordinate yields a random-
like symbol string. This is easily observed in the scalar
continuous-time signalx(t) shown in Fig. 2, where
the symbols “A” and “B” appear as a random-like se-
quence of positive and negative peaks.

In Ref. [8], a control technique was first introduced
that allows to determine the symbol string generated
by the chaotic system after crossing a Poincaré surface
of section. Such a control is exercised by applying
small perturbations to one single system variable,z,
instead of the complete state coordinate, thus leading
to a simple implementation. Let us remark that, in this
context,control means the ability to guide the system
so that it generates a desired string of symbols carrying
a message (instead of a random-like sequence, as the
uncontrolled system does) while its overall evolution
remains chaotic.
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Fig. 2. Temporal evolution of the variablex of the Lorenz system.

In order to know how to apply small perturbations
on z(t), a learning process is needed. Let us assume
that we want to control then-symbol strings1 . . . sn
generated after a crossing. The learning process is
characterized by the value ofn and works as follows.
We let the system run freely for a long enough period
of time and observe both the values that variablez(t)

takes at the crossings with the surfaces of section
and the subsequentn-symbol strings generated by
the system. In that way, we can associate a range of
values ofz, hereinafter referred to as abin, to each
one of the 2n different possiblen-symbol sequences.
Once the bins are identified, an average of allz in
the same bin, referred to aszmean, can be calculated
(notice that allz in the same bin have been observed
to generate the samen-symbol sequence). The value
of zmeanassociated to each bin completely determines
the futuren-symbol sequence, represented by the real
magnituder(s1 . . . sn) = ∑n

i=1 f (si)2−i < 1, where
f (A) = 0 and f (B) = 1. When this association is
done for all bins, the learning process is complete: this
is all the information the controller requires, as shown
later.

As already mentioned, the learning process is
characterized by the value ofn. Thus, it is interesting
to study how this magnitude affects the relationship
betweenzmean and r(s1 . . . sn). Although, for a fixed
value ofn, the 2n different bins do not have the same
length we can define an average size of the bin, that
we callS(n). This average size decays approximately
as S(n) = 36 · 2−n (see [8]). However, it is more

Fig. 3. Values ofzmean associated with each differentn-symbol
sequence, represented byr(s1 . . . sn): (a) for n = 8, (b) for n = 5,
and (c) forn = 3.

important to watch the evolution of the relationship
betweenzmean and r(s1 . . . sn) as n varies. This is
plotted forn = 8, n = 5 andn = 3 in Fig. 3(a), (b)
and (c), respectively. We can observe how values of
zmeancorresponding to neighbouring sequences for the
three cases are farther from each other asn decreases.
This is due to the fact that the size of each bin
associated with each different sequence increases as
n decreases. It is also apparent from this figure that
differentn-symbol sequences beginning with the same
symbol are associated with strictly different values of
zmean.

The procedure to control the symbolic dynamics
is examined next. Let us suppose that we want the
chaotic waveformx(t) to represent some binary mes-
sage, as for example,

m = 0011101011010011011100. . . .

We can associate the bit “0” with a change of sym-
bol in two consecutive crossings with the Poincaré sur-
faces of section (i.e.,AB or BA) and the bit “1” with
the repetition of the same symbol (i.e.,AA or BB). In
this way, the same message can be represented either
by the following symbol sequence,

ABAAAABBAAABBABBBAAAABB . . . ,

that begins with the symbol “A”, or by the sequence

BABBBBAABBBAABAAABBBBAA . . . ,
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that begins with the symbol “B”. This is useful so
as to avoid problems related to the symmetry of the
zmean(r) function (see Fig. 3: every value ofzmean(r) is
associated with two complementary binary sequences)
and is usually referred to as adifferential encoding in
the context of digital communications [15], where the
problem of decoding an information signal consisting
of pulses with an unknown phase rotation is usually
encountered. Hence, the information is not extracted
from the absolute phase of the pulses but from the
phase difference between consecutive pulses. In our
chaotic scheme, we have to face a similar problem, as
explained in the next section.

The aim of the encoder is to introduce small
perturbations in the variablez(t) at each crossing with
the surfaces of section in order to generate the desired
n-symbol sequence. This desired sequence,s1 . . . sn,
consists ofn − 1 symbols which are predetermined
plus one new information symbol, i.e.,s1 is given by
the current crossing ands2 . . . sn−1 must be the same
symbols that would be generated by the system if
we did not apply any perturbation at all. Therefore,
the perturbation we apply in thekth crossing sets the
value of the(k +n)th symbol generated by the system,
the perturbation in the(k + 1)th crossing sets the
(k + n + 1)th symbol and so on. Notice that the larger
the value ofn, the smaller the perturbations and the
more the system time evolution resembles the one of a
free system.

From a practical point of view, each perturbation is
chosen to move thez coordinate to the central point
in the bin corresponding to the desiredn-bit sequence,
i.e., thezmeanvalue. An alternative procedure, maybe
more rigorous, would be to move thez coordinate to
the point that yields the highest likelihood of generat-
ing the sequence, but our numerical simulations have
proved that moving to the central point is a rather
good approximation. Actually, the fact of moving the
z coordinate to any of the spots inside the bin as-
sociated to the desired sequence would be a poten-
tially good choice which should not be neglected, es-
pecially for short term encoding, i.e., for low values
of n. The reason is that, according to the expression
S(n) = 36·2−n, we have larger bins for smallern, im-
plying that there is a wider range of values ofz that
may yield the desired evolution of the chaotic system.
A corollary of this argument is that if the practical,
possibly electronic, device we use for introducing the

perturbations is subject to some type of noise, then
short term (smalln) encoding should be implemented
in order to guarantee a robust performance.

3. A novel error-correcting channel code

3.1. Communication scheme

Once a desired message is encoded into the chaotic
waveformx(t) the most straightforward design of a
communication system consists of transmitting this
chaotic signalx(t) through a communication chan-
nel. At the receiver, the message could be recovered
just by observing the sequence of positive and neg-
ative peaks of the variablex(t), possibly corrupted
by thermal noise and other sources of distortion. This
approach has already been described in the literature
[8,9], where signal reconstruction methods are pro-
posed to account for the existence of impulsive noise
in the channel by exploiting the properties of the en-
coding method and the chaotic signal. Here, we ex-
plore a different approach where the signalx(t) is
not transmitted itself. Instead, the transmission part
of the communication system is implemented by con-
ventional engineering methods, while the controlled
Lorenz system is used to construct a novelchannel
code, i.e., a redundant representation of the message
to be transmitted [15], that enables the receiver to par-
tially detect and correct the transmission errors caused
by channel noise and other sources of distortion.

Due to the control procedure that has been de-
scribed to encode the desired message into the chaotic
waveformx(t), it is apparent that, knowing the ini-
tial conditions for the Lorenz system,x(0), y(0), z(0),
with a sufficient degree of accuracy, all the relevant in-
formation of the signalx(t) (and, therefore, the mes-
sage) is contained in the value of the perturbations
applied to the variablez(t) at each crossing with a
Poincaré surface. Hence, we propose the communica-
tion scheme depicted in Fig. 4 where only the values
of the successive spotszmean(k), (k = 0,1, . . .), that
indicate where the variablez(t) must be placed by the
control algorithm, are transmitted. Notice that index
k = 0,1, . . . represents the crossing or symbol num-
ber.

The communication system takes the following
successive steps.
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Fig. 4. Communication scheme for the proposed error-correcting channel code.

• The information bits (i.e., the message),b1b2 . . .

bk . . . , are converted into a sequence of real values
zmean(0)zmean(1) . . . zmean(k) . . . using the learned
relationship between variablez and the symbolic
dynamics of the system.

• A conventional analog-to-digital converter (A/D)
transforms this sequence of real values into dig-
ital words, w1w2 . . .wk . . . . Each of these words
is a signal in digital format that may be eas-
ily transmitted through the communication chan-
nel (see [15] for details on analog-to-digital con-
version and digital modulation). This is a clas-
sical problem that can be solved in several dif-
ferent ways using well-tested engineering meth-
ods.

• A conventional digital receiver detects the digi-
tal words. Let us refer to thedetected words as
ŵ1ŵ2 . . . ŵk . . . . The reason to use a different no-
tation is that digital detection is subject to errors
due to channel noise and distortion, hence, the de-
tected word,ŵk , may be different from the trans-
mitted one,wk .

• A conventional digital-to-analog (D/A) converter
transforms the detected words into a real se-
quence ẑmean(0)ẑmean(1) . . . ẑmean(k) . . . , where
ẑmean(k) = zmean(k) if, and only if, ŵk = wk.

• The real sequencêzmean(0)ẑmean(1) . . . ẑmean(k) . . .

is used to reconstruct the temporal evolution of
the variablex(t) from a perturbed Lorenz sys-
tem using the control algorithm described in
Section 2. If no errors occurred during the trans-

mission of the digital words, the recovered mes-
sage,b̂1b̂2 . . . b̂k . . . will coincide with the orig-
inal one, b1b2 . . . bk . . . . Notice that the recov-
ered message is observed in the peaks of the
variablex(t) of the reconstructed perturbed sys-
tem.

Overall, the proposed communication scheme can be
seen assplitting the control algorithm into two parts:
at the transmitter, we take the message and compute
the perturbations (actually, thezmean(k) values) to
be applied on the Lorenz system. This information
regarding the perturbations ispassed to the receiver
conventionally, meaning that we use standard digital
communication techniques. At the receiver, we apply
the perturbations on the Lorenz system and observe
the time evolution of the variablex(t) in order to
recover the message.

At this point, it is easy to explain the reason to
employ a differential encoding of the information as
described in Section 2. Let us consider for a while
that we had taken the more straightforward approach
of encoding the message directly on variablex(t) as
A = 1 andB = 0. Then, we use the communication
scheme described above and observe the message on
the time evolution of the variablex(t) at the receiver.
Let us assume that, at some time,ŵk �= wk and,
consequently,̂zmean(k) �= zmean(k). If the difference
ẑmean(k) − zmean(k) is large enough, there will be a
symbol error in the(k +1)th crossing, i.e., we observe
1 when the original bit was 0 or vice versa. This
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means that the system trajectory has moved to the
wrong lobe. Then, if there are no further errors and
we keep applying the correct perturbations,ẑmean(k +
p) = zmean(k + p), p = 1,2,3 . . . , we will observe a
symbolic sequence of 1s and 0s that is the complement
(that changes 0s by 1s and vice versa) of the original
message. The reason is the symmetry of the function
zmean(r) (as shown in Fig. 3) which implies that every
value zmean is associated with two complementary
n-symbol strings.

This drawback is easily avoided by using differ-
ential encoding because the information is not repre-
sented by the symbols themselves, but by the transi-
tion from one symbol to the next. Hence, as explained
in Section 2, both a symbol string and its complement
represent the same message.

3.2. Protection from errors

Since the perfect recovery of the message at the
receiver using the scheme described above depends
on whether there are errors or not in the conventional
digital transmission step, the obvious question is: why
is this scheme better than simply transmitting the
information bits b1b2 . . . bk . . . conventionally? The
answer is that the proposed form of transmission turns
out to provide protection against transmission errors
because thezmean(k) values are highly redundant.
Indeed, if the perturbations are small enough, the
deterministic behavior of the system allows to predict,
from the value of the variablez(t) at any crossing with
the Poincaré surfaces of section, which symbols will
be generated in then − 1 subsequent crossings. This
is the basis of the encoding method. As explained in
the previous section, the small perturbation applied
in the kth crossing with a Poincaré surface modifies
the symbols(k + n − 1) produced by the system, but
symbolss(k) . . . s(k + n − 2) are the same as if the
perturbation had not been applied.

What is the effect of this property on the receiver?
Recall thatzmean(k) is the central value of the bin
associated with then-symbol string generated after
the kth crossing with a surface of section. Therefore,
even if there are some mismatch, i.e., ifẑmean(k) �=
zmean(k) due to transmission errors,ẑmean(k) may still
be within the bin associated with the samen-symbol
string aszmean(k) and we will still recover the same
information without error. But more importantly, even

if ẑmean(k) does not belong to the same bin aszmean(k),
it is likely to belong to a neighbouring bin which, by
construction, is associated to a symbol sequence that
only differs in the last symbols. Hence, errors can still
be avoided.

We clarify this point with an example. Consider
a system with 5-symbol encoding and assume that
zmean(k) belongs to bin number 3, associated with
the string 00010, where the first symbol, 0, represents
thekth crossing, the second symbol, 0, represents the
(k + 1)th crossing, and so on, up to the(k + 4)th
crossing (symbol 0). By construction, bins number
2 and 4 are associated to strings 00001 and 00011.
Hence, if ẑmean(k) belongs to any of these three bins
the symbol associated with the(k + 1)th crossing will
be the same.

3.3. A simple example

In order to clarify how the receiver can work we
show the following example for 3-symbol control.
At the transmitter, there is a local Lorenz oscillator
with standard parameters that is controlled using the
procedure in Section 2 to differentially encode a
desired binary message. After thekth crossing (with
k = 0,1,2, . . .), the resulting value ofzmean(k) is
converted into a binary word,wk , which is digitally
transmitted. Just to illustrate the method (a more
sophisticated algorithm should be used in practice) we
add a single parity bit towk (this yieldswk,pk as the
new word to be transmitted). This parity bit allows to
easily detect transmission errors of one bit. When no
error is detected, the received word is converted back
into a real form to yield the correspondingzmean(k)

value, which is used to control the local Lorenz
system. When an error is detected, no perturbation is
applied at thekth crossing of the oscillator and we
let the redundancy of the system to account for this
absence. Notice that theprevious perturbation already
fixed the next two symbols, so we are not actually
losing information unless two perturbations in a row
are absent. Clearly, this is the most straightforward
way of implementing the proposed channel coding
method, but it serves to the purpose of illustrating its
error-correcting capability.

The performance of a system using the described
channel code is shown in Fig. 5. We plot the coded
Bit Error Rate (BER), which is the BER attained
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Fig. 5. Coded BER as a function of the uncoded BER when
3-symbol control is used.

by the system when the proposed channel code with
n = 3 is applied versus the natural BER of the digital
channel, i.e., the BER of the binary transmission
system when no coding is used neither to detect nor
to correct errors. This will be called uncoded BER. In
the plot, the diagonal line represents the performance
of the uncoded system. After decoding, points over
the diagonal indicate a performance loss, meaning that
the BER has worsened, and values below the diagonal
indicate a performance improvement, i.e., a reduction
in BER after channel decoding. We observe that a gain
of up to three orders of magnitude is achieved when
the uncoded BER is 10−4.

4. Conclusions

The most significant characteristic of chaotic sys-
tems is their great sensitivity to small perturbations.
It is well known that this characteristic allows to
guide the trajectory of this type of dynamical systems
by the proper application of small perturbations di-
rectly on the system variables at some strategically
chosen points on the trajectory. This procedure can
be employed to differentially encode an arbitrary bi-
nary message within a continuous-time chaotic wave-
form. This chaotic waveform can be considered as
an information-bearing signal that naturally presents

a high degree of redundancy. In fact, all the redun-

dancy is contained in the applied perturbations. Thus,
we have exploited this fact to introduce a novel chaotic
channel code with error-correcting capabilities. The
performance of this chaotic channel code has been il-
lustrated through computer simulations for the case of
the Lorenz system.

To conclude we would like to remark that, although
the goal of this Letter is not secure communication, the
fact of transmitting through the communication chan-
nel the value of the applied perturbations, instead of
the chaotic waveform itself, can provide some advan-
tages since the receiver needs to know the chaotic sys-
tem and the appropriate parameters to reconstruct the
information-bearing chaotic waveform.
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