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Vibrational resonance in a noise-induced structure
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We report on the effect of vibrational resonance in a spatially extended system of coupled noisy oscillators
under the action of two periodic forces, a low-frequency one~signal! and a high-frequency one~carrier!.
Vibrational resonance manifests itself in the fact that for optimally selected values of high-frequency force
amplitude, the response of the system to a low-frequency signal is optimal. This phenomenon is a synthesis of
two effects, a noise-induced phase transition leading to bistability, and a conventional vibrational resonance,
resulting in the optimization of signal processing. Numerical simulations, which demonstrate this effect for an
extended system, can be understood by means of a zero-dimensional ‘‘effective’’ model. The behavior of this
‘‘effective’’ model is also confirmed by an experimental realization of an electronic circuit.
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The most counterintuitive property of white noise,
ability to induce ordering in nonlinear nonequilibrium sy
tems, has been demonstrated in the effect of stochastic r
nance~SR!. In the usual situation a signal and additive no
are acting upon a system with a bistable potential. The
pendence of the response on the additive noise intensity
a resonant form, hence an optimal value for signal proce
ing noise intensity can be found@1,2#. This effect has proven
to be general and has been found in many natural syst
@3#. Among other systems showing this phenomenon
mention systems with excitable dynamics@4#, systems with-
out an external force@5# and systems without any kind o
threshold@6#.

It has been pointed out that SR-like phenomena can
also observed in systems where a chaotic signal is used
stead of noise@7#. Moreover, in@8# it has been shown that
high-frequency periodic force can work as a noise and a
plify the response to the low-frequency periodic signal
bistable systems. This effect has been called vibrational r
nance~VR! @9#, analogously to SR. In VR the dependence
the system response versus the amplitude of the h
frequency action has a well-known bell-shaped reson
form. Since two-frequency signals are very often used
communication technologies@10#, it means that an optima
high-frequency modulation may improve processing o
low-frequency signal. It is important to mention that tw
frequency signals are also object of intensive interest in la
physics@11#, acoustics@12#, neuroscience@13#, or physics of
the ionosphere@14#. The aim of this paper is to investigat
whether VR can be achieved in noise-induced structu
which do not have any threshold or a potential barrier in
absence of noise. For this purpose we consider a spat
extended system consisting of a network of coup
monostable noisy oscillators under the action of low- a
high-frequency periodic signals. In this system a collect
action of coupling and multiplicative noise results in the o
ganization of bistability of the mean field. If the amplitude
a low-frequency signal is not enough for a synchronous
sponse of the system, then the high-frequency force is
plied. We find that an increase of the high-frequency am
tude leads to a nonmonotonous change of the sys
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response with a clearly defined maximum. Therefore,
present a different phenomenon,vibrational resonance in a
noise-induced structure, which is a variation of SR.

We study this effect on a nonlinear lattice of coupl
overdamped oscillators introduced in@15# and further studied
in @16,17#. The following set of Langevin equations de
scribes the considered system:

ẋi5 f ~xi !1g~xi !j i~ t !1
D

2d (
j Pnn( i )

~xj2xi !1A cos~vt !

1B cos~Vt !, ~1!

where xi(t) represents the state of thei th oscillator, i
51, . . . ,Ld, in the cubic lattice of sizeL in d dimensions
with N5Ld elements. The sum runs over the nearest nei
bors of thei th cell @nn( i )#, and the strength of the couplin
is measured byD. The noisy termj i(t) represents Gaussia
noise with zero mean and is uncorrelated both in space
time,

^j i~ t !j j~ t8!&5sm
2 d i , jd~ t2t8!. ~2!

The last terms in Eq.~1! stand for external periodic forces
representing a low-frequency signal with amplitudeA, fre-
quencyv, and a high-frequency signal with amplitudeB and
frequencyV, whereV@v and these frequencies can be i
commensurable.

For the sake of simplicity, the functionsf (x) andg(x) are
taken to be of the form@18#

f ~x!5H 2Gbx2~Ga2Gb!Bp if x<2Bp ,

2Gax if uxu,Bp ,

2Gbx1~Ga2Gb!Bp if x>Bp ,

~3!

g~x!5x, ~4!

where the parametersGa50.5, Gb510, andBp51 deter-
mine the slopes and the break point of the piecewise-lin
characteristic curve@an approximation of the functionf (x)
©2002 The American Physical Society06-1
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52x2x3#. Such forms of functions describe a realistic ele
tronic circuit designed in@18#.

In the absence of the external force (A50,B50) this
model can be solved analytically by means of a stand
mean-field theory procedure@19#. The mean-field approxi-
mation consists in replacing the nearest-neighbor interac
by a global term in the Fokker-Planck equation correspo
ing to Eq.~1!. Using this mean-field approximation, one d
termines transitions between ordered (m5” 0) and disordered
(m50) phases@18#, wherem is the mean field, defined a
m(t)51/Ld( i 51

N xi(t). This analysis shows that the joint a
tion of multiplicative noise and coupling between the e
ments leads to the bistability of the mean field~ordered
phase!. If we fix the coupling strength above its critica
value, then an increase of the multiplicative noise induce
disorder-order phase transition, which is followed by a re
trant transition to disorder@15#. In the ordered phase th
system occupies one of two possible symmetric states
the mean fieldsm152m25” 0, depending on the initial con
ditions. This bistability disappears if we switch off the mu
tiplicative noise.

The mechanism of this effect can be understood as
lows. In the absence of the external signal (A50,B50) the
time evolution of the first moment of a single element
given simply by the drift part in the corresponding Fokke
Planck equation~Stratonovich case!:

^ẋi&5^ f ~xi !&1
sm

2

2
^g~xi !g8~xi !&. ~5!

Following the short time evolution approximation describ
in @16#, suppose that we start with an initial Diracd prob-
ability density, and that we follow it only for a short time
such that fluctuations are small and the probability densit
well approximated by a Gaussian. Then the equation for
maximum of the probability, which is also the average va
x̄i5^xi& in this approximation, takes the following form:

ẋ̄i5 f ~ x̄i !1
sm

2

2
g~ x̄i !g8~ x̄i !, ~6!

which is valid if f (^xi&)@^dxi
2& f 9(^xi&). Returning to the

extended system, in the mean-field approximation the fi
averagê x&5 x̄ is described by the first moment of any of th
single elements given by Eq.~5!. Furthermore, suppressio
of fluctuations, performed by coupling, makes this appro
mation appropriate along the whole time evolution@21#.
Then we can write also for the field average

ẋ̄5 f ~ x̄!1
sm

2

2
g~ x̄!g8~ x̄!, ~7!

which again is valid iff (^x&)@^dx2& f 9(^x&) @20#. For this
dynamics an ‘‘effective’’ potentialUeff(x) can be derived,
which has the form

Ueff~x!5U0~x!1Unoise52E f ~x!dx2
sm

2 g2~x!

4
, ~8!
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whereU0(x) is a monostable potential andUnoise represents
the influence of the multiplicative noise. In the region whe
VR in the noise-induced structure is observed, this poten
has a bistable form due to the input provided by multiplic
tive noise.

Now let us turn to the problem, i.e., how the system~1!
responds to a periodic signal that contains two quite differ
frequencies~e.g.,v50.1 andV55). First, we analyze the
behavior of the system in the parameter region~the param-
eters being the coupling strentgh and the multiplicative no
intensity!, where the noise-induced bistability is provide
We set the amplitude of the low-frequency signalA fixed and
sufficiently small ~e.g., A50.15), which is not enough to
cause jumps between two potential wells. The time serie
the mean fieldm(t) and the corresponding periodic inpu
signal are plotted in Fig. 1 for three different values ofB
~increasing from top to bottom!. For a small amplitudeB we
observe rare jumps between the two symmetric statesm1 and
m2 in the output, which are not synchronized with the low
frequency signal~hered52 andN510). If we increaseB to
its optimal value~in the middle!, it is clearly seen that hops
occur with the same periodicity as the input signal. Hen
the high-frequency modulation optimizes signal process
in this noise-induced bistable structure. Further increase oB
leads to oscillations hops at the high frequency, which co
pletely hide the signal at the low frequency. The situati
differs qualitatively when we choose another intensity

FIG. 1. Time series of the mean field of the system@Eq. ~1!#
compared with the low-frequency signalA cos(vt) ~not in scale! for
different intensities of high-frequency vibration. From top to bo
tom, B50.5, 1.5, and 4.0.V55.0,v50.1,A50.15,sm

2 53.0. This
intensity of multiplicative noise corresponds to the bistable regi
6-2
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FIG. 2. Vibrational resonance in the noise-induced structure. Numerical simulations~a! vs experimental results for the effective mod
~b!. ResponseQ of the system vs the amplitude of the high-frequency force. In~a! sm

2 53 ~label 1!, 0.5 ~label 2!, and 0 ~label 3!; other
parameters are the same as in Fig. 2.
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multiplicative noise corresponding to the monostable regi
In this case, an increase ofB leads only to the destruction o
synchronization between input and output. Hence, the h
frequency modulation is unable to improve the quality
signal processing at low frequency in this case. Theref
the system considered exhibitsvibrational resonance in a
noise-induced structureonly when a collective bistability ha
been created by multiplicative noise and coupling.

To characterize this VR effect quantitatively, we calcula
the dependence of the system responseQ at the signal fre-
quency on the amplitude of the high-frequency force@Fig.
2~a!#. For the bistable regime the response curve~label 1!
exhibits a clearly defined maximum for the optimal value
B, which gives evidence for the presence of VR. Note t
this effect disappears if we decrease~label 2! or switch off
~label 3! the multiplicative noise: in this case an increase
the amplitude of a high-frequency force may lead only to
decrease of the system response.

When the intensity of the multiplicative noise correspon
to the bistable region of the mean field, this effect may
understood assuming a model of an overdamped system
a bistable potential@see Eq.~8!# under the action of a high
and a low-frequency periodic force,

ṁ5F~m!1A cos~vt !1B cos~Vt !1j~ t !, ~9!
01110
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wherem(t) is the mean field of the initial system, and th
function F(x) describes a bistable potential. The noisy te
j(t) denotes tiny fluctuations, which are present in all re
systems. We have constructed an electronic circuit~Fig. 3! in
order to make analog simulations of Eq.~9!. From these
simulations, one obtains that the ‘‘effective’’ model unde
goes the effect of VR@see Fig. 2~b!#; that is, for intermediate
values of the high-frequency signal, the jumps of the parti
are synchronized with the low-frequency signal, whereas
synchronization almost disappears for very high or very l
values of the amplitudes of the high-frequency signal.

It is worth noting that not every system with nois
induced bistability exhibits vibrational resonance. For e
ample, zero-dimensional systems, described in@22#, demon-
strate noise-induced bistability due to the bistability of
so-called ‘‘stochastic’’ potential but do not show a pr
nounced VR. Although it is possible to observe a small ma
mum in the response of the system, a further increase of
multiplicative noise, which provides bistability, decreases
response of the system.

In conclusion, we have described a phenomenon con
ing in the existence of vibrational resonance in a noi
induced structure. This effect is a synthesis of a noi
induced phase transition and vibrational resonance. H
frequency carrier force is able to optimize signal processi
and this process
s

FIG. 3. Electronic circuit for
the effective model@Eq. ~9!#. OA
are operational amplifiers, theR’s
read for resistors and the AD633’
stand for two multiplyers with co-
efficient a. Cb is a capacitor.
6-3
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can be controlled by multiplicative noise. Numerical simu
tions for a spatially extended system have been confirme
experimental results for a zero-dimensional ‘‘effectiv
model. We expect that due to its generality, this effect can
of much importance in communication technologies.

We expect that these theoretical findings will stimula
experimental work in order to verify VR in noise-induce
structures in real physical systems~for the first experimenta
observation of noise-induced bistability see@23#!. Appropri-
ate situations can be found in electronic circuits@18#, elec-
tronic cellular neural networks@24#, as well as in systems
that show a noise-induced shift of the phase transition, e
v.
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in liquid crystals @25#, photosensitive chemical reaction
@26#, or Rayleigh-Be´nard convection@27#. We believe that
the results shown in this paper might be crucial for su
experiments because in the noise-induced structure prese
here, the bistability of the mean field is controlled by nois
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