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Vibrational resonance in a noise-induced structure
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We report on the effect of vibrational resonance in a spatially extended system of coupled noisy oscillators
under the action of two periodic forces, a low-frequency ésigna) and a high-frequency ongarriep.
Vibrational resonance manifests itself in the fact that for optimally selected values of high-frequency force
amplitude, the response of the system to a low-frequency signal is optimal. This phenomenon is a synthesis of
two effects, a noise-induced phase transition leading to bistability, and a conventional vibrational resonance,
resulting in the optimization of signal processing. Numerical simulations, which demonstrate this effect for an
extended system, can be understood by means of a zero-dimensional “effective” model. The behavior of this
“effective” model is also confirmed by an experimental realization of an electronic circuit.
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The most counterintuitive property of white noise, its response with a clearly defined maximum. Therefore, we
ability to induce ordering in nonlinear nonequilibrium sys- present a different phenomenoribrational resonance in a
tems, has been demonstrated in the effect of stochastic resaoise-induced structurevhich is a variation of SR.
nance(SR). In the usual situation a signal and additive noise We study this effect on a nonlinear lattice of coupled
are acting upon a system with a bistable potential. The deoverdamped oscillators introduced[itb] and further studied
pendence of the response on the additive noise intensity h&& [16,17. The following set of Langevin equations de-
a resonant form, hence an optimal value for signal processicribes the considered system:
ing noise intensity can be fourdd,2]. This effect has proven b
to be general and has been found in many natural systems :

[3]. Ar%ong other systems showing this ghenomenoyn we X‘_f(X‘)Jrg(Xi)g‘(tHﬁ,— 2
mention systems with excitable dynamieq, systems with-

(X;—X;) +Acoq wt)

enn(i)

out an external forcg5] and systems without any kind of +B cog ), ()
threshold[6].

It has been pointed out that SR-like phenomena can bwhere X;(t) represents the state of thih oscillator, i
also observed in systems where a chaotic signal is used i 1, - . - L% in the cubic lattice of size in d dimensions

stead of nois§7]. Moreover, in[8] it has been shown that a With N=L¢ elements. The sum runs over the nearest neigh-
high-frequency periodic force can work as a noise and ampors of theith cell[nn(i) ], and the strength of the coupling
plify the response to the low-frequency periodic signal inis measured byD. The noisy tern¥;(t) represents Gaussian
bistable systems. This effect has been called vibrational res@\ise with zero mean and is uncorrelated both in space and
nance(VR) [9], analogously to SR. In VR the dependence oftime,

the system response versus the amplitude of the high-

frequency action has a well-known bell-shaped resonant (EME))=0h8 jo(t—1"). 2
form. Since two-frequency signals are very often used in

communication technologigd0], it means that an optimal The last terms in Eq(1) stand for external periodic forces,
high-frequency modulation may improve processing of arepresenting a low-frequency signal with amplitubiefre-
low-frequency signal. It is important to mention that two- quencyw, and a high-frequency signal with amplituBeand
frequency signals are also object of intensive interest in lasdrequency(}, whereQ)>w and these frequencies can be in-
physics[11], acoustic§12], neurosciencgl3], or physics of commensurable.

the ionosphergl4]. The aim of this paper is to investigate  For the sake of simplicity, the functiori¢x) andg(x) are
whether VR can be achieved in noise-induced structuredpken to be of the forni18]

which do not have any threshold or a potential barrier in the

absence of noise. For this purpose we consider a spatially —GpX—(Ga—Gp)B, if x=-B,
extended system consisting of a network of coupled f(x)={ —Gax if |x|<B 3)
monostable noisy oscillators under the action of low- and & . P
high-frequency periodic signals. In this system a collective —Gpx+(Ga=Gp)B, i x=By,

action of coupling and multiplicative noise results in the or-

ganization of bistability of the mean field. If the amplitude of g(x)=x, (4)

a low-frequency signal is not enough for a synchronous re-

sponse of the system, then the high-frequency force is apvhere the parameteiG,=0.5, G,=10, andB,=1 deter-
plied. We find that an increase of the high-frequency ampli-mine the slopes and the break point of the piecewise-linear
tude leads to a nonmonotonous change of the systerharacteristic curvgan approximation of the functiof(x)
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=—x—x°]. Such forms of functions describe a realistic elec- 2.0
tronic circuit designed in18].
In the absence of the external forc&£0B=0) this AN ARA

model can be solved analytically by means of a standarcg ¢ -\\ [ /1\\/ [ ” | \ ‘ \ / / J” &\ /_
mean-field theory procedudd9]. The mean-field approxi- 2 \W‘ }W,Wﬂw \// \ J / \ WW \Wﬂ
mation consists in replacing the nearest-neighbor interactior& -10 | ~ v 1
by a global term in the Fokker-Planck equation correspond- ‘ ‘ ‘
ing to Eqg.(1). Using this mean-field approximation, one de- 0.0 200.0 400.0 600.0

termines transitions between ordered+ 0) and disordered

(o)

(m=0) phaseg18], wherem is the mean field, defined as o
m(t)=1/L9=N | x(t). This analysis shows that the joint ac- 106 a4 ‘ : g
tion of multiplicative noise and coupling between the ele- " /m M /

ments leads to the bistability of the mean fidlordered
phase. If we fix the coupling strength above its critical
value, then an increase of the multiplicative noise induces &
disorder-order phase transition, which is followed by a reen- 2.0
trant transition to disordef15]. In the ordered phase the ¢
system occupies one of two possible symmetric states witr 5
the mean fieldsn;= —m,+ 0, depending on the initial con-
ditions. This bistability disappears if we switch off the mul- 3
tiplicative noise. ]
The mechanism of this effect can be understood as fol-2
lows. In the absence of the external signaH0,B=0) the £
time evolution of the first moment of a single element is

(t),Bcos(wz)
o
o
o
f
_—
e
-

Bcos

given simply by the drift part in the corresponding Fokker- 205 200.0 200.0 5000
Planck equatioriStratonovich cage t
) o2 FIG. 1. Time series of the mean field of the systg#q. (1)]
(X)=(f(x))+ 7m (9(%)g" (X;))- (5)  compared with the low-frequency signfalcos(t) (not in scalg for

different intensities of high-frequency vibration. From top to bot-
tom, B=0.5, 1.5, and 4.00=5.00=0.1A=0.1502=3.0. This

Following the short time evolution approximation descr'bedintensity of multiplicative noise corresponds to the bistable region.

in [16], suppose that we start with an initial Diracprob-

ability density, and that we follow it only for a short time, whereUy(x) is a monostable potential ardl,s. represents
such that fluctuations are small and the probability density ishe influence of the multiplicative noise. In the region where
well approximated by a Gaussian. Then the equation for th&R in the noise-induced structure is observed, this potential
maximum of the probability, which is also the average valuehas a bistable form due to the input provided by multiplica-

Z=<Xi> in this approximation, takes the following form: tive noise. _
Now let us turn to the problem, i.e., how the systé
. g% - responds to a periodic signal that contains two quite different
xi=f(xi)+ 59(x)g" (xi), (6)  frequenciede.g., w=0.1 andQ=5). First, we analyze the

behavior of the system in the parameter regfitire param-
PRI P " ; being the coupling strentgh and the multiplicative noise
which is valid if f((x;))>(x)f"((x;)). Returning to the 9“”3 ; S . o .
extended system, i<n It>he ﬁneé;-ﬁe(Idl>approximati0n the fieldntensity, where the noise-induced bistability is provided.

— e set the amplitude of the low-frequency sigAdixed and
average x)=x is described by the first moment of any of the P a ysig

inale el : b h .~ sufficiently small(e.g., A=0.15), which is not enough to
single elements given by E¢S). Furthermore, suppression ., se iumps between two potential wells. The time series of

of fI_uctuations, performed by coupling, _makes this_ approXi-he mean fieldm(t) and the corresponding periodic input
mation appropriate along the whole time evolutipd]. signal are plotted in Fig. 1 for three different values Bf

Then we can write also for the field average (increasing from top to bottomFor a small amplitud® we

2 observe rare jumps between the two symmetric stateand
'y:f(;)Jr ﬁg(;)gf(;), (7) Mz in the output, which are not synchronized with the low-
2 frequency signathered=2 andN=10). If we increasd to

. o o Nen ) its optimal value(in the middle, it is clearly seen that hops
which again is valid iff ((x))>(x*)"((x)) [20]. For this  occyr with the same periodicity as the input signal. Hence,
dynamics an “effective” potentiall¢(x) can be derived, he high-frequency modulation optimizes signal processing
which has the form in this noise-induced bistable structure. Further increag of

2 leads to oscillations hops at the high frequency, which com-
Ueg(X)=Ug(X)+ U g __f f(x)dx— Tmg*(X) ®) pletely hide the signal at the low frequency. The situation
efft =0 noise 4 differs qualitatively when we choose another intensity of
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FIG. 2. Vibrational resonance in the noise-induced structure. Numerical simuléions experimental results for the effective model
(b). Response) of the system vs the amplitude of the high-frequency force(a)mszS (label 1), 0.5 (label 2, and 0(label 3; other
parameters are the same as in Fig. 2.

multiplicative noise corresponding to the monostable regionwherem(t) is the mean field of the initial system, and the
In this case, an increase Bfleads only to the destruction of function F(x) describes a bistable potential. The noisy term
synchronization between input and output. Hence, the highé(t) denotes tiny fluctuations, which are present in all real
frequency modulation is unable to improve the quality ofsystems. We have constructed an electronic ci@ig. 3) in
signal processing at low frequency in this case. Thereforeorder to make analog simulations of E@). From these
the system considered exhibitsbrational resonance in a simulations, one obtains that the “effective” model under-
noise-induced structurenly when a collective bistability has 9oes the effect of VRsee Fig. 2b)]; that is, for intermediate
been created by multiplicative noise and coupling. values of the high-frequency signal, the jumps of the particle

To characterize this VR effect quantitatively, we calculate@'® Synchronized with the low-frequency signal, whereas this
the dependence of the system respo@sat the signal fre- synchronization almost d|sappea(s for very high or very low
quency on the amplitude of the high-frequency fofseg. ~ Values of the amplitudes of the high-frequency signal.
2(a)]. For the bistable regime the response cutiabel 1) . It is wqrth noting th"’.‘t not every system with noise-
exhibits a clearly defined maximum for the optimal value ofmdufed b'Stz.b'“ty '?Xh'bllts VIbratlogaI r_ebsonancg. For ex-
B, which gives evidence for the presence of VR. Note tha trpaa: ,nzcﬁgcja_-i;rgﬁgestljork])?st;ﬁlﬁteym(iheetscfrtlhg%izi’tatim; nc-)f a
this effect disappears if we decreagabel 2 or switch off

label 3 th tinlicati co- in thi X fso—called “stochastic” potential but do not show a pro-
(label 3 the multiplicative noise: in this case an increase of,,nced VR. Although it is possible to observe a small maxi-

the amplitude of a high-frequency force may lead only to theym in the response of the system, a further increase of the

decrease of the system response. _ multiplicative noise, which provides bistability, decreases the
When the intensity of the multiplicative noise correspondsresponse of the system.

to the bistable region of the mean field, this effect may be |n conclusion, we have described a phenomenon consist-
understood assuming a model of an overdamped system wifig in the existence of vibrational resonance in a noise-
a bistable potentidlsee Eq.(8)] under the action of a high- induced structure. This effect is a synthesis of a noise-

and a low-frequency periodic force, induced phase transition and vibrational resonance. High-
) frequency carrier force is able to optimize signal processing,
m=F(m)+ A coq wt)+ B cog Qt) + &(t), (99 and this process
i —6th v D
GND7 AD633 END GRiD—

FIG. 3. Electronic circuit for
the effective mode[Eq. (9)]. OA
are operational amplifiers, tHe's
read for resistors and the AD633’s
stand for two multiplyers with co-
efficienta. Cy, is a capacitor.

LF signal
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can be controlled by multiplicative noise. Numerical simula-in liquid crystals [25], photosensitive chemical reactions
tions for a spatially extended system have been confirmed bj26], or Rayleigh-Beard convectior{27]. We believe that
experimental results for a zero-dimensional “effective” the results shown in this paper might be crucial for such
model. We expect that due to its generality, this effect can bexperiments because in the noise-induced structure presented

of much importance in communication technologies. here, the bistability of the mean field is controlled by noise.
We expect that these theoretical findings will stimulate

experimental work in order to verify VR in noise-induced A.A.Z. acknowledges support from ES{@Contract No.
structures in real physical systertfer the first experimental 14592 and from the European Committee through CESCA-
observation of noise-induced bistability §&3]). Appropri-  CEPBA program; J.K. acknowledges support from DFG-
ate situations can be found in electronic circlit8], elec- SFB 555; L.L., J.P.B. and M.A.F.S. acknowledge support
tronic cellular neural networkg24], as well as in systems from the Spanish Ministry of Science and Technology under
that show a noise-induced shift of the phase transition, e.gGrant No. BFM2000-0967.
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