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A closed Hamiltonian map is opened by introducing an interaction with the outside of the system.
The resulting open Hamiltonian system possesses an exit with escaping orbits through it. For such
a system equipped with two or three exits, the exit basin structure of the escaping orbits is observed
to have a fractal boundary and a boundary shared by the three basins, i.e., a Wada basin boundary.
In the small size limit of the exits, a complete fractalization of the phase space, where the
predictability of the future state is almost lost, is also observed.2003 American Institute of
Physics. [DOI: 10.1063/1.1528750

The dynamics in Hamiltonian systems has been exten- I. INTRODUCTION
sively investigated in many respects. For example, many
researchers have paid much attention on quasiperiodic
and chaotic motions in the standard map, which is an
area-preserving map on a cylinder. The standard map
has been mainly investigated on its property as a closed
Hamiltonian system because of its discrete translational
symmetry along the symmetry axis of the cylinder except
on the chaotic diffusion along it. On the other hand, in
open Hamiltonian systems that have escaping orbits, cha-
otic scattering and exit basins have been thoroughly in-
vestigated. One of the simplest examples of such open

In closed Hamiltonian systems, the Poincageurrence
theorem states that the set of nonrecurrent points has mea-
sure zero. This statement is powerful for the future prediction
in the following sense: for almost all initial states, there is an
increasing infinite sequence of times at which the state gets
closer and closer to the initial state as time goes, no matter
how chaotic the orbit is. On the other hand, in open Hamil-
tonian systems, this kind of predictability might be lost as in
the case of chaotic scatterihgdur main goal is to analyze
what is observed when a closed Hamiltonian system is
e _ opened. We consider the predictability of the final state in an
Hamiltonian systems might be a scatterer composed of o0 Lamiltonian system. For this purpose, we open a closed
hard disks. So far, in open Hamiltonian systems, there j5mijtonian map by introducing an interaction with the out-
seems to be no simple system corresponding to the stan- gige of the system, where the resulting system is simply a
dard map as a closed Hamiltonian system. In the present  map with an exit. By the simplicity of the system, we believe
paper, we show that a closed Hamiltonian map can be j; js yseful for the investigation of general properties of open
opened by introducing an interaction with the outside of  Hamijltonian systems. It should be noted that open Hamil-
the system. As a result of the interaction, the system has tgnjan systems are also important for the dynamical systems
an exit of orbits to the outside of the system. In the phase approach to transport phenomena in nonequilibrium statisti-
space of such a system equipped with two or three exits, cal mechanicé?
the set of the initial conditions of the orbits that escape The system considered in the present paper is the stan-
through each of the exits is the basin of the exit. The dard maf
structure of the exit basins is observed to have a fractal
boundary and a boundary shared by the three basins, i.e.,

a boundary possessing the Wada property. With the de- On+1=0n+tJInyy mod 2,

crease of the sizes of the exits, the fractalization of the
phase space gets stronger and, in the small size limit of
the exits, a complete fractalization of the phase space is
also observed. In this limit, the points of different basins
are uniformly mixed and the predictability of the future with f(#)=sin 6 and a constarK >0, which is considered to
state is almost lost. be the Poincarenap of the kicked rotatdt:

Jn+1=IntKF(6y), Y
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d2e/d2=Kf(0) >, S8(t—n), 2

n=-—o

®)

1+K 1)
K 1)’

where ¢ is the angle variable of the rotator. Since the mapits hyperbolicity is obvious foK>0. The sawtooth map also
Eq. (1) is invariant under the transformatidh-J+ 27, we  has the symmetry with respect to the transformation (Ep.
can identifyJ+ 27 asJ by taking modulo 2r in J. Thus the  due tof(27—6)=—1(6).

standard map Eq(1) with modulo 27 in J composes a Let us place the left exit of sizev as[0.27 —w,0.27
closed Hamiltonian system, i.e., an area-preserving map. Let W] X[0,27) if 0<w<0.2 and[0,2w7]X[0,2m) if w

us introduce an interaction with the outside of the system ire0.2 and the right exit symmetrically. In Fig. 1, the basins
the following manner: observe the angteof the kicked for the sawtooth map with two symmetrical exitskat=0.6
rotator at every instant just before the kicks and stop thevith w=0.3, 0.08, 0.04, and 0.02 are shown, where the blue
rotator if the angle is in a given rang[e.‘_io El]- Then the @nd red regions show the basins of the left and right exits,

system is no longer closed and this procedure corresponds f§SPectively. For the exits with small size, the basin bound-
. o~ — ary shows a fractal structufayhere a small fraction of non-
introduce a stripe[ 6y,60,]1X[0,27r) on the phase space

(60,J), which act as an exit in the sense that if the eIemenLraCtal basin boundary is also observesuch as at the

(7,3 of an i startn o s 0 is e st ortne 272 1 o4 1 tanston bom & nonfacl besh
first time atn then it is terminated. It should be noted that . y y

oo o . o - is also clearly observed. With the decrease of exit size, the
this is a similar idea with modifying a billiard system by ; )
; two basins seem to be more and more mixed.
opening holes.

- . . The basin boundary dimensfbis useful for a quantita-
By introducing two or three exits, we observe the depen-. o L .

. - . . . tive characterization. Let us divide the phase space into cells
dence of final states on initial states and define the “basin . ; . L

. P by covering with a grid of unit size and count the number
of each exi We also observe the change of “basin” struc- . . . .

. . . . N of the uncertain cells, each of which contains points of
ture by changing the sizes of the efitnd the influence of . . .
e e different basins. Figure(2) shows the numbeN of uncer-

nonhyperbolicity on the structure of the “basin.” In Sec. I,

w7 o tain cells as a function o€ for various exit sizesv. The
strange *basins” for open Hamiltonian maps are observedbasin boundary dimensiais introduced by the relation
In Sec. lll, the predictability in the small size limit of the y y
exits is considered. The last section is devoted to a conclu- N~¢ ¢ (6)

ston. for small €. In Fig. 2b), the basin boundary dimensiah

estimated from the log—log plot df againste in the range

2 < ¢/27r<2"" is shown. Note thati=1 indicates a non-

Il. STRANGE “BASINS” FOR HAMILTONIAN MAPS fractal basin boundary and the larger valueddfmplies the
. . . . ._more mixed basins. The fractal structure of the basin bound-
The standard map with exits considered in the precedln%ry is understood by considering an invariant chaotic saddle

section is expressed as of the sawtooth map with two exits, whose existence is nu-

6, if(6,,J,¢eE, merically demonstrated in the following way. Let us define
Oni1= .
171 9,4+, mod 2 otherwise, WS ={X|T'X ¢ E forall 0O<t<n} (7)
[0 if (6,,J,) €E, ® and
"1 Ja+Kf(6,)mod 27 otherwise, WE={X|T"'X&E forall 1<t<n}, )

whereE denotes the union of the exits. Let us consider tWowhere X=(6,J) denotes the phase space poifitand T
exits E;=[6p,0,]X[0,27) and E;=[6,,605]X[0,27) and denote thetth forward and backward images by the map,
denote the set of initial points such that the orbits terminateespectively, an& denotes the union of the exits. In the limit
in E; (E») as the “basin” of exitE; (respectively,E,). of n—, the intersectioM/; N W}, converges to the invariant
Sincef (27— )= —f(6), the standard map El) is invari-  set, andW and W, converge to the stable and unstable
ant under the transformation manifolds of the invariant set, respectively. Figure 3 shows
numerically obtainedV: and W, with n=15 and 20 forw

(0,9)=(2m=0,2m=J). “) =0.08, an%i it confirms the existence of the homoclinic in-
If the two exitsE; andE, are symmetric with respect to the tersections and the invariant chaotic saddle. It is considered
transformation Eq(4), then the system Ed3) is also sym- that the fractal part of the basin boundary, i.e., the basin
metric with respect to the transformation Edg). boundary except a small fraction of nonfractal boundary co-
incides with the closure of the stable manifold of the chaotic
saddle, while a segment of the unstable manifold of the cha-

Before investigating the standard map with exits, let usotic saddle crosses each interior of the two baSifke ex-
consider a hyperbolic system called the sawtooth fnap,istence of the invariant chaotic saddle and the fractal struc-
which is Eqg. (1) with f(8)=(6 mod 27r)— 7 satisfying  ture of the basin boundary in the system with exits may be
f(27— 0)=—1(6). Since the sawtooth map has a constantinterpreted as another manifestation of chaos in the original
Jacobian matrix closed system.

A. Fractal basins (two exits )
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FIG. 1. (Color) Basins of the sawtooth map with symmetrlcal two exits at -
K=0.6 with (a) w=0.3, (b) w=0.08, (c) w=0.04, and(d) w=0.02.

Figure 4 demonstrates the formation process of the cha- 0 B I
otic saddle with the decrease of the exit sizeThe fact that ~ FIG. 3. (Colon W; andWj with (a) n=15 and(b) n=20 fo\thShe sawtooth
; ; ; ; P map with symmetrical two exits of siag=0.08 atKk =0.6. , W;, and
there I.S no ChaQtIC saddle "j] FlgSa)tl—4(c) c_ontrad_lctmg the their intersection are shown in green, red, and black, respr(]ectiV(ner.
numerically estimated basin boundary dimenstal for

w=0.2 in Fig. 2b) implies that the values of used for the
estimation ofd are not sufficiently small.

1e+08
rer07 In the standard map, the last KAM torus breaks up at
ooy K=K,=0.971 635 41° and the stochasticity of the system is
1e+06
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FIG. 2. Basin boundary dimension for the sawtooth map with symmetrical
two exits atk=0.6: (a) The numberN of the uncertain cells against the FIG. 4. (Color) Wy and W; with n=10 for the sawtooth map with sym-

linear cell sizee for several exit sizegb) The basin boundary dimensiah
versus the exit sizev estimated for 2<e/27r<2"".

metrical two exits akK =0.6 for the exit siz6a) w=0.3, (b) w=0.25, (c)
w=0.2, and(d) w=0.18.
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| . f th dard ith ical : FIG. 7. (Color Basins of the standard map with symmetrical two exits at
FIG. 5. (Color Basins of the standard map with symmetrical two exits at K =2 with (a) w=0.08, (b) w=0.04, (c) w=0.02, and(d) w=0.01.

K =8 with (a) w=0.3, (b) w=0.08, (c) w=0.04, and(d) w=0.02.

sawtooth map, the basin boundary dimengidakes a value

considered to increase with the increase of valu.dh the ~ between 1 and 2 and increases with the decrease of
following, we denote the accessible region including the un-  Now let us observe the role of nonhyperbolicity by con-
stable fixed point at (0,0) for typical chaotic orbits as theSidering at a relatively small value &. In Fig. 7, the basins
chaotic sea, which has a fat fractal structingith holes of
resonant island tori.

In Fig. 5, the basins for the standard map with two sym-
metrical exits at relatively higher value &=8 are shown.
In the present resolution 108AL000 of the phase space, no
particular characteristic of nonhyperbolicity is observed but
similar fractal basin structure as for the sawtooth map with
two exits is observed, i.e., the nonhyperbolic structures such
as resonant island tori are small enough and the whole phase
space is filled by the chaotic sea at this valuekodnd the
resolution of phase space. In Fig. 6, the basin boundary di-
mensiond is plotted against the exit size As in the case of

19 r
1.8
1.7 1
16 1

1.4 r
13 |

11 f

. . . . . 0 o 21
0 0.05 0.1 0.15 0.2 0.25 0.3 FIG. 8. (Colon W; andW; with () n=20 and(b) n=40 for the standard
w map with symmetrical two exits & =2 for the exit sizew=0.04. W;,
W), and their intersection are shown in green, red, and black, respectively.

FIG. 6. The basin boundary dimensi@hversus the exit sizav for the The invariant set is composed of the chaotic saddle and the closed region
standard map with symmetrical two exitskat=8. encircled by island tori.
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FIG. 9. (Color) Enlargement of a subregion in Fig(GJ. (a) eln
2
for the standard map with two symmetrical exitat 2 are 1er
shown, where the blue and red regions show the basins of the 18
left and right exits, respectively. The white region is the set 1;
of initial points of orbits, which hit neither of the two exits, N 1'5 |
and is encircled by critical resonant island tori blocking the ol

chaotic sea. In the middle of the chaotic sea, a similar change
of the basin structure for the change of exit size as the case at
K =8 is observed. As shown in Fig. 8 ¥/ andW,, for w
=0.04, the chaotic saddle and the resonant island tori com-
pose the invariant set. By comparing the black region, which
is the intersection ofV; and W;, for n=20 and 40, the
slowness of the motion around the critical resonant island
tori would be also realized. Figure 9 shows an enlargement
of a subregion of Fig. (b) around the edge of the chaotic
sea. This fractalization of the basin boundary near the critical
resonant island tori is due to the fact that it takes a very long
time to leave the region near the critical resonant island

N &

13 |
12}
11 F

0.1

0.

0.15

0.2 0.25 0.3

01 ¢

tori.'? As shown in Fig. 10 for the system with a larger exit
size w=0.225, nonfractal basin boundary exists in the

middle of the chaotic sea and only the fractalization around
the white region is observed. This fractalization implies that

(a)

1.42x

(L)

1.36%

0.5% & 0.56%

FIG. 10. (Color) (a) Basins of the standard map with symmetrical two exits
of sizew=0.225 and(b) its enlargement of a subregion.
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FIG. 11. Basin boundary dimension for the standard map with symmetrical
two exits atk =2: (a) The numbeN of the uncertain cells against the linear
cell sizee for several exit sizegh) The basin boundary dimensiahversus

the exit sizew estimated for 2%<e/2w<2"". (c) Ne? versuse for the
whole phase space and the subregion shown in Figp) HBw=0.225. The
basin boundary estimated from the lower line(@ is also plotted in(b).

the prediction of the final state is difficult for the initial
points close to the white region, while the motion around the
white region is relatively regular.

In Fig. 11, the basin boundary dimension is numerically
obtained as a function of the exit sine The basin boundary
dimension in Fig. 1(b) shows different behavior from that
for the standard map & =8 and the sawtooth map &t
=0.6 due to the fractalization around the critical resonant
island tori. In Fig. 11c), the numberN of uncertain cells
over the local region shown in Fig. @) is compared with
that over the whole phase space for the system with
=0.225 and the corresponding basin boundary dimendion
is plotted in Fig. 11b). It is conjectured that, due to the
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{al

2n .,l

FIG. 12. (Color) Basins for(a), (b) the sawtooth map & =0.6 and(c)—(f)
the standard map &t),(d) K=8 and(e),(f) K= 2 with three exits. The three
exits of the same widtta), (c), (e) 0.087 and(b), (d), (f) 0.027 are centered
at #=0.27, 7, and 1.8r.

0 0 2z

.hlerarChIC.aI Stf.'UCtl.Jre Of Cant.on around the Crltl(;a' resona.nle. 13. (Color) Wﬁ andW?, with (a) n=15 and(b) n= 30 for the standard
island tprl, Whlch IS. reSponSIb!e for powe_r law in the I‘.eSI- map with three exits of width 0.68atK=2. W;, W;, and their intersec-
dence time distribution, the estimated basin boundary dimenon are shown in green, red, and black, respectively(cin WY with n
sion converges to two in the fine limit of the observattdn. =15 is shown in black together with the three basins.
For largew, the exits cover the resonant island tori and the
invariant set becomes to be encircled by a noncritical but
regular resonant island torus, which leads to nonfractal basihoundary. As in the two exits case, the Wada property of the
boundary ofd=1. basin boundaries might be understood by considering the

In summary, aK =2, we can intuitively state that there invariant chaotic saddle of the system with three exits, a
are two fractal basin structures due to hyperbolic and nonhysegment of the unstable manifold of which is believed to
perbolic aspects of the system corresponding to the middle afross each interior of the three basins. In Figs(al&nd
the chaotic sea and the region around the critical resonardt3(b), W5 and W, with n=15 and 30 are shown for the
island tori. Around the critical resonant island tori, the non-standard map ak=2. The invariant set is composed of a
hyperbolicity has a striking effect on the basin boundary di-chaotic saddle and resonant island tori. In Fig(cL3W,
mension. with n=15 is shown in black together with the basins and
there seem to be a segment of the unstable manifold which
crosses open regions of the three badfns.

Figures 12e) and 12f), for the standard map with three

Here let us introduce one more exit. The basins for theexits atk =2, show the case that an exit includes some part
system Eq(3) with three exits are shown in Fig. 12, where of resonant island tori, where the center exit is placed across
the blue, red, and green regions show the basins of the lefthe largest and second largest resonant island tori. The basin
right, and center exits, respectively, and the white region istructure over the resonant island tori is almost unchanged
the set of initial points of orbits, which hit neither of the with the decrease of the widths of the exits.
three exits. The basins seem to partly have the Wada An exit of a stripe is generalized to a rectangle by con-
property'*~1%i.e., the basin boundaries of three basins coinsidering the procedure to observe the angle velocity of the
cide with each other except a small fraction of nonfractalrotator besides the angle and stop the rotator if each of the

B. Wada basins (three exits )
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1] [ 2

FIG. 16. (Color) Basins for(a) the sawtooth map & = 0.6, (b) the standard
map atk =8, and(c), (d) the standard map &= 2 with exits of small size.
The three exits are centered @& 0.2, 7, and 1.8r with the same width
0.0027 in (a)—(c). The two exits are centered &+ 0.2 and 1.87 with the
0 0 27 same width 0.002 in (d).

FIG. 14. (Color) Basins for the standard map with three exits of squares at

K=2. The three squares of the same siae0.27x 0.2 and (b) 0.17 . . . A
% 0.17 are cemereg até(J) = (0.17,0.17), (0.4m, ), and (1.7 1.21). tained in each of the basins decre@sethe small size limit

of exits, the basin boundary dimensidnconverges to two

and the uncertainty exponéfita=2—d vanishes, where the
angles and its velocity is in a given range. In Fig. 14, theerror probability to distinguish two different basin points in
basins for the standard map with three exits of squares argcalee depends ore ase®. Figure 16 shows the basins with
shown. The change of basin structure in the chaotic sea witbxits of small size. In the cases of the sawtooth map with
the decrease of exit size is clearly seen. In Fig. 15, the squakfree exits ak =0.6 and the standard map with three exits at
of exit corresponding the basin shown red in Fig(el4s K =8, the phase space is almost completely fractafized
moved to be included in the resonant island tori. The basighown in Figs. 16) and 16b), i.e., the points of each basin
boundary of the red square simply shares with the boundargimost uniformly cover the phase space and the prediction of

of the white region. the final state seems to be very hard. For the standard map
with two and three exits & =2, in Figs. 16c) and 16d), it
ll. COMPLETE FRACTALIZATION OF PHASE SPACE is observed that the same is true for the initial points in the

As it is observed in Figs. 1, 5, 7, 12, and 14, with the Chaotic sea.

decrease of exit size, the sizes of open balls completely con- A Similar but different basin structure is known in dissi-
pative systems as the intermingled riddled basfnshere

the basins contain no open balls. Strictly speaking, in the
present system with finite size of exits, the basins contain
open balls of which sizes are small but finite. But if the sizes
of the exits are small enough compared with the precision of
our measurement, then the present unpredictability is stron-
ger than that in the case of intermingled riddled basins due to
the fact that the basin points are almost uniformly distributed
over the phase space in the present system while they are
nonuniformly distributed in the case of intermingled riddled
basins, i.e., we can move on the phase space to lower the
probability of failure of prediction in the case of inter-
mingled riddled basins.

0 e 2n It should be also noted that the fractalization of the basin
FIG. 15. (Color) Basins for the standard map with the same condition as inboundary around the critical r,esonant ISIan,d tori, W,hI,Ch Ie_ads
Fig. 14@ except that the exit shown in red is moved to be centered at® d=2, for the nonhyperbolic systems with the finite size
(6,3)=(1.2m,0.27). exits seems to be similar as the intermingled riddled basin.

2
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