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A closed Hamiltonian map is opened by introducing an interaction with the outside of the system.
The resulting open Hamiltonian system possesses an exit with escaping orbits through it. For such
a system equipped with two or three exits, the exit basin structure of the escaping orbits is observed
to have a fractal boundary and a boundary shared by the three basins, i.e., a Wada basin boundary.
In the small size limit of the exits, a complete fractalization of the phase space, where the
predictability of the future state is almost lost, is also observed. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1528750#
-

l

-

n
f

-
t

s

,

,

f
s

ea-
ion
an
ets
tter
il-
in

is
an
sed
t-
y a
ve
en
il-

ems
isti-

tan-
The dynamics in Hamiltonian systems has been exten
sively investigated in many respects. For example, many
researchers have paid much attention on quasiperiodic
and chaotic motions in the standard map, which is an
area-preserving map on a cylinder. The standard map
has been mainly investigated on its property as a closed
Hamiltonian system because of its discrete translationa
symmetry along the symmetry axis of the cylinder except
on the chaotic diffusion along it. On the other hand, in
open Hamiltonian systems that have escaping orbits, cha
otic scattering and exit basins have been thoroughly in-
vestigated. One of the simplest examples of such ope
Hamiltonian systems might be a scatterer composed o
hard disks. So far, in open Hamiltonian systems, there
seems to be no simple system corresponding to the stan
dard map as a closed Hamiltonian system. In the presen
paper, we show that a closed Hamiltonian map can be
opened by introducing an interaction with the outside of
the system. As a result of the interaction, the system ha
an exit of orbits to the outside of the system. In the phase
space of such a system equipped with two or three exits
the set of the initial conditions of the orbits that escape
through each of the exits is the basin of the exit. The
structure of the exit basins is observed to have a fractal
boundary and a boundary shared by the three basins, i.e.
a boundary possessing the Wada property. With the de-
crease of the sizes of the exits, the fractalization of the
phase space gets stronger and, in the small size limit o
the exits, a complete fractalization of the phase space i
also observed. In this limit, the points of different basins
are uniformly mixed and the predictability of the future
state is almost lost.
171054-1500/2003/13(1)/17/8/$20.00
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I. INTRODUCTION

In closed Hamiltonian systems, the Poincare´ recurrence
theorem states that the set of nonrecurrent points has m
sure zero. This statement is powerful for the future predict
in the following sense: for almost all initial states, there is
increasing infinite sequence of times at which the state g
closer and closer to the initial state as time goes, no ma
how chaotic the orbit is. On the other hand, in open Ham
tonian systems, this kind of predictability might be lost as
the case of chaotic scattering.1 Our main goal is to analyze
what is observed when a closed Hamiltonian system
opened. We consider the predictability of the final state in
open Hamiltonian system. For this purpose, we open a clo
Hamiltonian map by introducing an interaction with the ou
side of the system, where the resulting system is simpl
map with an exit. By the simplicity of the system, we belie
it is useful for the investigation of general properties of op
Hamiltonian systems. It should be noted that open Ham
tonian systems are also important for the dynamical syst
approach to transport phenomena in nonequilibrium stat
cal mechanics.2,3

The system considered in the present paper is the s
dard map4

un115un1Jn11 mod 2p,

Jn115Jn1K f ~un!, ~1!

with f (u)[sinu and a constantK.0, which is considered to
be the Poincare´ map of the kicked rotator:4
© 2003 American Institute of Physics
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18 Chaos, Vol. 13, No. 1, 2003 Sanjuán, Horita, and Aihara
d2u/dt25K f ~u! (
n52`

`

d~ t2n!, ~2!

whereu is the angle variable of the rotator. Since the m
Eq. ~1! is invariant under the transformationJ→J12p, we
can identifyJ12p asJ by taking modulo 2p in J. Thus the
standard map Eq.~1! with modulo 2p in J composes a
closed Hamiltonian system, i.e., an area-preserving map.
us introduce an interaction with the outside of the system
the following manner: observe the angleu of the kicked
rotator at every instant just before the kicks and stop
rotator if the angle is in a given range@ ū0 ,ū1#. Then the
system is no longer closed and this procedure correspon
introduce a stripe@ ū0 ,ū1#3@0,2p) on the phase spac
(u,J), which act as an exit in the sense that if the elem
(un ,Jn) of an orbit starting for (u0 ,J0) hits the stripe for the
first time atn then it is terminated. It should be noted th
this is a similar idea with modifying a billiard system b
opening holes.5

By introducing two or three exits, we observe the dep
dence of final states on initial states and define the ‘‘bas
of each exit.5 We also observe the change of ‘‘basin’’ stru
ture by changing the sizes of the exits6 and the influence of
nonhyperbolicity on the structure of the ‘‘basin.’’ In Sec. I
strange ‘‘basins’’ for open Hamiltonian maps are observ
In Sec. III, the predictability in the small size limit of th
exits is considered. The last section is devoted to a con
sion.

II. STRANGE ‘‘BASINS’’ FOR HAMILTONIAN MAPS

The standard map with exits considered in the preced
section is expressed as

un115H un if ~un ,Jn!PE,

un1Jn11mod 2p otherwise,
~3!

Jn115H 0 if ~un ,Jn!PE,

Jn1K f ~un!mod 2p otherwise,

whereE denotes the union of the exits. Let us consider t
exits E1[@ū0 ,ū1#3@0,2p) and E2[@ū2 ,ū3#3@0,2p) and
denote the set of initial points such that the orbits termin
in E1 (E2) as the ‘‘basin’’ of exit E1 ~respectively,E2).
Sincef (2p2u)52 f (u), the standard map Eq.~1! is invari-
ant under the transformation

~u,J!→~2p2u,2p2J!. ~4!

If the two exitsE1 andE2 are symmetric with respect to th
transformation Eq.~4!, then the system Eq.~3! is also sym-
metric with respect to the transformation Eq.~4!.

A. Fractal basins „two exits …

Before investigating the standard map with exits, let
consider a hyperbolic system called the sawtooth ma7

which is Eq. ~1! with f (u)5(u mod 2p)2p satisfying
f (2p2u)52 f (u). Since the sawtooth map has a const
Jacobian matrix
Downloaded 31 Jan 2003 to 212.128.1.90. Redistribution subject to AIP
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S 11K 1

K 1D , ~5!

its hyperbolicity is obvious forK.0. The sawtooth map also
has the symmetry with respect to the transformation Eq.~4!
due to f (2p2u)52 f (u).

Let us place the left exit of sizew as @0.2p2wp,0.2p
1wp#3@0,2p) if 0 ,w,0.2 and @0,2wp#3@0,2p) if w
>0.2 and the right exit symmetrically. In Fig. 1, the basi
for the sawtooth map with two symmetrical exits atK50.6
with w50.3, 0.08, 0.04, and 0.02 are shown, where the b
and red regions show the basins of the left and right ex
respectively. For the exits with small size, the basin bou
ary shows a fractal structure,8 where a small fraction of non
fractal basin boundary is also observed,5 such as at the
boundary of exits. A transition from a nonfractal bas
boundary to a fractal boundary with the decrease of exit s
is also clearly observed. With the decrease of exit size,
two basins seem to be more and more mixed.

The basin boundary dimension8 is useful for a quantita-
tive characterization. Let us divide the phase space into c
by covering with a grid of unit sizee and count the numbe
N of the uncertain cells, each of which contains points
different basins. Figure 2~a! shows the numberN of uncer-
tain cells as a function ofe for various exit sizesw. The
basin boundary dimensiond is introduced by the relation

N;e2d ~6!

for small e. In Fig. 2~b!, the basin boundary dimensiond
estimated from the log–log plot ofN againste in the range
2212<e/2p<227 is shown. Note thatd51 indicates a non-
fractal basin boundary and the larger value ofd implies the
more mixed basins. The fractal structure of the basin bou
ary is understood by considering an invariant chaotic sad
of the sawtooth map with two exits, whose existence is
merically demonstrated in the following way. Let us defin

Wn
s5$XuTtX¹E for all 0<t<n% ~7!

and

Wn
u5$XuT2tX¹E for all 1<t<n%, ~8!

whereX5(u,J) denotes the phase space point,Tt and T2t

denote thetth forward and backward images by the ma
respectively, andE denotes the union of the exits. In the lim
of n→`, the intersectionWn

sùWn
u converges to the invarian

set, andWn
s and Wn

u converge to the stable and unstab
manifolds of the invariant set, respectively. Figure 3 sho
numerically obtainedWn

s and Wn
u with n515 and 20 forw

50.08, and it confirms the existence of the homoclinic
tersections and the invariant chaotic saddle. It is conside
that the fractal part of the basin boundary, i.e., the ba
boundary except a small fraction of nonfractal boundary
incides with the closure of the stable manifold of the chao
saddle, while a segment of the unstable manifold of the c
otic saddle crosses each interior of the two basins.9 The ex-
istence of the invariant chaotic saddle and the fractal str
ture of the basin boundary in the system with exits may
interpreted as another manifestation of chaos in the orig
closed system.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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19Chaos, Vol. 13, No. 1, 2003 Opening a closed Hamiltonian map
Figure 4 demonstrates the formation process of the c
otic saddle with the decrease of the exit sizew. The fact that
there is no chaotic saddle in Figs. 4~a!–4~c! contradicting the
numerically estimated basin boundary dimensiondÞ1 for

FIG. 1. ~Color! Basins of the sawtooth map with symmetrical two exits
K50.6 with ~a! w50.3, ~b! w50.08, ~c! w50.04, and~d! w50.02.

FIG. 2. Basin boundary dimension for the sawtooth map with symmetr
two exits atK50.6: ~a! The numberN of the uncertain cells against th
linear cell sizee for several exit sizes.~b! The basin boundary dimensiond
versus the exit sizew estimated for 2212<e/2p<227.
Downloaded 31 Jan 2003 to 212.128.1.90. Redistribution subject to AIP
a-

w>0.2 in Fig. 2~b! implies that the values ofe used for the
estimation ofd are not sufficiently small.

In the standard map, the last KAM torus breaks up
K5Kc.0.971 635 4110 and the stochasticity of the system

l

FIG. 3. ~Color! Wn
s andWn

u with ~a! n515 and~b! n520 for the sawtooth
map with symmetrical two exits of sizew50.08 atK50.6. Wn

s , Wn
u , and

their intersection are shown in green, red, and black, respectively.

FIG. 4. ~Color! Wn
u and Wn

s with n510 for the sawtooth map with sym
metrical two exits atK50.6 for the exit size~a! w50.3, ~b! w50.25, ~c!
w50.2, and~d! w50.18.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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20 Chaos, Vol. 13, No. 1, 2003 Sanjuán, Horita, and Aihara
considered to increase with the increase of value ofK. In the
following, we denote the accessible region including the
stable fixed point at (0,0) for typical chaotic orbits as t
chaotic sea, which has a fat fractal structure11 with holes of
resonant island tori.

In Fig. 5, the basins for the standard map with two sy
metrical exits at relatively higher value ofK58 are shown.
In the present resolution 100031000 of the phase space, n
particular characteristic of nonhyperbolicity is observed
similar fractal basin structure as for the sawtooth map w
two exits is observed, i.e., the nonhyperbolic structures s
as resonant island tori are small enough and the whole p
space is filled by the chaotic sea at this value ofK and the
resolution of phase space. In Fig. 6, the basin boundary
mensiond is plotted against the exit sizew. As in the case of

FIG. 5. ~Color! Basins of the standard map with symmetrical two exits
K58 with ~a! w50.3, ~b! w50.08, ~c! w50.04, and~d! w50.02.

FIG. 6. The basin boundary dimensiond versus the exit sizew for the
standard map with symmetrical two exits atK58.
Downloaded 31 Jan 2003 to 212.128.1.90. Redistribution subject to AIP
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sawtooth map, the basin boundary dimensiond takes a value
between 1 and 2 and increases with the decrease ofw.

Now let us observe the role of nonhyperbolicity by co
sidering at a relatively small value ofK. In Fig. 7, the basins

t
FIG. 7. ~Color! Basins of the standard map with symmetrical two exits
K52 with ~a! w50.08, ~b! w50.04, ~c! w50.02, and~d! w50.01.

FIG. 8. ~Color! Wn
u andWn

s with ~a! n520 and~b! n540 for the standard
map with symmetrical two exits atK52 for the exit sizew50.04. Wn

s ,
Wn

u , and their intersection are shown in green, red, and black, respecti
The invariant set is composed of the chaotic saddle and the closed re
encircled by island tori.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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21Chaos, Vol. 13, No. 1, 2003 Opening a closed Hamiltonian map
for the standard map with two symmetrical exits atK52 are
shown, where the blue and red regions show the basins o
left and right exits, respectively. The white region is the
of initial points of orbits, which hit neither of the two exits
and is encircled by critical resonant island tori blocking t
chaotic sea. In the middle of the chaotic sea, a similar cha
of the basin structure for the change of exit size as the cas
K58 is observed. As shown in Fig. 8 ofWn

s andWn
u for w

50.04, the chaotic saddle and the resonant island tori c
pose the invariant set. By comparing the black region, wh
is the intersection ofWn

s and Wn
u , for n520 and 40, the

slowness of the motion around the critical resonant isla
tori would be also realized. Figure 9 shows an enlargem
of a subregion of Fig. 7~b! around the edge of the chaot
sea. This fractalization of the basin boundary near the crit
resonant island tori is due to the fact that it takes a very lo
time to leave the region near the critical resonant isla
tori.12 As shown in Fig. 10 for the system with a larger ex
size w50.225, nonfractal basin boundary exists in t
middle of the chaotic sea and only the fractalization arou
the white region is observed. This fractalization implies th

FIG. 9. ~Color! Enlargement of a subregion in Fig. 7~b!.

FIG. 10. ~Color! ~a! Basins of the standard map with symmetrical two ex
of sizew50.225 and~b! its enlargement of a subregion.
Downloaded 31 Jan 2003 to 212.128.1.90. Redistribution subject to AIP
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the prediction of the final state is difficult for the initia
points close to the white region, while the motion around
white region is relatively regular.

In Fig. 11, the basin boundary dimension is numerica
obtained as a function of the exit sizew. The basin boundary
dimension in Fig. 11~b! shows different behavior from tha
for the standard map atK58 and the sawtooth map atK
50.6 due to the fractalization around the critical reson
island tori. In Fig. 11~c!, the numberN of uncertain cells
over the local region shown in Fig. 10~b! is compared with
that over the whole phase space for the system withw
50.225 and the corresponding basin boundary dimensiod
is plotted in Fig. 11~b!. It is conjectured that, due to th

FIG. 11. Basin boundary dimension for the standard map with symmetr
two exits atK52: ~a! The numberN of the uncertain cells against the linea
cell sizee for several exit sizes.~b! The basin boundary dimensiond versus
the exit sizew estimated for 2212<e/2p<227. ~c! Ne2 versuse for the
whole phase space and the subregion shown in Fig. 10~b! at w50.225. The
basin boundary estimated from the lower line in~c! is also plotted in~b!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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22 Chaos, Vol. 13, No. 1, 2003 Sanjuán, Horita, and Aihara
hierarchical structure of cantori around the critical reson
island tori, which is responsible for power law in the re
dence time distribution, the estimated basin boundary dim
sion converges to two in the fine limit of the observation13

For largew, the exits cover the resonant island tori and t
invariant set becomes to be encircled by a noncritical
regular resonant island torus, which leads to nonfractal b
boundary ofd51.

In summary, atK52, we can intuitively state that ther
are two fractal basin structures due to hyperbolic and non
perbolic aspects of the system corresponding to the middl
the chaotic sea and the region around the critical reso
island tori. Around the critical resonant island tori, the no
hyperbolicity has a striking effect on the basin boundary
mension.

B. Wada basins „three exits …

Here let us introduce one more exit. The basins for
system Eq.~3! with three exits are shown in Fig. 12, whe
the blue, red, and green regions show the basins of the
right, and center exits, respectively, and the white region
the set of initial points of orbits, which hit neither of th
three exits. The basins seem to partly have the W
property,14–16 i.e., the basin boundaries of three basins co
cide with each other except a small fraction of nonfrac

FIG. 12. ~Color! Basins for~a!, ~b! the sawtooth map atK50.6 and~c!–~f!
the standard map at~c!,~d! K58 and~e!,~f! K52 with three exits. The three
exits of the same width~a!, ~c!, ~e! 0.08p and~b!, ~d!, ~f! 0.02p are centered
at u50.2p, p, and 1.8p.
Downloaded 31 Jan 2003 to 212.128.1.90. Redistribution subject to AIP
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boundary. As in the two exits case, the Wada property of
basin boundaries might be understood by considering
invariant chaotic saddle of the system with three exits
segment of the unstable manifold of which is believed
cross each interior of the three basins. In Figs. 13~a! and
13~b!, Wn

s and Wn
u with n515 and 30 are shown for th

standard map atK52. The invariant set is composed of
chaotic saddle and resonant island tori. In Fig. 13~c!, Wn

u

with n515 is shown in black together with the basins a
there seem to be a segment of the unstable manifold w
crosses open regions of the three basins.14

Figures 12~e! and 12~f!, for the standard map with thre
exits atK52, show the case that an exit includes some p
of resonant island tori, where the center exit is placed acr
the largest and second largest resonant island tori. The b
structure over the resonant island tori is almost unchan
with the decrease of the widths of the exits.

An exit of a stripe is generalized to a rectangle by co
sidering the procedure to observe the angle velocity of
rotator besides the angle and stop the rotator if each of

FIG. 13. ~Color! Wn
u andWn

s with ~a! n515 and~b! n530 for the standard
map with three exits of width 0.08p at K52. Wn

s , Wn
u , and their intersec-

tion are shown in green, red, and black, respectively. In~c!, Wn
u with n

515 is shown in black together with the three basins.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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23Chaos, Vol. 13, No. 1, 2003 Opening a closed Hamiltonian map
angles and its velocity is in a given range. In Fig. 14, t
basins for the standard map with three exits of squares
shown. The change of basin structure in the chaotic sea
the decrease of exit size is clearly seen. In Fig. 15, the sq
of exit corresponding the basin shown red in Fig. 14~a! is
moved to be included in the resonant island tori. The ba
boundary of the red square simply shares with the bound
of the white region.

III. COMPLETE FRACTALIZATION OF PHASE SPACE

As it is observed in Figs. 1, 5, 7, 12, and 14, with t
decrease of exit size, the sizes of open balls completely c

FIG. 14. ~Color! Basins for the standard map with three exits of square
K52. The three squares of the same size~a! 0.2p30.2p and ~b! 0.1p
30.1p are centered at (u,J)5(0.1p,0.1p), (0.4p,p), and (1.7p,1.2p).

FIG. 15. ~Color! Basins for the standard map with the same condition a
Fig. 14~a! except that the exit shown in red is moved to be centered
(u,J)5(1.2p,0.2p).
Downloaded 31 Jan 2003 to 212.128.1.90. Redistribution subject to AIP
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tained in each of the basins decrease.6 In the small size limit
of exits, the basin boundary dimensiond converges to two
and the uncertainty exponent1,8 a522d vanishes, where the
error probability to distinguish two different basin points
scalee depends one asea. Figure 16 shows the basins wit
exits of small size. In the cases of the sawtooth map w
three exits atK50.6 and the standard map with three exits
K58, the phase space is almost completely fractalized6 as
shown in Figs. 16~a! and 16~b!, i.e., the points of each basi
almost uniformly cover the phase space and the predictio
the final state seems to be very hard. For the standard
with two and three exits atK52, in Figs. 16~c! and 16~d!, it
is observed that the same is true for the initial points in
chaotic sea.

A similar but different basin structure is known in diss
pative systems as the intermingled riddled basins,17 where
the basins contain no open balls. Strictly speaking, in
present system with finite size of exits, the basins cont
open balls of which sizes are small but finite. But if the siz
of the exits are small enough compared with the precision
our measurement, then the present unpredictability is st
ger than that in the case of intermingled riddled basins du
the fact that the basin points are almost uniformly distribu
over the phase space in the present system while they
nonuniformly distributed in the case of intermingled riddle
basins, i.e., we can move on the phase space to lower
probability of failure of prediction in the case of inte
mingled riddled basins.

It should be also noted that the fractalization of the ba
boundary around the critical resonant island tori, which lea
to d52, for the nonhyperbolic systems with the finite si
exits seems to be similar as the intermingled riddled bas

t

n
t

FIG. 16. ~Color! Basins for~a! the sawtooth map atK50.6, ~b! the standard
map atK58, and~c!, ~d! the standard map atK52 with exits of small size.
The three exits are centered atu50.2p, p, and 1.8p with the same width
0.002p in ~a!–~c!. The two exits are centered atu50.2p and 1.8p with the
same width 0.002p in ~d!.
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IV. CONCLUSION

We have demonstrated that when a closed Hamilton
map is opened, there arise fractal basin boundaries as we
Wada basin boundaries. The basin boundary dimensio
numerically obtained as a function of the exit size. The n
hyperbolicity shows a remarkable effect on the basin bou
ary dimension. It is conjectured that, in the fine limit of th
observation, the basin boundary dimension converge to
equivalent to zero uncertainty exponents even for the exi
finite size. In the small size limit of the exits, a comple
fractalization of phase space is observed and the determ
tic predictability of the final state is almost lost in the chao
sea. The fractal structure and complete fractalization of
exit basins in the opened system might be considered to
another manifestation of chaos in the original closed syst
Let us remark that Hamiltonian maps with exits introduc
in the present paper are easily constructed and suitable
numerical investigations. We propose the standard map
exits, as a handy model on open nonhyperbolic Hamilton
systems, which is useful for the investigation of gene
properties of open Hamiltonian systems, in particular, c
cerning the nonhyperbolicity of the systems. For example
one dimensional lattice of the standard maps with two e
connected through the exits with the nearby maps can
constructed in order to imitate the open Lorentz chan
billiard2 in a nonhyperbolic way, and the investigation on t
relation between the dynamical systems quantity such as
Lyapunov exponents and the Hausdorff dimension and
transport coefficients seems to be an important problem s
the nonhyperbolicity introduces a striking effect on the ba
boundary dimension as mentioned in Sec. II.
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