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Limit of small exits in open Hamiltonian systems

Jacobo Aguirre and Miguel A. F. Sanjua´n
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The nature of open Hamiltonian systems is analyzed, when the size of the exits decreases and tends to zero.
Fractal basins appear typically in open Hamiltonian systems, but we claim that in the limit of small exits, the
invariant sets tend to fill up the whole phase space with the strong consequence that a new kind of basin
appears, where the unpredictability grows indefinitely. This means that for finite, arbitrarily small accuracy, we
can finduncertain basins, where any information about the future of the system is lost. This total indetermin-
ism had only been reported in dissipative systems, in particular in the so-called intermingled riddled basins, as
well as in the riddledlike basins. We show that this peculiar, behavior is a general feature of open Hamiltonian
systems.
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I. INTRODUCTION

In the past few years a very particular property related
fractal basins has been shown in many dissipative syste
In some situations, and with a special symmetry, it is p
sible to find an attractor whose basin of attraction has
property that every point in the basin has pieces of ano
attractor’s basin arbitrarily nearby. This type of basin
calledriddled basin, because in some sense it is riddled w
holes of another basin. When all basins in phase space
riddled by the rest, the basins are calledintermingled. This
remarkable result put in evidence in the context of dissi
tive systems the possibility to find a degree of uncertai
unknown at the moment, leading to extensive studies of
subject, both theoretical and experimental@1–4#.

Furthermore, several reports have shown that in cer
circumstances, fractal basins are mixed in such a way
from a practical point of view they resemble riddled basi
even if they do not verify all their mathematical propertie
Different terminology has been used depending on the c
acteristics of these sets, some of them beingriddledlike ba-
sins @5,6#, practical riddled basins @7#, partially nearly
riddled basins@8#, or pseudoriddledbasins@9#, to cite just a
few. However, none of these approaches has analyzed ye
possibility of finding a similar phenomenon in Hamiltonia
systems, and our work is focused in this direction.

When a test particle interacts with an open Hamilton
system, it spends some time in a bounded area called
scattering regionbefore crossing one of the existing exi
and finally escaping to infinity~see Ref.@10# for a thorough
study of this phenomenon, calledchaotic scattering!. The
orbits that belong to thenonattracting chaotic invariant set,
also known as thechaotic saddle, remain inside this region
indefinitely, and the Lebesgue measure of this set is zero
we are working with Hamiltonian systems, we cannot ta
about basins of attraction, but we can define the exit ba
as the sets of initial conditions that lead to a certain e
Using this definition, we have studied in detail the evoluti
of exit basins in open Hamiltonian systems when the size
the exits decreases and tends to zero. And we have obta
the following striking result:in the limit of small exits, the
1063-651X/2003/67~5!/056201~7!/$20.00 67 0562
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invariant sets of the system, that is, the chaotic saddle and
stable and unstable manifolds, tend to fill up physically t
whole phase space. A direct consequence of this result is th
the basins suffer a total fractalization, becoming a new k
of fractal basins that we have nameduncertain basinsfor its
dramatic consequences on predictability. Furthermore,
result fully explains the tendency of the fractal dimension
the three invariant sets to the dimension of phase space
idea first conjectured in Ref.@11#. Uncertain basins shar
with riddled and intermingled basins the main property
finding inside a ball of radiusd around any point of the
basin, points that belong to other basins, beingd arbitrarily
small. It is interesting to analyze the modified logistic m
proposed in Ref.@6#, as a precursor of our work. Thus, in th
paper we claim that it is a general property shared by o
Hamiltonian systems to possess an inherent uncerta
much stronger than expected, which in the limit of sm
exits makes a totally deterministic system become in prac
a nondeterministic process, following the terminology us
in Ref. @12#.

II. DEPENDENCE OF THE EXIT BASINS ON THE SIZE
OF THE EXITS

In order to present the real implications of this kind
basins, we will first show evidence of its existence in a pa
digmatic hyperbolic system, and finally the same analy
will be developed for a nonhyperbolic system. In hyperbo
chaotic scattering, there are no Kolmogorov-Arnold-Mos
~KAM ! surfaces of quasiperiodic orbits, and all the period
orbits are unstable. Nonetheless, in nonhyperbolic syst
KAM surfaces are mixed with chaotic regions in the pha
space. The existence or not of these surfaces brings im
tant consequences to the dynamics of the system. In fac
a hyperbolic environment, the survival probability of a te
particle in the scattering region decays exponentially w
time @i.e., P(E,t);e2t/t, wheret is theaverage decay time
or average transient lifetime#, while stickiness to KAM sur-
faces should make this decay algebraic@P(E,t);t2z# in
nonhyperbolic systems~see Ref. @13#, and references
therein!.
©2003 The American Physical Society01-1
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A. The hyperbolic system

The model we use for the hyperbolic case is a sim
two-dimensional billiard consisting of three hard disks
radiusR, whose centers are on the vertices of a triangle
sideL.2R ~see Fig. 1!. This configuration defines its sca
tering region as the bounded area between the disks an
triangle formed by their centers, and it has three exits of s
w5L22R. A typical test particle moves at constant speed
the scattering region, suffering elastic collisions with all t
three disks, until it crosses one of the three exits of sizew
and escapes to infinity. This system was first studied in R
@14#, extensively analyzed in the classical, semiclassical,
quantum regimes in Ref.@15# and examined in the context o
microscopic deterministic diffusion in Refs.@16,17#. A nice
review of the properties of its dynamics can be found in R
@18#. This model is one of the simplest and most gene
open Hamiltonian systems, and is a paradigm for lo
dimensional chaotic scattering. For these reasons and fo
sake of universality we use it here. Furthermore, in gen
terms, it is extremely complicated to verify rigorously th
hyperbolicity of a system, and for this case it was done
Bunimovich and Sinai@19#. We have labeled the lower ex
as exit 1, the right exit as exit 2, and the left exit as exit
Due to the triangular geometry of the system, it is import
to remark that the only parameter that might influence
nature isw/R. For this reason, we have fixed the radiusR
51 and have varied the exit sizew as the control paramete
to analyze the system. Note that other parameters such a
velocity of the test particle will not influence our results. W
have situated the origin of coordinates in the middle po
between the lower disks, that is, in the center of exit 1.

The exit basin diagram of an open Hamiltonian syst
gives us information about its dynamical behavior. In ord
to construct it for our system, we must follow a fine grid
initial conditions until they escape from the scattering regi
The initial conditions that lead to exit 1 will belong to th
exit 1 basin, while exits 2 and 3 are constructed in a sim

FIG. 1. Diagram of the three hard disk configuration. The o
parameter that influences the system isw/R, wherew represents the
exit size andR the radius of the disks.
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way. Figure 2 shows the exit basin diagram for the syste
when w50.2. The color code we have chosen to plot th
exit basin diagram is black for exit 1, gray for exit 2, an
white for exit 3. The initial conditions arey50, x5
(2w/2,w/2), andu5(0,p), whereu is the shooting angle
and is measured from the positivex axis in the counterclock-
wise sense. The initial conditions must be chosen carefu
because our results do not apply to test particles thrown f
outside that do not enter the scattering region, since they
not even have chaotic behavior or an associated basin.
thermore, as this diagram is two dimensional and ph
space is three dimensional, our choice of initial conditio
should include as many orbits as possible. In fact, it is e
to realize that our selection includes all the orbits that esc
through exit 1~in the opposite sense, but the system is tim
reversible! and due to the triangular symmetry of the syste
we can say that these initial conditions represent all or
that sooner or later escape from the system. Only the cha
saddle and its unstable manifold are not included in this p
ture, and this is because they are formed by the orbits
remain fort→2` inside the scattering region and therefo
are not represented by the orbits that enter this bounded
gion. However, this fact does not modify our results beca
their Lebesgue measure is zero. In the exit basin diagram
can see that the system is clearly fractal, as the basin bo
aries are a nonsmooth mixture of all three colors. We h
computed its fractality calculating the uncertainty dimens
@20#, and the result wasd52.6260.02 for w50.2 ~where
d52 means nonfractality, andd53 means total fractaliza
tion!. Moreover, these basins possess the property of W
@21#, which means that any initial condition that is on th
boundary of one exit basin is simultaneously on the bou
ary of all the other exit basins. However, it is fundamental
remark that there are large smooth black, gray, and w
regions that belong to the interior of each basin, and con
no uncertainties over which exit is reached. We can say
those areas of phase space aresafe@12#.

FIG. 2. Exit basin diagram for the three hard disk configuratio
with 4003400 initial conditions (x,u) andw50.2. The initial con-
ditions are plotted black if the orbit escapes through exit 1, gray
exit 2, and white for exit 3.
1-2
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LIMIT OF SMALL EXITS IN OPEN HAMILTONIAN . . . PHYSICAL REVIEW E 67, 056201 ~2003!
Fractal basins are found both in Hamiltonian and dissi
tive systems, and they are composed of open sets sepa
by nonsmooth boundaries. Only when the distance betw
our initial condition and the basin boundary is shorter th
the precision of our experiment, will we have trouble tryin
to predict its future behavior. In order to study the evoluti
of the unpredictability associated with the system when
exit sizew is arbitrarily reduced, we have plotted in Fig. 3~a!
the dependence of the exit basins onw. The test particle is
always launched from (x50, y50), and the range of shoot
ing angles isu5(0,p). In fact, this corresponds to a ‘‘1D
slice’’ of initial conditions ~the vertical linex50 in Fig. 2!,
and it is plotted for a range of exit sizesw5(0,0.2). We can
clearly see that the fractal boundaries grow indefinite
while the open sets of the three different basins shrink
tend to disappear in the limit ofw→0. However, in order to
give a more clear evidence of this fact, we have compu
for low values ofw the angular semiwidthDu/2 of the black
open set that belongs to basin 1 and is aroundu5p/2 in Fig.
3~a!. We have chosen this safe region because it become
w,0.1 the biggest open set in phase space. This is don
Fig. 3~b!, and it clearly confirms that the size of the bigge
safe, connected open set of initial conditions in phase sp
tends to zero whenw tends to zero. Obviously, the sam
result applies for the rest of open sets in phase space, w
are smaller than this one.

B. The nonhyperbolic system

Most Hamiltonian systems are nonhyperbolic, and for t
reason we have developed a similar analysis for a nonhy
bolic system, the He´non-Heiles system, which has becom

FIG. 3. ~a! Evolution of the exit basin diagram for the three ha
disk configuration, when the exit sizew is varied. The initial con-
ditions are (x50,y50) andu5(0,p). Exit 1 is plotted black, exit
2 is plotted gray, and exit 3 is plotted white.~b! Angular semiwidth
of the largest open set of initial conditions for small exit sizesw.
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since it was first proposed in 1964@22#, a paradigm of simple
Hamiltonian systems with very complicated dynamics. It h
a triangular symmetry, and it is written as

H5 1
2 ~ ẋ21 ẏ2!1 1

2 ~x21y2!1x2y2 1
3 y3. ~1!

This Hamiltonian has been extensively studied for t
range of energy values above the escape energyEe51/6
50.1666 . . . , in Ref. @23#. When E<1/6 all orbits are
bounded, but for energies above this threshold value,
trajectories may escape from the scattering region and go
to infinity through three different exits. It was already ev
denced in Ref.@23# that the dimension of all its invariant se
tends indeed to its maximum value~i.e., 3 in a 3D phase
space! whenE→Ee for E.Ee , and it was also shown tha
for E,0.21 a KAM torus exists. The quasiperiodic orbi
that belong to a KAM torus never escape from the syste
although they have energy to do so. In open Hamilton
systems where the dynamics is defined by a certain poten
the size of the exits depends directly on the energy, and v
ing this value we can easily controlw. These exits appea
when the energy reaches the escape energyEe . In Fig. 4~a!
we have plotted the evolution of the exit basin diagram wh
the energyE is varied. The three different exit basins ha
been plotted in black, dark, gray and pale gray, while wh
has been used for the orbits belonging to the KAM torus. T
initial conditions are (x50, u50) and y5(20.5,1). The
range of energy values isE5(Ee51/6,0.25).

FIG. 4. ~a! Evolution of the exit basin diagram for the He´non-
Heiles system, when the energyE is varied. The initial conditions
are (x50,u50), y5(20.5,1), andE5(Ee51/650.1666,0.25).
Exit 1 is plotted black, exit 2 is plotted dark gray, and exit 3
plotted pale gray. The KAM surface of quasiperiodic orbits is pl
ted white. ~b! Vertical semiwidth of the two largest open sets
initial conditions for small values of the energyE. The dark dots
represent the black open set aroundy50.87, while the pale dots
represent the black set aroundy50.98 @almost unrecognizable in
~a!#.
1-3
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Figure 4~b! shows the size of the two biggest open sets
initial conditions when the exit size tends to zero~in our case
when E→Ee for E.Ee backwards!. The wide one is cen-
tered aroundy50.87 in Fig. 4~a!, and clearly disappears be
fore reaching the escape energy, following the behavio
most of the safe regions. The narrow one survives for val
of the energy much closer toEe51/6, although it is hardly
recognizable aroundy50.98.

It is clear that we have obtained very similar results
those shown in Figs. 3~a! and 3~b! for the hyperbolic model.
All open sets inside the basins indeed shrink and tend
disappear, and therefore these basins become compl
fractalized and mixed in the limit of small exits. However,
remarkable difference between both kinds of systems
been detected. The KAM torus survives to the abrupt bif
cation that takes place when the energy crosses the valu
the escape energy in the decreasing sense and the exits
The reason is that these orbits, as they cannot leave the t
do not even realize that the exits have disappeared, an
some sense it is possible to say that the torus is indepen
of the chaotic scattering phenomenon. In fact, the KA
torus takes part of the chaotic saddle, as its orbits rem
inside the scattering region for botht→` andt→2`. Con-
sequently, the KAM torus remains ‘‘alive’’ when the exi
become arbitrarily small, and therefore the fractalized bas
only fill up the phase space that is not occupied by the KA
surfaces.

III. EXISTENCE AND NATURE OF UNCERTAIN BASINS

The computational evidence obtained for hyperbolic a
nonhyperbolic systems leads us to the main result of
work: For all points P in the escaping phase space of
open Hamiltonian system, and for alld.0 (precision of the
experiment), there exists a critical size of the exits wc.0
such that for all w<wc we can find a point P8 in a ball
centered in P and radiusd that belongs to a different basi
than P @see Fig. 2~b!#. We nameescaping phase spacethe
whole phase space for hyperbolic systems, and the p
space not occupied by KAM tori for nonhyperbolic system
We propose that this result is applicable for all kinds of op
Hamiltonian systems, even those in which the size of
exits w is not an available parameter~such as the ones de
fined by potentials, for example!. The reason is that there i
always a direct relation between the size of the exitsw and
the main parameter in those systems, the energyE.

All numerical or real experiments have an unavoida
finite precision associated to the choice of initial conditio
New techniques or more developed instruments might
crease this precision, but will never make an initial conditi
infinitely accurate. This fact was emphasized in Refs.@5,6#,
where riddledlike basins were presented in the contex
transient chaos and permanent chaos, respectively. For
reason, given a finited, arbitrarily small, we are sure that
the size of the exits is sufficiently small, all the open s
with points of a certain basin~i.e., the safe regions! will be
smaller than this threshold value. Then, we will not be a
to ascertain which basin any initial condition belongs to, a
therefore we will not have any information about its futu
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behavior. The striking fact is that for hyperbolic systems t
total uncertaintyis applied to all points in phase space. For
nonhyperbolic systems, however, if we choose an initial c
dition inside a KAM torus, we know that its future behavio
will be a bounded orbit inside the scattering region, and
same stands for the initial conditions nearby. Then, we
still affirm that arbitrarily close to any initial condition tha
belongs to one basin, there are initial conditions that belo
to other basins, but we cannot talk about absolute uncerta
in nonhyperbolic systems, as the KAM tori remain then
deterministic islandssurrounded by arandom sea.

As it has just been commented, the existence of uncer
basins incapacitates us from knowing in advance the
chosen by the particle to escape, that is, the exit basin
gram becomes a useless tool. However, this does not m
that there are no other methods for studying dynamical s
tems that can still give us some information about the nat
of the orbits. As a consequence of the previous discussio
is in the context of predictability of the final state of th
system that we propose that uncertain basins imply total
determinism, and that in essence the system becomes
dom. For example, the different decay of the survival pro
ability in hyperbolic and nonhyperbolic systems should
maintained in the limit of small exits. In order to show th
fact, we have studied the evolution of the survival probab
ity of both models when the size of the exits tends to zero
Fig. 5, we have plotted the evolution of the fraction of r
maining orbits in the scattering regionNt /N0 with time,
whereNt is the number of remaining orbits after a timet and
N0 is the number of initial orbits. The initial conditions ar
the barycenter of the triangle andu5(0,p) for the three-disk
configuration, andx50, u50, and y5(20.5,1) for the

FIG. 5. Fraction of remaining orbitsNt /N0 in a function of the
time t for the three-disk configuration~a!–~c! and the He´non-Heiles
system ~d!–~f!. For the three-disk configuration:~a! w
51,0.05,0.02,0.005,0.001~from left to right!. ~b! w50.02; ~c! w
50.005. For the He´non-Heiles system:~d! E50.215 ~without
KAM torus, in the hyperbolic regime!, E50.19 ~with KAM torus,
in the nonhyperbolic regime!. ~e! E50.4; ~f! E50.215.
1-4
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LIMIT OF SMALL EXITS IN OPEN HAMILTONIAN . . . PHYSICAL REVIEW E 67, 056201 ~2003!
Hénon-Heiles system@see Fig. 4~a!#. Figure 5~a! shows
Nt /N0 for w51, 0.05, 0.02, 0.005, and 0.001 for the thre
disk configuration, and Fig. 5~b! shows the same quantity fo
E50.215 and 0.19 for the He´non-Heiles system. In both
figuresNt /N0 is plotted in a logarithmic scale, so the exp
nential approximations~dashed lines! are straight lines. In
Fig. 5~a! we can clearly see that the exponential approxim
tion that should be expected for a hyperbolic system is v
accurate, no matter how small the exits are. In Fig. 5~d! we
have plotted the same curve for the He´non-Heiles system
and two different values of the energy. ForE50.215 there
are no KAM tori @see Fig. 4~a!#, and therefore we are in th
hyperbolic regime of the He´non-Heiles Hamiltonian. For this
reason, the exponential approximation is also very accur
However, forE50.19, there is a KAM torus that fills the
14.5% of the initial conditions used to paint these curv
and the exponential approximation fits until only 3% of t
escaping orbits remain in the system. Note that to paint
curve, the quasiperiodic orbits of the KAM torus were n
included inN0. Furthermore, it is important to say that th
exponential approximation ofE50.19 was done taking into
account onlyt,250, as it is obvious that the rest does n
follow it at all. The results obtained forE50.19 mean that
most of the orbits are not sensible to the existence of
KAM torus, and only the orbits that start very close to
suffer the expectedstickinessthat makes them escape with
slower rate than the exponential. It is remarkable that
new rate does not fit very accurately the expected algeb
decay, and therefore we suppose that what we have in
case is a complicated mixture of both phenomena.

For high values of the size of the exits, that is, for highw
andE @see Figs. 5~b! and 5~e!#, the existence of big open se
of initial conditions makes the curves start with an irregu
pattern formed by several components, while the exponen
approximation is only suitable for high times~for a thorough
explanation of this phenomenon, see Ref.@23#!. However,
when the exits get smaller and smaller, the open sets sh
and in consequence the survival probabilities tend to fit
exponential approximation very accurately even for sm
times. This is shown in Figs. 5~c! and 5~f!, where w
50.005 and E50.215, respectively. According to thes
curves, we might affirm that the accuracy of the exponen
approximation for small times is a measure of the fractali
tion of phase space, and it gives us an idea of how determ
istic systems lose in the limit some of their particular ch
acteristics, to obtain a probabilisticlike nature.

An important goal of this paper is to explain, from
qualitative point of view, the consequences of the existe
of uncertain basins in a Hamiltonian system. In this conte
the total fractalization of phase space presented in this w
can be explained as follows. When a set of initial conditio
hits a hard disk~or the wall of a potential!, it is divided in
several sets of orbits, some escape, and some remain i
the scattering region. After the next hit thesurvival sets are
again divided in smaller groups, some of them escaping
some of them hitting another disk. This situation is repea
ad eternum, and is responsible for the existence of a Can
set of orbits that never escape from the system. In fact,
orbits that separate the sets that escape through two diffe
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exits will remain in the system forever as boundary poin
constituting the stable manifold of the chaotic saddle. T
escape time functionof a set of initial conditions is defined
as the time that each initial condition takes to escape fr
the system. In the interior of every open set belonging to
exit basin diagram of a generic open Hamiltonian system,
escape time function is continuous and has no singularit
while it tends to infinity in its boundary. In some sense, t
orbits that belong to these sets escapeall together and
through the same exit, as we are sure that the neighborh
of each orbit leads to the same exit. The size of these
obviously depends on the size of the exits. If the exits
crease, these open sets will also shrink, since less and
orbits will be able to pass through the exitsas a group. For
this reason, in the limit of small exits the open sets in ea
basin tend to have zero volume. Intuitively, we could say t
in the limit only one orbit can escape at a time, thesafe
regionshave become points, and therefore all basins, tot
fractalized, tend to coincide with their own boundary. The
the number of orbits that remain in the system forever w
increase indefinitely, making the stable manifold of the
variant set tend to fill up the whole phase space. The unst
manifold will behave in the same way, because both ma
folds are symmetric, and also their intersection, which is
nonattracting chaotic set.

Moreover, the tendency of the fractal dimension of t
invariant sets to the dimension of phase space when the
tend to zero is clearly explained as a corollary of our resu
Theuncertaintydimension@20# is calculated as a function o
the variation of the number ofuncertain orbitswhen the grid
of initial conditions is changed. The uncertain orbits are d
fined as the orbits that tend to one exit while their clos
neighbors tend to different exits. If the size of all open sets
the basin diagram goes to zero, all points in the escap
phase space become uncertain at all scales, making th
mension of the stable manifold of the chaotic saddle tend
its maximum value, which coincides with that of the pha
space. This behavior must also be shown by the other
invariant sets, due to the relationship that exists among th
The uncertainty exponenta is defined asa5D2d, D being
the phase space dimension andd the uncertainty dimension
For this reason, the uncertainty exponenta of an uncertain
basin should tend to zero in the limit of small exits.

Finally, in order to give visual evidence of the uncerta
basins discussed in this paper, we have plotted them for b
examples, the hyperbolic and the nonhyperbolic system.
ure 6~a! shows the exit basin diagram for the three hard d
configuration, for a very low value of the exit sizew, in
particular,w50.001. As expected, the basins are far wo
defined than in Fig. 2, wherew50.2, and no open sets ar
now recognizable. The picture is a mixture of dots that b
long to all three basins. In order to show that all three bas
tend to fill up the whole phase space at all scales, we h
plotted in Figs. 6~b!, 6~c!, and 6~d! basin 1, basin 2, and
basin 3, respectively. They show clearly the unstoppa
growth of the fractal region, as well as the tendency of ea
basin to become its own boundary. Each pixel in Fig. 6 ha
vertical size ofDu5p/20050.016, and according to Fig
3~b!, the biggest open set in phase space will have a vert
1-5
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diameter of aroundDu50.008. Therefore, we can assu
that all open sets are smaller than one pixel. If the resolu
of this picture coincided with our experimental precisio
this exit basin diagram would be useless to predict the fu
of the system. We would only know that every initial cond
tion has a probability 1/3 to reach each exit.

The fractal dimension calculated as the uncertainty
mension for this value ofw50.001 isd52.99860.005, and
therefore the uncertainty exponenta5D2d50.002
60.005, whereD is the dimension of phase space (3 in o
case!. In Refs. @5,6# it is emphasized that the uncertain
exponenta'0 for riddled basins, and several reported v
ues area50.017@2#, a50.003@24#, anda50.0089@25#.

In the same way, Figs. 7~b!, 7~c!, and 7~d! show basins 1,
2, and 3, respectively, for the He´non-Heiles system, for a
value of the energyE50.1675 ~very close to the escap
energyE50.1666). We have plotted in Fig. 7~a! the same
exit basins but with a higher energy,E50.3, and if we com-
pare this picture with the other three, we can observe tha
safe regions that can be easily recognized in~a! have clearly
disappeared in~b!–~d!. As it was shown in Fig. 6, there ar
no recognizable open sets or defined structures in these
certain basins, apart from the KAM torus. It must also
observed that the KAM torus in~b!–~d! does not appear in
~a!.

IV. DISCUSSION

In order to compare the phenomenon of uncertain ba
in Hamiltonian systems with the already known of riddl
basins for dissipative systems, it might be useful to obse
again Figs. 6 and 7. A riddled basin is a basin where
points have pieces of another basin arbitrarily nearby. It
incides with its own boundary, and a consequence of
definition is that riddled basins do not have any open s
inside. From a practical point of view, the similarities b
tween uncertain and riddled basins are striking. As it w

FIG. 6. ~a! Exit basin diagram for the three hard disk config
ration, with 2003200 initial conditions (x,u) andw50.001. Exit 1
is plotted black, exit 2 is plotted gray, and exit 3 is plotted whi
~b!, ~c!, and ~d! depict exit basins 1, 2, and 3, respectively. A
three basins tend to coincide with their own boundaries and fill
the phase space when the exit sizew decreases.
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already commented, we can always find a threshold value
the size of the exits under which we are sure that the o
sets~or the interior! of the basins are smaller than the u
avoidable precision of the experiment. For that reason, fo
finite, arbitrarily small accuracy, there is no physical way
distinguish the shrinking open sets of uncertain basins fr
the totally disconnected points in riddled basins. In fact,
have shown that the uncertainty dimension of uncertain
sins tends to that of phase space~or the uncertainty exponen
tends to zero!, which is the value that would be measured
a typical riddled basin. On the other hand, there is a ba
mathematical difference between both concepts. It is the
that, formally speaking, the uncertain basins do not coinc
exactly with their own boundary, as their open sets are
deed arbitrarily small but of positive size. In the limit ofw
50 ~no exits! the size of these sets is strictly 0, but the
basins 1, 2, and 3 disappear and the Lebesgue measu
the chaotic saddle suffers a discontinuous jump from 0 t
positive value, the measure of phase space. In some se
the transition between an open and a closed Hamilton
system can be understood as a bifurcation in which the c
otic saddle suddenly fills up the whole phase space, mak
impossible the escape of any orbit.

In conclusion, we have presented a thorough analysi
the bifurcation that takes place when the size of the exits
open Hamiltonian systems tends to zero. We have seen
the exit basins show a peculiar behavior, very similar to t
of riddled basins in dissipative systems. They suffer a to
fractalization, tending to become their own boundaries wh
the dimension of the invariant sets coincides with that
phase space. Furthermore, these invariant sets tend to fi
the whole phase space for both hyperbolic and nonhyp

.

p

FIG. 7. ~a! Exit basin diagram for the He´non-Heiles system,
with 2003200 initial conditions (x,y) andE50.3. Exit 1 is plotted
black, exit 2 is plotted dark gray, exit 3 is plotted pale gray, and
orbits not allowed for this value of the energy are plotted white.~b!,
~c!, and ~d! Exit basins 1, 2, and 3, respectively, forE50.1675.
The KAM torus that exists forE,0.21 is plotted gray. All three
basins tend to coincide with their own boundaries and fill up
phase space~except the KAM torus! when the energyE decreases
and tends toEe50.1666.
1-6
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bolic systems. This behavior makes any prediction based
the dynamical analysis of the exit basin diagrams absolu
useless. Totally deterministic systems become, in prac
random processes, and up to now, such degree of uncert
was unknown in Hamiltonian systems. Finally, we belie
that an experimental optical verification of our results, ba
on a triangular configuration of curved mirrors in which t
distance between them could be modified, might be a sim
and promising task.
a-
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