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Prediction is one of the fundamental goals of science. When prediction is lost, it can
be thought that one of the foundations of science is shattered. The notion of a chaotic
system and the sensitive dependence on initial conditions implies a certain lack of pre-
diction on the time evolution along an orbit. However we do not speak here about this
temporal prediction, but about an extreme dependence on the initial conditions that
fractal structures in phase space impose, and that obstructs the prediction of the final
state of the system.

1. Introduction

More individuals are born than can possibly survive. A grain in the balance will

determine which individual shall live and which shall die, which variety or species

shall increase in number, and which shall decrease, or finally become extinct.

— Darwin, The origin of species, c. 14, 1859

The phenomenon of chaotic scattering is usually associated to the dynamics of

open Hamiltonian systems which possess chaotic properties. What usually happens

is that a particle moves to and fro during certain time in a bounded region com-

monly called scattering region, and eventually escapes towards infinity through

one of the existing exits. Two-dimensional Hamiltonian systems have been studied

by many researchers, since they are widely used in modeling different physical phe-

nomena. Some applications are the analysis of the escape of stars in galaxies,1 the

dynamics of ions in electromagnetic traps,2 or the interaction between the magnetic

tail of the Earth and the solar wind,3 to cite just a few. All these applications are

manifestations of chaotic scattering, which mainly consists of the interaction of

a particle with a system which scatters it, in such a way that the final conditions

of velocity and direction possess an extreme dependence on the initial conditions,

which is a sign of chaotic behavior.

Usually there is a threshold value of the energy, which is called escape energy.

Below it, the orbits are bounded and the particles located in the scattering region
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cannot escape. However, when the energy is above this threshold value, several exits

appear and the particles are able to escape towards infinity through any of them.

When we consider a Hamiltonian system, the total energy is conserved and

hence we cannot speak about attractors, neither basins of attraction. A basin of

attraction is defined as the set of initial conditions which are attracted toward

a certain attractor, and they only exist in dissipative systems. When two at-

tractors coexist in a certain region of phase space, we have two basins, which are

separated by a basin boundary. This basin boundary could be a curve, but it can

also be a fractal. While we cannot speak about attractors in Hamiltonian systems,

we can speak about escape or exit basins in an analogous manner to what basins of

attraction are for dissipative systems. An exit basin is the set of initial conditions

leading to a certain exit.

These basins might not be only fractal, as it is possible for them to possess the

stronger property of Wada.5,6 We say that a basin verifies the Wada property,

which might hold when there exist at least three basins, when any of its boundary

points belongs simultaneously to the boundary of the other two basins. Thus, if

a dynamical system verifies the Wada property, the unpredictability is even larger

than when there are only fractal basin boundaries. If a trajectory starts very close to

a boundary point, it will not be possible to predict beforehand its future behavior,

since its initial conditions could belong to any of the three basins.

The first example of a system with this property was reported by the Japanese

mathematician Yoneyama in 1917,7 who attributed the idea to a certain Mr. Wada.

Yoneyama took the name from this person, and used it to designate what is known

as the “Wada lakes”, which is a rather useful example of how to build three regions

holding this property. Logically, the boundaries of these sets verify very unusual

topological properties.

A beautiful experiment showing the Wada property was reported recently in an

optical system possessing chaotic scattering published in Nature.8

2. Wada Basins in the Hénon-Heiles System

In particular, we study the exit basins of the Hénon-Heiles Hamiltonian, which

is well known as a model of an axy-symmetric galaxy.4 The Hénon-Heiles system

is given by the equation

H =
1

2
(ẋ2 + ẏ2) +

1

2
(x2 + y2) + x2y −

1

3
y3, (1)

and constitutes a paradigm for Nonlinear Dynamics of Hamiltonians systems. It is

a two-dimensional time independent dynamical system, it possesses three different

exits for orbits above the escape energy, and it has a 2π/3 symmetry. Moreover,

the associated dynamics is quite unpredictable, since the boundary separating their

exit basins is not a smooth curve.

We have found in Ref. 9 that the Hénon-Heiles system possesses Wada basins.

Furthermore, we believe that the Wada property is a general feature for open two-
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Fig. 1. The unstable manifold of the only accessible unstable periodic orbit crosses all the basins
in this zoom of the exit basin diagram of the system. Therefore, the Hénon-Heiles Hamiltonian
verifies the property of Wada.9

dimensional Hamiltonian systems with three or more escapes. In fact, this kind

of models is widely used for modeling many astrophysical problems, although the

underlying ideas are of application in many cases, where some kind of transient

chaos10 is present.

3. Wada Basins in the Duffing Oscillator

Another objective of this paper is to show that the Duffing oscillator presents

the Wada property.11 The Duffing oscillator is a well known model of a nonlinear

oscillator, and it is applicable to modeling many systems in science and engineering.

As a matter of fact, it is considered as a paradigm for Nonlinear Dynamics of

dissipative systems.

It can be understood as a model for the one-dimensional motion of a unit mass

particle inside a symmetrical double-well potential, with dissipation and an external

periodical forcing. The equation that we have used is

ẍ + δẋ − αx + βx3 = γ cosωt . (2)

The variable x(t) represents the position in time t, being δ the damping coefficient.

The parameters γ and ω represent the amplitude and the external perturbation

forcing. We use the parameters δ = 0.15, α = β = ω = 1 and vary γ, and we have

concentrated in the amplitude range 0.24 ≤ γ ≤ 0.26, where three attractors

coexist in phase space.

As it was formerly commented, one of the main consequences of the fact that

these systems possess Wada basins is the intrinsic difficulty to make predictions,

in such a way that we could not know beforehand to which attractor the systems
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Fig. 2. The picture shows the basin of attraction diagram. A fine grid of 960×960 of initial points
is considered and different colors are chosen according to which attractor an initial condition
goes to.

go for a given initial condition. This has an enormous importance, since we are

used to the idea of classical determinism, where once an initial condition is fixed,

automatically we know the evolution of the orbit. From an experimental point of

view, to fix an initial condition with arbitrarily high precision is not possible, and

consequently a serious problem for the prediction of physical systems is derived.

These ideas suppose in fact a challenge to the classical ideas of determinism.

An interesting discussion around the physical consequences of certain fractal basin

boundaries and unpredictability appears in Ref. 12.

4. Applications in Physics and Other Applied Sciences

As it was mentioned earlier, the Wada property might hold for Hamiltonian systems

as for dissipative systems, with similar consequences concerning the unpredictability

of the final state of the system. There are results confirming that the property also

holds for the forced pendulum,5 in a model of three billiards,13 in problems of

chaotic advection of a fluid flow14,15 and in ecological models.16

There are very interesting applications in relation to multispecies competition,

which is a very active research field in ecology and biodiversity.17 In this field, a

strong unpredictability about the survival species is present. This, perhaps, explains

the quotation from Darwin.

5. Other Problems

As a natural continuation to the work done for Hamiltonian systems, we have also

explored another novel type of basins, which we call uncertain basins. We believe

that when the size of the exits diminishes tending to zero, then the unpredictability

increases a lot, in such a way that the information about the future of the system
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is lost. This is the first time that such a phenomenon is described for Hamiltonian

systems.18

6. Conclusions

Two paradigmatic dynamical systems in Nonlinear Dynamics are studied, one of

them a Hamiltonian system, the Hénon-Heiles system, and the other one dissipa-

tive, the Duffing oscillator. We show that both possess Wada basins, affecting the

unpredictability of the final state of the system, in such a way that in order to

predict its final state, in some cases only the probabilistic approach is possible.

Moreover, several open problems show the interest of exploring these frac-

tal structures in other dynamical systems, in order to clarify their physical

consequences.
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