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Naturaleza, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
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An analytical estimate of the width of the generated chaotic layer in a time-periodically driven
stream function model for the motion of passive tracers is discussed. It is based essentially on the
method of the separatrix map and the use of the Melnikov theory. Energy–time variables are used
to derive lower bounds for the half width of the layer. In order to perform a comparison with
numerical simulations, the results are transformed into space variables. The analytic results of the
layer thickness in both parallel and perpendicular directions to the shear flow are compared with
numerical computations and some systematic deviations are discussed. © 2003 American Institute
of Physics. @DOI: 10.1063/1.1598151#

The motion of passive tracers in a two-dimensional peri-
odic incompressible fluid flow may possess a chaotic be-
havior, known as chaotic advection. This can be visual-
ized in phase space as orbits forming a chaotic layer
around a hyperbolic fixed point, where diffusion and
transport properties are manifested. A stream function is
derived as a ‘‘two-mode’’ truncation from a two-
dimensional Navier–Stokes problem, in order to better
understand the properties of the tracer dynamics under
the influence of the chaotic saddle existing in phase space.
As a matter of fact, the approximated stream function
shows qualitatively the same dynamics as the full
Navier–Stokes solution in the parameter region around
the first bifurcations. By using an appropriate time-
periodically driven stream function, we compute its Poin-
caré section and simulate the chaotic layer. This stream
function can be considered as a time-dependent Hamil-
tonian, and consequently we can use analytical methods,
such as Melnikov theory, in order to construct a separa-
trix map by which we can derive an analytical estimate of
the stochastic layer width. The obtained analytical results
are compared with the numerical results finding a rather
good agreement with the half width parallel to the shear
flow. We believe that our results might help one to better
understand the validity of the separatrix map method for
the analysis of the stochastic layer, especially when we
trasform the original energy–time relations into phase–
space relations.

I. INTRODUCTION

The dynamics of passive tracers in approximately two-
dimensional fluid flows has been a subject of active

research1–3 since the publication of the seminal paper by
Aref.4 In particular, the formation of large scale spatial pat-
terns, apparently as a result of inverse energy cascades,5 has
often been addressed within this context, both from an ex-
perimental and a theoretical viewpoint.6 A widespread ex-
perimental setup used in the study of these coherent struc-
tures consists in an electrically conducting thin layer of fluid
arranged along a set of magnets, so that the flow is driven by
the Lorentz force. This generates a set of vortices in which it
is possible to investigate the transitions produced when the
applied current strength ~and, consequently, the Reynolds
number! is increased. First experiments in this direction were
performed by Sommeria,7 in which a square lattice of vorti-
ces was generated. In another series of experiments, Tabeling
and co-workers studied these phenomena in a linear chain of
forced vortices.8–10

Numerical simulations aimed at modeling these experi-
ments were carried out in Refs. 11 and 12. More precisely,
Ref. 11 accounts for the bifurcations of the lattice of forced
vortices studied by Sommeria,7 while Ref. 12 treats the case
of a linear chain of forced vortices considered in the experi-
ments by Tabeling and collaborators.8–10 The dynamical
models used in the numerical simulations of Refs. 11 and 12
are based on the two-dimensional Navier–Stokes equations,
on which an external forcing is applied in order to drive a set
of counter-rotating vortices. This resembles the initial experi-
mental situation. By increasing the Reynolds number as the
relevant control parameter, it was found that the first bifur-
cations were in good agreement with the experimental obser-
vations.

In the present paper, we will focus our attention on the
behavior of the linear chain of vortices tackled in Ref. 12.
The essential effect discussed in this reference is the genera-
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tion of a shear flow produced by a merging of the counter-
rotating vortices ~called the primary steady state! to a chain
of corotating vortices when the Reynolds number is in-
creased. In this secondary state, the velocity field is still sta-
tionary. In a further Hopf bifurcation, the velocity field be-
comes time-dependent, oscillating periodically in time. In
this work, we are interested in the tracer dynamics in this
regime, where the velocity field varies regularly in time, but
the motion of the tracers becomes already chaotic. Specifi-
cally, we study the width of the stochastic layer underlying
such chaotic dynamics by means of an analytical approxima-
tion that allows a comparison with numerical simulations of
the fluid flow directly in terms of the space coordinates x – y .

In order to examine more effectively the dynamics of
passive tracers in the flow given by this time-dependent re-
gime, a low dimensional stream function was derived in Ref.
13. The Lagrangian dynamics given by this stream function
was then studied under the viewpoint of the existence of a
chaotic saddle in phase space.14–16 This low dimensional
model is presented in Sec. II as the starting point of the
present paper. Later, the stream function arising from this
model is further simplified in Sec. III, in order to obtain the
dynamical system that will be used in the analytical calcula-
tions performed in this work. In Sec. IV, the separatrix map
technique and the Melnikov theory are applied to the Hamil-
tonian system given by the stream function derived in Sec.
III, to obtain an analytical estimate for the width of the sto-
chastic layer. In Sec. V, the results of Sec. IV are written in
terms of spatial variables, with the aim of comparing with
numerical computations. This allows a discussion on the va-
lidity of the method in simple terms. Finally, we provide
some concluding remarks.

II. A FIVE-MODE STREAM FUNCTION

It is interesting to summarize here the main features of
the low dimensional stream function model described in Ref.
13 in order to understand how the computations carried out
in the present paper are in accordance with the experimental
behavior shown in Refs. 8–10 and the numerical simulations
of Ref. 12.

~1! Following Ref. 13, the first step in the derivation of
this approximated model is to obtain a low dimensional sta-
tionary stream function that reproduces fairly well the
streamlines of the flow in the secondary steady state ~coro-
tating vortices!. This is done by selecting the first five modes
in a pseudospectral expansion of the vorticity field of the
flow in the parameter region around the first bifurcation. This
procedure gives rise to an approximated stream function
composed of the following five terms:

F~x ,y !5F (0,1) sin~y !1F (0,3) sin~3y !

1F (2,1) sin~2x !sin~y !1F (2,2) cos~2x !sin~2y !

1F (2,3) sin~2x !sin~3y !, ~1!

where the indices of the stream function coefficients label the
wave vector of the corresponding mode. In this way, the k
5(2,1) mode represents the excitation of the driven counter-
rotating vortices ~this mode causes the primary steady state!,

the k5(0,1) and k5(0,3) modes give rise to the generated
shear flow, and the k5(2,2) and k5(2,3) modes are respon-
sible for the tilting of the eddies. Numerical computations
show that this five-mode model is enough to capture more
than 99% of the vorticity field of the fluid flow13 of the
secondary steady state ~corotating vortices!. Fixing the mode
coefficients to values derived from the leading modes of the
Navier–Stokes simulations,17

F (0,1)58.35, F (0,3)520.35, F (2,1)522.55,

F (2,2)520.81, F (2,3)50.25, ~2!

it is found that the stream function of Eq. ~1! reproduces
correctly the streamlines of the Navier–Stokes flow in a sta-
tionary state below the Hopf bifurcation point.

~2! To establish an appropiate model of the time-
dependent periodic solutions beyond the Hopf bifurcation,
three features arising from the Navier–Stokes simulations
are taken into account. First, the spatial structure of the ve-
locity field is only slightly modulated by the time depen-
dence. Second, the time scale of these variations is typically
larger than the turnover time ~a characteristic time scale
which is set to be of the order of one!. Third, the forced
mode of the flow remains independent of time. It was found
in Ref. 13 that a suitable choice that comprises these require-
ments can be achieved by periodically varying all the coef-
ficients in Eq. ~1!, except the forced mode ~2,1!, as

F (i , j)~ t !5F (i , j)@11d sin~pt !# , ~3!

where d is a constant that measures the strength of the modu-
lation. Using this selection for the time-dependent perturba-
tion, this five-mode model reproduces quite well the tracer
dynamics of the fluid flow beyond the Hopf bifurcation.
Similar models have been reported previously in the litera-
ture in somewhat different contexts ~see, for example, Ref.
18!.

In conclusion, the Lagrangian dynamics of the flow be-
yond the Hopf bifurcation is specified by the stream function
model of Eq. ~1!, by the coefficients given in Eq. ~2!, and by
the time variation of these coefficients according to Eq. ~3!.
A picture showing the dynamics of passive tracers injected in
this time-periodically varying stream function with d50.15
is given in Fig. 2.

The most important qualitative difference between the
tracer dynamics shown in Fig. 1, that is given by a stationary
stream function and reproduces the flow below the Hopf bi-
furcation, and the tracer dynamics shown in Fig. 2, that is
given by a time-periodically varying stream function and re-
produces the flow beyond the Hopf bifurcation, is the exis-
tence of a stochastic layer in the second case, indicating that
a chaotic dynamics appears. As mentioned before, the main
motivation of the present work is to apply a known analytical
method, based on the use of the Melnikov function and the
separatrix map, to estimate the thickness of the stochastic
layer in the case shown in Fig. 2 and, especially, to compare
these estimations to numerical computations in order to es-
tablish some conclusions on the validity of this analytical
method applied to this case.
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With this objective in mind, a first difficulty appears: the
dynamical system that describes the motion of passive trac-
ers in the flow given by the time-periodically varying stream
function consisting of five modes is too complicated to per-
form analytical computations with it. This is the main reason
why we make a two-mode approximation to the five-mode
stream function of Eq. ~1!, which is discussed in Sec. III.

III. A TWO-MODE STREAM FUNCTION

The analytical estimate of the stochastic layer width used
in this work is based on the Melnikov approach. As is
known, the computation of some exact solutions of the sta-
tionary part of the dynamical system is needed in order to
use this method. The analytical computations of these solu-
tions are not easy to do in the five-mode model defined by
the stream function of Eq. ~1!, although certainly a numerical
approach is possible. Since we are mainly interested in ob-
taining an analytical result, the first thing to do is to reduce
this five-mode model further to a simpler model, while pro-
viding at the same time a good approximation for the sto-
chastic layer of the flow.

We have reduced the five-mode stream function to an
approximate two-mode stream function by neglecting three
original modes in the following way.

~1! As was said in Sec. I, the k5(2,2) and k5(2,3) modes
in Eq. ~1! cause the tilting of the eddies observed in the
flow. These two modes can be neglected in a first ap-
proximation as this tilting affects only slightly the width
of the stochastic layer.

~2! By contrast, the k5(2,1) mode, that represents the exci-
tation of the driven counter-rotating vortices, is a basic
ingredient in the flow, and so in the stochastic layer
width.

~3! The k5(0,1) and k5(0,3) modes generate the shear
flow. In this case, we neglect the k5(0,3) mode in a first
approximation after comparing its relative importance to
that of the k5(0,1) mode.

Consequently, the stream function of the two-mode
model is reduced to

F~x ,y ,t !5F (0,1)~ t !sin~y !1F (2,1) sin~2x !sin~y !. ~4!

The flow generated by this stream function is periodic in x
with a period of p. Following the arguments explained in the
preceding section, only the F (0,1) coefficient is varied peri-
odically in this equation as

F (0,1)~ t !5F (0,1)@11d sin~pt !# , ~5!

where d measures the strength of the modulation. The value
of the parameters F (i , j) are taken from Eq. ~2!, so F (0,1)

58.35 and F (2,1)522.55.
The motion of passive tracers in the two-mode stream

function of Eqs. ~4! and ~5! is shown in Fig. 3 for d50.15. It
is interesting to compare this figure to Fig. 2, which corre-
sponds to the five-mode stream function with the same d.
Numerical computations show that the difference between
the stochastic layer width of the two-mode stream function
and that of the five-mode stream function is smaller than 5%
for the values of d used in this work.

The velocity field or, equivalently, the equations of mo-
tion of the passive tracers can be expressed in the stream
function formulation by

vx5 ẋ5

]F

]y
, vy5 ẏ52

]F

]x
, ~6!

which constitutes a Hamiltonian system. In order to simplify
the notation, we consider all throughout the paper

FIG. 1. Motions of passive tracers corresponding to the stationary state
given by the five-mode stream function of Eq. ~1! with the parameters cho-
sen as in Eq. ~2!. As shown in Ref. 17, the streamlines depicted here quali-
tatively coincide with those obtained by means of direct numerical simula-
tion of the Navier–Stokes equations.

FIG. 2. Lagrangian dynamics of the time-periodically varying flow given by
the stream function of the five-mode model in Eq. ~1!, with the coefficients
given in Eq. ~2!, the time variation of these coefficients obeying Eq. ~3!, and
d50.15.

FIG. 3. Lagrangian dynamics of the time-periodically varying flow given by
the two-mode stream function model with d50.15. Comparing this figure
with Fig. 2, corresponding to the five-mode stream function, a clear simi-
larity is observed.
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a5F (0,1)58.35, b52F (2,1)52.55. ~7!

Then, the time-dependent Hamiltonian ~or stream function!

H(x ,y ,t)5F(x ,y ,t) can be written as the sum of a station-
ary term F0(x ,y), which is integrable, and a small time-
dependent perturbation d F1(x ,y ,t), which is not integrable,

H~x ,y ,t !5F0~x ,y !1d F1~x ,y ,t !, ~8!

F0~x ,y !5sin y~a2b sin 2x !, ~9!

F1~x ,y ,t !5a sin y sin pt . ~10!

We assume that d is small in order to apply the Melnikov
approach, which is a first-order perturbative method. More-
over, the phase space is considered to be the plane @0,2p#

3@0,p# , in order to include two of the hyperbolic fixed
points of the unperturbed system. As we will see in Sec. IV,
these points are key ingredients of the Melnikov method. In
any case, the dynamical system given by Eqs. ~8!–~10! is
p-periodic in the x variable, so, for clarity, we depict only
the @0,p#3@0,p# plane in the figures presented in this paper.

IV. MELNIKOV METHOD, SEPARATRIX MAP, AND THE
WIDTH OF THE STOCHASTIC LAYER

In this section we want to construct the separatrix map
associated with the dynamics of the two-mode stream func-
tion model described in Sec. III. As is well known, a two-
dimensional periodic vortical flow under a time periodic per-
turbation generally shows chaotic dynamics near the
separatrix, in such a way that an appropriate description of
the separatrix motion could be of importance for a better
understanding of transport and diffusion properties within
the stochastic layer.19 The separatrix map was originally in-
troduced by Zaslavsky and Filonenko20 to investigate the
one-dimensional motion of a charged particle in the field of a
traveling wave under a perturbation. This map depends on
the energy and time and approximately describes the regular
and chaotic dynamics near a separatrix. In a subsequent
work, the dynamics of the pendulum was analyzed by
Chirikov21 using the separatrix map. The importance of this
map lies in the common features that its use can draw for a
big classs of systems. For instance, some years ago, Cherni-
kov et al.22 used these ideas to obtain analytic expressions
for the diffusion coefficients in the adiabatic regime of two-
dimensional nonstationary flows. Another interesting appli-
cation to a problem of chaotic advection can be found in Ref.
23. Likewise, Rom-Kedar24,25 has used the separatrix map to
classify two-dimensional time-periodic flows. In particular,
we are interested in this map as a useful tool to compute an
analytical estimate of the width of the stochastic layer, as is
well described in Ref. 26 ~see also Refs. 27 and 28 for
complementary results!.

The first step in order to construct the separatrix map is
to analyze the unperturbed system, i.e., the case d50. The
trajectories in the phase space of this time independent flow
~see Fig. 4! correspond to the level curves of the stream
function F0(x ,y) given by Eq. ~9!. The dynamics of this
integrable Hamiltonian system is essentially governed by
two hyperbolic fixed points, (x1* ,y1*)5(p/4,p/2) and
(x2* ,y2*)5(5p/4,p/2), that physically correspond to stagna-

tion points in the flow, joined by two heteroclinic orbits
called the separatrices of the unperturbed system. This name
is due to the fact that the unperturbed heteroclinic orbits
separate different kinds of motion in the phase space of the
unperturbed system, as can be seen in Fig. 4. The central
region bounded by both separatrices ~that will be called the
inner region! corresponds to periodic orbits around elliptic
fixed points located at ~3p/4,p/2! and ~7p/4,p/2!, and the
region outside the separatrices ~called the outer region! is full
of shear-flow orbits.

The unperturbed system is integrable, and its associated
energy is conserved, i.e., it is a conservative system ~in this
dynamical system, the unperturbed energy is taken to be the
value of the stream function along its level curves!. The
value of the energy of any point belonging to the separa-
trices, including the hyperbolic fixed points, is given by

Hs5F0~x*,y*!5a2b , ~11!

which will be an important quantity in the discussion to fol-
low. One key ingredient that we need in order to construct
the separatrix map with the help of the Melnikov function is
the explicit expression for the heteroclinic orbits. The equa-
tions of the heteroclinic orbits can be obtained by integrating
the unperturbed two-mode system and have the following
form:

xs~ t !5

3p

4
1arcsinS sinh~2Ab~a2b !t !

Acosh2~2Ab~a2b !t !2~b/a !
D ,

~12!

y s~ t !5

p

2
6arccosS cosh2~2Ab~a2b !t !2~b/a !

cosh2~2Ab~a2b !t !1~b/a !
D , ~13!

where the signs 6 refer to each one of the heteroclinic or-
bits. Notice that these expressions are valid only if the con-
dition 0,b,a holds, which is the case for the values given
in Eq. ~7!. As is well known, the separatrices coincide in this

FIG. 4. Stroboscopic map for the two-mode unperturbed system (a58.35,
b52.55) showing the different motions exhibited by the tracers at both
sides of the separatrices. These lines are close to those signaled by the small
arrows in the picture, but they cross each other in the hyperbolic fixed points
~p/4,p/2! and ~5p/4,p/2! ~not shown!.
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situation with the stable and unstable manifolds associated
with the hyperbolic fixed points. However, when the time-
dependent perturbation is introduced, the stable and unstable
manifolds associated with one hyperbolic point break apart
and might intersect transversely to each other,29 generating a
typical Smale horseshoe-type dynamics in the region near
the separatrices. This phenomenon is typically related to a
scenario of transient chaos. As said earlier, the description of
the motions in this region, called the stochastic layer, is an
important point for studying physical properties of the flow,
such as transport and diffusion.

The Melnikov function is derived by using a first-order
perturbation method, and is related to the distance ~with
sign! between the stable and the unstable manifolds associ-
ated with the hyperbolic fixed points of the system when the
perturbation dF1(x ,y ,t) is introduced. A detailed discussion
on this issue is found in Ref. 30. An expression of the Melni-
kov function in terms of the heteroclinic orbits is given by

M ~ t0!5E
2`

`

dt@F0~xs~ t !,y s~ t !!,dF1~xs~ t !,y s~ t !,t1t0!# ,

~14!

where xs(t) and y s(t) are the explicit expressions for the
separatrices of the unperturbed system, and @•,•# denotes the
Poisson bracket. The formation of the heteroclinic tangle
which follows the transversal intersection takes place when-
ever M (t0) changes sign. After some algebraic manipula-
tions, we can write the Melnikov function for both separa-
trices ~indicated by 6) as

M 6~ t0!56dM 0~a ,b !cos pt0 , ~15!

where

M 0~a ,b !5

p2a

Aa2
2b2

1

sinhS p2

4Ab~a2b !
D

3sinS p

4Ab~a2b !
arg cosh

a12b

a D . ~16!

In this expression, it has been assumed that 0,b,a , as
pointed out earlier. Note also that, as can be easily seen in
Eq. ~15!, the passage of M 6(t0) through zero is trivially
guaranteed.

As we mentioned earlier, the regular and chaotic motion
near the separatrices of nonlinear systems can be studied
with the help of the separatrix map ~for example, see, Ref. 31
for a rigorous approach to this problem!. Using energy–time
variables, it is possible to write the separatrix map as26

Hn115Hn1DHn~tn!, ~17!

tn115tn1
1
2 T~Hn11!, ~18!

in which the sequence of time instants (t j) correspond to
half-periods T/2 of the unperturbed periodic orbits in the
inner region near the separatrices. The derivation of the map
involves the computation of the change DHn in the energy of
the orbit during the time step of the map. To accomplish this

task, it should be taken into account that the time evolution
of any dynamical variable is related to its Poisson bracket
with the Hamiltonian. In this case, we have

DHn~tn!5E
tn2 ~1/4! T(Hn)

tn1~1/4! T(Hn)
dt@F0 ,dF1# . ~19!

Since d is a small parameter, and following the standard
procedure, the map given by Eqs. ~17! and ~18! can be ap-
proximated near the separatrices by its value in the separatrix
of the unperturbed system. This means that the limits of in-
tegration are extended to plus and minus infinity. As a con-
sequence, the change of energy results to be equal to the
previously computed Melnikov function,

DHn~tn!5E
tn2`

tn1`

dt@F0~xs ,y s!,dF1~xs ,y s ,t1tn!#

5M 6~tn!. ~20!

For completeness, we should also compute the period of the
unperturbed orbits in the inner region as a function of the
energy of the unperturbed system Hs . We define the dimen-
sionless variable

hn5

Hn

Hs
215

Hn

a2b
21, uhnu!1. ~21!

In terms of this quantity, the period of an inner orbit very
close to the separatrix in the unperturbed system, with energy
H5(a2b)(h11) and uhu!1, diverges as the function

T~h !5

1

Ab~a2b !
lnS 16b

auhu D . ~22!

Thus it follows that the separatrix map for our system can be
approximated as

hn115hn6

d

a2b
M 0 cos ptn , ~23!

tn115tn1

1

2Ab~a2b !
lnS 16b

auhu D . ~24!

This map provides some hints about the origin of chaotic
dynamics in the stochastic layer.32 Note that, in the region
near an elliptic fixed point, the period of an orbit is weakly
dependent on the energy, but in the separatrix region the
period goes to infinity and, consequently, a small variation in
the energy leads to a considerable change in the time variable
of the map. By measuring the stretching of a small time
interval with the quantity K5maxu(dtn11 /dtn)21u, we claim
that a local instability occurs when the heuristic condition
K>1 is satisfied.26 This leads to an approximation for the
width of the stochastic layer. A lower bound of the half-width
of the stochastic layer, denoted by hsl , is given, up to a
constant of order 1, by

K~hsl!51. ~25!

In our case we obtain that the half-width of the stochastic
layer is lower-bounded by
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hsl5d
p

2~a2b !Ab~a2b !
M 0 , ~26!

where M 0(a ,b) is given by Eq. ~16!. Note that this measure
has a linear dependence with the perturbation parameter d, as
shown in Eq. ~26!. This is a consequence of the method that
we have used to derive this result, based on the Melnikov
function, that is a first-order quantity in the perturbation pa-
rameter.

The use of the Melnikov method also poses a question
about the range of d values for which the approximation is
valid. Taking into account that the energy of an unperturbed
orbit very close to the separatrix is of order (a2b), and that
the perturbation is of order d•a , the validity of the approach
used here imposes the following condition:

d•a!a2b , ~27!

from which it follows that d!0.7, where a and b take the
values of the original stream function given in Eq. ~7!.

Another interesting observation is related to the fact that
this is an energy measure of the width, because the variable
hn in the separatrix map is related to the energy Hn through
Eq. ~21!. Consequently, in order to compare this result with
numerical computations, two ways can be followed. The first
one is to perform numerical computations on the energy of
the system itself. In this case, the approximate separatrix
map, given by Eqs. ~23! and ~24!, should not be used be-
cause it is an ingredient of the method that needs to be tested.
The second way is to relate the analytical result of Eq. ~26!

to spatial quantities of the system in the phase space (x ,y),
where numerical computations are straightforward. The latter
is the approach that we have used in this paper.

V. DISCUSSION AND COMPARISON WITH
NUMERICAL COMPUTATIONS

In Sec. IV, we have used some analytical techniques to
obtain an estimate of the quantity hsl @Eq. ~26!# that measures
the half-width of the stochastic layer in the h axis of the
plane (h ,t) given by the separatrix map. Due to the nature of
the analysis performed there, this quantity does not have a
direct visual interpretation and therefore it would be very
interesting to relate this measure with the equivalent one in
the x – y space. Therefore, a view of how the stochastic layer
looks in the (x ,y) plane is crucial. This task must be
achieved with the help of numerical simulations.

In order to understand the meaning of the analytical
result given in Eq. ~26!, we have computed numerically
the width of the stochastic layer in the x – y space for several
values of d. We have done this by plotting a Poincaré section
of a large number of trajectories starting from initial condi-
tions lying on a grid within the domain @0,p#3@0,p# . Note
that we can restrict ourselves to this region due to the
periodicity of the flow. Furthermore, note also that the
referred domain contains one of the hyperbolic fixed points,
~p/4,p/2!, in which the two separatrices intersect themselves
in the unperturbed system. As we know, the stochastic layer
appears when both separatrices cross each other an infinite
number of times due to the perturbation. Then, this is the

interesting region if one wants to measure the width of the
stochastic layer. We have used a fourth-order Runge–Kutta
integration scheme with a time step Dt5231023 to simu-
late the dynamical evolution of Eqs. ~6!–~10!. Since the pe-
riod of the forcing term is T52, this choice of the time step
allows one to obtain a stroboscopic map of the dynamics in a
very simple way, with the advantage of a direct visualization
of the stochastic layer ~see Fig. 5!. We have made two dif-
ferent measurements of the width of the stochastic layer. The
distance, in the parallel direction to the shear flow, between
the unperturbed hyperbolic fixed point and the right bound-
ary of the layer is called lx , which is a good approximation
of the half width of the stochastic layer along the longitudi-
nal direction to the shear flow. The distance, in the transverse
direction to the shear flow, between the hyperbolic fixed
point and the upper boundary of the layer is called ly , which
approximates the half width of the stochastic layer along the
perpendicular direction to the shear flow ~see Fig. 5!. The
numerical measurements for lx and ly when d is varied from
0.025 to 0.250 are given in Table I.

Going back to the problem of finding a relationship be-
tween the width of the stochastic layer in the h – t space and
the same quantity in the x – y space will allow us to compare
the numerics with the analytical estimate. In order to obtain

FIG. 5. A blow-up of the stochastic layer corresponding to a Poincaré sec-
tion of the model described by Eqs. ~6!–~10! for a58.35, b52.55, and d
50.15 is shown. The cross indicates the position of the hyperbolic fixed
point ~p/4,p/2!, whereas the arrows are depicted to illustrate the measures of
the width of the stochastic layer carried out in the numerical simulations.

TABLE I. Numerical and analytical values of lx and ly , which represent the
measures of the half width of the stochastic layer, for different values of the
parameter d (a58.35 and b52.55).

d

Numerical Analytical

lx ly lx ly

0.025 0.1068 0.1462 0.0805 0.1067
0.050 0.1403 0.2003 0.1140 0.1509
0.075 0.1607 0.2558 0.1397 0.1850
0.100 0.1759 0.3893 0.1615 0.2137
0.125 0.2012 0.4185 0.1808 0.2390
0.150 0.2137 0.4473 0.1982 0.2619
0.175 0.2224 0.5001 0.2144 0.2831
0.200 0.2481 0.5508 0.2294 0.3027
0.225 0.3095 0.5947 0.2444 0.3223
0.250 0.3161 0.7231 0.2574 0.3393

871Chaos, Vol. 13, No. 3, 2003 Stochastic layer width



such a relationship, we use the quantity h that appears in the
separatrix map in relation to the energy of the system H ,

h5

H2~a2b !

a2b
. ~28!

As a consequence, an interesting interpretation of hsl is to
consider it as the smallest difference between the energy of
the unperturbed hyperbolic fixed point and the energy of a
point that is at the boundary of the stochastic layer. Now, if
we approximate the value of the energy by that of F0 , and
use Eq. ~9!, we obtain that

hsl5Usin y~a2b sin 2x !2~a2b !

a2b U. ~29!

This is enough to relate hsl to the numerical measurements.
Remembering that lx is the distance, in the parallel direction
to the shear flow, between the unperturbed saddle and the
right boundary of the stochastic layer, we can take y5p/2
along this direction, and x5p/41lx , so the previous equa-
tion gives

hsl5U 2b

a2b
sin2 lxU. ~30!

In principle, this kind of argument can be used also with ly .
In this case, we can take x5p/4 and y5p/21ly , obtaining

hsl5ucos ly21u, ~31!

but we will see later that only the first one, i.e., lx , is cor-
rectly related to hsl . In Table I we write the analytical values
of lx and ly , i.e., those computed from Eqs. ~30! and ~31!,
and compare the results obtained using these expressions
with the numerical computations.

By comparing the analytical and numerical results
shown in Table I, some conclusions may be drawn. First, as
a consequence of the way in which the analytical value of hsl

has been computed @Eq. ~25!# and, especially, as a conse-
quence of the way in which we have defined the quantities lx

and ly through Eqs. ~29!–~31!, the analytical values of lx and
ly are always a bit smaller than the numerical ones. Like-
wise, since our analytical method is a first-order perturbative
one, we would expect that it will give a good approximation
to lx and ly at least for small values of the perturbation
strength d. In Fig. 6, we can observe that for the values of d
considered here, the agreement between theory and numerics
is rather good for lx , that is, lx is correctly estimated by the
analytical method based on the separatrix map. At the same
time, it becomes apparent that, even for very small values of
the perturbation strength, the concordance between the lower
bound given by Eq. ~31! for ly and the numerics is not as
good as that of lx ~notice the different scales in the upper and
lower panels of Fig. 6!. Moreover, the analytical computation
above d'0.08 does not offer the qualitative behavior exhib-
ited by the numerical values of ly ~note in Fig. 6 the apparent
shift of these values near this value of d!.

As lx is a measure of the stochastic layer width corre-
sponding to the unperturbed inner region, and ly is a measure
in the unperturbed outer region, we conclude that the method
of the separatrix map, applied to our system, gives a very
good approximation to the half width of the stochastic layer,

in phase variables, in the original inner region. On the other
hand, the origin of the discrepancies found in the analytical
measure in the outer region ~corresponding to ly) may be in
the appearance of wide resonances ~whose effects cannot be
captured by the separatrix map! in this region as d increases.
These kinds of resonance have been analyzed for other
Hamiltonian systems in Ref. 26 and also in Ref. 28, being
able to cause discrepancies by a factor of 2 or more in the
measurements of the stochastic layer.

VI. CONCLUSIONS

In this paper we have obtained an analytical lower bound
approximation to the widths of the stochastic layer, parallel
and perpendicular to the shear flow, for a two-mode stream
function model that reproduces the motion of passive tracers
in a two-dimensional periodic flow. Using the Melnikov
theory and the separatrix map in the standard way, we have
obtained an approximation to the half width of the stochastic
layer in the energy axis of the energy–time plane. Further-
more, we have related this measure with the equivalent one
in the x – y space for this particular model. This space seems
to be a natural choice when chaotic transport of particles is
considered, because it provides a direct visualization of the
trajectories of the tracers. The values obtained by using this
analytical approximation have been compared with numeri-
cal simulations of the model in order to test its validity.

On the one hand, we have found that this analytical
method gives a rather good estimate of the first quantity, i.e.,
the half width parallel to the shear flow, lx , for not very high
values of the perturbation strength d. On the other hand, it is
also obtained that the analytical estimate does not give the
correct values for the half width perpendicular to the shear
flow, ly . In particular, the values of ly obtained from numeri-
cal simulations display a shift around d'0.08 that is not
seen in the analytical approximation. The origin of this dis-

FIG. 6. Comparison of the computed half widths of the stochactic layer,
parallel and perpendicular to the shear flow, for several values of d, in the
case a58.35, b52.55 corresponding to the two-mode model. Notice that
the y scale in the upper panel is smaller than in the lower panel. Circles
stand for numerical simulations values whereas the analytic approximation
is given by the solid curve.
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crepancy may be the appearance of relatively wide reso-
nances in the chaotic layer when d increases.

These conclusions may help one to understand the mean-
ing and the validity of the separatrix map technique as a
method to study the stochastic layer in simple periodic sys-
tems. Especially, we would like to emphasize that an analyti-
cal estimate of the width of the stochastic layer in the spatial
coordinates plane, which provides physical information
about transport and diffusion properties, can be achieved.
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