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Abstract

The simple pendulum is a paradigm in the study of oscillations and other phenomena in physics and nonlinear

dynamics. This explains why it has deserved much attention, from many viewpoints, for a long time. Here, we attempt

to describe what we call a generalized perturbed pendulum, which comprises, in a single model, many known situations

related to pendula, including different forcing and nonlinear damping terms. Melnikov analysis is applied to this model,

with the result of general formulae for the appearance of chaotic motions that incorporate several particular cases.

In this sense, we give a unified view of the pendulum.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since the time of Galileo [1], the pendulum has constituted a physical object, fascinating physicists and becoming one

of the paradigms in the study of physics and natural phenomena. In the framework of nonlinear dynamics, there is no

doubt that the pendulum is one of the objects that have deserved more attention in modelling all kind of phenomena

related to oscillations, bifurcations and chaos. Its paradigmatic importance in mathematics has been also pointed out

[2]. Its interest derives not only from its intrinsic value as a notable example to test and search for new phenomena, but

also from its wide range of applicability.

From the theoretical point of view, its study may be considered of fundamental interest, where new results appear

once in a while (for example, on the stability of pendula, following the theorem proved by Acheson [3–6]), and all

possible combinations of pendula, such as the double pendulum [7,8], coupled pendula or even networks of pendula are

used from very different perspectives and approaches [9–11]. One example of an interesting new result applied to this

system refers to the Wada property, which was thoroughly studied for the forced pendulum in [12,13], and has to do

with the unpredictability of the system, even when it has simple periodic attractors. On the other hand, very many

physical phenomena may be modelled as pendula. This is because many oscillatory problems may be reduced in some

way to the equations of the pendulum. One could argue that, as a kind of oscillatory unit, it may be found almost

everywhere where oscillations occur. Apart from the familiar cases which appear in mechanics, it has been used to

model a charged particle inside an electric field with applications to nuclear reactors and plasmas, and even as a

universal model for nonlinear resonance [14]. Other fields of application, for example, are the Josephson supercon-

ducting unions [15–17], modelling of structural and electronic properties in condensed matter physics [18] and in ce-

lestial mechanics, especially related to the stability of the solar system [19], just to mention a few examples. A good

source of examples mostly related to mechanical engineering and mechanics are found in the book by Moon [20].

Another reference, which is basically dedicated to many phenomena associated to pendula, including many applications
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to plasma physics, is the book by Sagdeev et al. [21]. Also, in problems related to engineering and control, the study of

the pendulum is of much importance. For a textbook in which the basic characteristics of chaos are introduced with the

help of the simple pendulum (see [22]).

The present work attempts to give a unified view of different known aspects of the pendulum when suffering distinct

external perturbations. In particular we are interested in considering the general case of the plane simple pendulum,

whose pivot is subjected to having different motions on the plane. For the case of the spherical pendulum, that is not

included in this work (see [23–25]). In principle, our main interest lies in the possibility to integrating, in one single

model, several known particular situations, such as the familiar forced pendulum, the harmonically forced pendulum

[26–28], the vertically forced pendulum and combinations of them, such as the rotating pendulum. Moreover, we in-

troduce in the expression of the generalized pendulum nonlinear damping terms, which in spite of its interest for many

practical purposes, they are seldom used. All these models have been studied separately by many authors, but a general

scheme as the one we are offering here is clearly lacking. Besides the forced pendulum, perhaps the case which has

deserved more attention in the literature is the pendulum with a vertically oscillating pivot. This system was apparently

first studied by Stephenson in 1908 [29] and somewhat later, in the twenties, by van der Pol and Strutt [30]. A good

treatment of the inverted pendulum may be found in [31,32]. One outstanding interest in it relies upon its stability

properties (see for instance [33,34] and the many references therein).

Once this generalized expression of the equations of motion of the simple pendulum, which we call a generalized

perturbed pendulum, is obtained, different possible avenues of further study may be open. The strategy that we have

followed here is based on the approach given by the Melnikov method, which typically applies to continuous dynamical

systems. This method gives some conditions for the chaotic motion of these dynamical systems, which basically are

related to the topological behavior of the invariant manifolds associated to hyperbolic saddle points in phase space. As

a natural consequence of the use of this method to the generalized perturbed pendulum, some formulae related to the

chaotic behavior (homoclinic chaos) of the pendulum are given, which comprise most particular cases that one may

have taken into consideration.

2. Equations of motion of the generalized perturbed pendulum

Here we attempt to give a general formulation of the simple pendulum, where different forcing and damping terms

are included in a single expression, with the aim of offering an overview of various situations that a pendulum may have

and portrait all of them in a common framework. From this perspective, several familiar cases including external

perturbations appear in a natural way, as particular cases of this generalized equation.

A simple mathematical pendulum is modelled by a bob of mass m, hanging at the end of a wire of length l and fixed

to a supporting point O (see Fig. 1), swinging to and fro in a vertical plane.

The equations of motion are straightforward to obtain using Lagrangian or Newtonian methods. For its simplicity,

we show here the pendulum equations using Newtonian methods. In this framework it is much more intuitive to vi-

sualize the forces acting on the system, providing a more clearer physical picture of the dynamics of the pendulum, even

though other general formulations are possible. In this context Fig. 1 shows the force diagram of the simple pendulum,

Fig. 1. The application of Newton�s law to the force system shown in this figure results in the equation of motion of a generalized

simple pendulum whose pivot may move on the plane.
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whose pivot is situated at the coordinate ðx0; y0Þ, assuming a rectangular coordinate system. The coordinates of the bob

in a fixed frame of reference are given by ðx; yÞ ¼ ðx0 þ l sin h; y0 þ l cos hÞ. The equation of momenta of the forces with

respect to the position of the bob is given by

Fxl cos h � Fyl sin h ¼ 0; ð1Þ

where Fx and Fy are the components of the force acting on the pivot. The simple application of Newton�s law gives

m€xx ¼ Fx;

m€yy ¼ Fy þ mg;
ð2Þ

and introducing the coordinates of the bob with respect to the origin into the last equation, we obtain

€xx ¼ €xx0 � l _hh2 sin h þ l€hh cos h;

€yy ¼ €yy0 � l _hh2 cos h � l€hh sin h:
ð3Þ

Now, substituting Eq. (3) into Eq. (2), and then into Eq. (1), we get the following general equation of motion for the

simple pendulum

l€hh þ g sin h þ €xx0 cos h � €yy0 sin h ¼ 0; ð4Þ

where it is assumed that the functions €xx0ðtÞ and €yy0ðtÞ are known (as a matter of fact they represent the equations of

motion of the supporting point) and the coordinate h is defined, as usual, in the interval �p6 h6 p. This equation can

be also obtained using Lagrangian methods by simply considering the Lagrange function

L ¼ 1
2
mð _xx2 þ _yy2Þ þ mgy ¼ 1

2
mð _xx20 þ _yy20Þ þ ml _hhð _xx0 cos h � _yy0 sin hÞ þ 1

2
ml2 _hh2 þ mgy0 þ mgl cos h: ð5Þ

In principle, the generalized Eq. (4) represent the equation of the pendulum without dissipation and for any possible

motion of the pivot on a plane. When dissipation is taken into account, traditionally dissipative forces are introduced

ad hoc in the equations of motion, although a Lagrangian and Hamiltonian formalism for the case of linear damping is

known [35]. The Lagrangian and Hamiltonian functions when linear dissipation is considered are, of course, time-

dependent, and obviously do not have the same meaning as for conservative systems. The phenomenological model of

the dissipative forces mostly appearing in the literature is assumed to be linear. However, and in order to offer a more

general view of the equations of the pendulum, we will introduce here nonlinear damping terms. These terms have been

used for several engineering applications, such as ship dynamics and vibration engineering (see for instance [36–38] and

other references therein). One of the reasons why nonlinear damping in engineering and other applied sciences is im-

portant stems from the fact that it can be used as an effective passive control strategy to suppress various instabilities.

Moreover, different effects of nonlinear damping on the dynamics of some nonlinear oscillators, including erosion of

fractal basins and how they affect the routes to chaos, among others, have been shown recently. The nonlinear dissi-

pative forces we consider are strictly proportional to the Nth power of the velocity, and consequently we use a general

polynomial function of Nth degree of the formXN
p¼0

bp _hhj _hhjp�1
; ð6Þ

where bp P 0 are the nonlinear damping coefficients. Notice that the absolute value of _hh is needed to safeguard the fact

that the dissipative force must be contrary to the motion of the system. Hence the general equation of motion for the

nonlinearly damped pendulum is

l€hh þ g sin h þ €xx0 cos h � €yy0 sin h þ
XN
p¼0

bp _hhj _hhjp�1 ¼ 0: ð7Þ

The usual linear damping term is obtained by taking b1 > 0 and bp ¼ 0; for p 6¼ 1. As it was mentioned earlier, in this

equation we include the fact that the supporting point is movable and this will be used later to introduce, in a natural

way, different forms of driving on the pendulum.

Furthermore, in the case that the supporting point is at rest, if we want some oscillations to be maintained, we need

to introduce any other kind of perturbation to the system. A balance of energy is needed, so that the energy which is lost

by the dissipation should be balanced by external sources if we want the oscillations to be sustained. This can be done

by means of a periodic force F ðtÞ acting directly on the bob. Including ad hoc this kind of forcing in our model for a

generalized simple pendulum we get

J.L. Trueba et al. / Chaos, Solitons and Fractals 15 (2003) 911–924 913



€hh þ
XN
p¼0

ap
_hhj _hhjp�1 þ x2

0 sin h þ f1ðtÞ cos h þ f2ðtÞ sin h ¼ f3ðtÞ; ð8Þ

in which we have defined the natural frequency x0 in the usual way as x2
0 ¼ g=l and the damping coefficients ap as

ap ¼ bp=l. Moreover, the forcing terms f1ðtÞ, f2ðtÞ and f3ðtÞ, are defined as f1ðtÞ ¼ €xx0ðtÞ=l, f2ðtÞ ¼ �€yy0ðtÞ=l, f3ðtÞ ¼
F ðtÞ=l.

This last Eq. (8) describes what we call the generalized perturbed pendulum, including a rather general nonlinear

damping term and several possible driving forces acting on it. To clarify this, we will illustrate in the following some

basic particular examples of this general case, in some sense the elementary cases and thus the more familiar cases of

driven pendula, which have been extensively studied in the literature.

1. Pendulum with horizontal oscillating support. The pivot of the pendulum is subjected to a harmonic horizontal

displacement (see Fig. 2) of amplitude le1 and frequency x1. This means that f1ðtÞ ¼ e1 cosx1t and f2ðtÞ ¼ f3ðtÞ ¼ 0.

In the usual case in which only linear dissipative forces are considered, the equations of motion are given by

€hh þ a1
_hh þ x2

0 sin h þ e1 cosx1t cos h ¼ 0: ð9Þ

A system like this one was used in order to analyze its chaotic properties and its bifurcations in [39,40]. It appears

commonly in the fields of nonlinear vibrations and robotics.

2. Pendulum with vertical oscillating support. The pivot of the pendulum is subjected to a harmonic vertical dis-

placement (see Fig. 3) of amplitude le2 and frequency x2. Since the support oscillates harmonically in the vertical

direction, this means that f2ðtÞ ¼ e2 cosx2t, and f1ðtÞ ¼ f3ðtÞ ¼ 0. For linear dissipative forces we get,

€hh þ a1
_hh þ x2

0 sin h þ e2 cosx2t sin h ¼ 0: ð10Þ

Note that this is in fact the equation of motion of the familiar inverted pendulum. A similar equation has been ex-

tensively used by many authors, among them we can refer to [41–51].

Fig. 2. The figure shows a simple pendulum whose supporting point oscillates harmonically in the horizontal direction.

Fig. 3. The figure shows a simple pendulum whose supporting point oscillates harmonically in the vertical direction. Sometimes it is

referred to as the parametrically excited pendulum.
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3. Pendulum driven by an external force acting on the bob. The harmonic perturbation is acting directly on the bob

(see Fig. 4), so we have f3ðtÞ ¼ e3 cosx3t, and f1ðtÞ ¼ f2ðtÞ ¼ 0 and consequently the equation of motion is

€hh þ a1
_hh þ x2

0 sin h ¼ e3 cosx3t; ð11Þ

which corresponds to the familiar damped and perturbed pendulum, with fixed pivot.

The inclusion of the perturbation in the three cases makes it possible to sustain oscillations, and hence the possibility

of periodic solutions, and eventually for certain parameters the appearance of chaotic solutions. These three cases are

the most familiar, and perhaps the most elementary, that one can obtain from the generalized expression, although

other versions may appear by considering different combinations of the terms.

3. Melnikov method for a generalized simple pendulum

Once we have described a general model for the pendulum, including different driving forces and nonlinear damping

terms, our interest now is to apply Melnikov method in order to obtain general expressions for the critical parameters

for the occurrence of horseshoe dynamics. The Melnikov analysis yields the threshold values of the parameters for

which homoclinic intersections occur. For details concerning Melnikov method see [53]. A nice energy interpretation of

the method is provided by Ketema [54]. As is well known, this technique is a first-order perturbative method which gives

the condition for the crossing of the stable and unstable manifolds; that is to say, this does not mean that what we have

is permanent chaos, but a horseshoe type dynamics associated with the phenomenon of transient chaos. Although the

chaos does not manifest itself in the form of permanent chaos, it does in terms of the fractal basin boundaries, as it was

shown by Moon and Li [55].

From this perspective, we consider here a generalized pendulum

€hh þ
XN
p¼0

ap
_hhj _hhjp�1 þ x2

0 sin h þ e1f1ðtÞ cos h þ e2f2ðtÞ sin h ¼ e3f3ðtÞ; ð12Þ

in which we assume that the damping coefficients ap and amplitudes ei are small enough, so we can compute the

Melnikov integral for this system, considering all extra terms as Hamiltonian perturbations to the simple pendulum

with equation

€hh þ x2
0 sin h ¼ 0: ð13Þ

The Hamiltonian function for the variables ðh; _hhÞ 2 ½�p; p
 � R is

Hðh; _hhÞ ¼ 1
2
_hh2 � x2

0 cos h: ð14Þ

The phase space of the pendulum is 2p-periodic in h with hyperbolic saddles situated in ð�p; 0Þ and an elliptic centre in

ð0; 0Þ. There are three kind of orbits for the unperturbed pendulum: rotations, oscillations and separatrix motion. The

rotations are unbounded motions and correspond to orbits with high energy moving clockwise or counter-clockwise,

the oscillations are the bounded ones and they never reach the elliptic centre; finally, the separatrix motion corresponds

Fig. 4. A typical pendulum driven by an external harmonic function acting directly on the bob with the oscillating support at rest.

J.L. Trueba et al. / Chaos, Solitons and Fractals 15 (2003) 911–924 915



to an oscillation of infinite period. We can identify both hyperbolic saddles and consider a cylindrical phase space, in

such a way that we may have homoclinic connections and motions, which correspond to the motions in the separatrix.

The solutions for the oscillating orbits can be expressed in terms of the Jacobi elliptic functions as [43,45]

ðhðtÞ; _hhðtÞÞ ¼ ð2k cnðXt; kÞdnðXt; kÞ; 2k cnðXt; kÞÞ; ð15Þ

where the functions cnðXt; kÞ and dnðXt; kÞ are Jacobi elliptic functions [52] of frequency XðkÞ and elliptic modulus k.

Sometimes the elliptic parameter m is used instead where m ¼ k2. The solutions for the homoclinic orbit are obtained by

simply taking the limit k ! 1 for the elliptic parameter in the Eq. (15). The solutions are given by setting Hðh; _hhÞ ¼ h,
since the energy is conserved. If h ¼ x2

0, then we have a pair of homoclinic solutions given by

h�
0 ðtÞ ¼ �2 arctan½sinhðx0tÞ
 ¼ �2 tanhx0t sechx0t; ð16Þ

_hh�
0 ðtÞ ¼ �2x0 sechðx0tÞ; ð17Þ

subject to the initial conditions ðh�
0 ð0Þ; _hh

�
0 ð0ÞÞ ¼ ð0;�2x0Þ.

Now, applying the Melnikov theory to the general case we are studying, a generalized Melnikov function can be

written as

M�ðt0Þ ¼ �
XN
p¼0

ap

Z þ1

�1
j _hh�

0 ðtÞj
pþ1

dt � e1

Z þ1

�1
_hh�
0 ðtÞ cosðh

�
0 ðtÞÞf1ðt þ t0Þdt

� e2

Z þ1

�1
_hh�
0 ðtÞ sinðh

�
0 ðtÞÞf2ðt þ t0Þdt þ e3

Z þ1

�1
_hh�
0 ðtÞf3ðt þ t0Þdt: ð18Þ

From the expression of the homoclinic orbits Eqs. (16) and (17), it is quite straightforward to obtain the formulae

sinðh0ðtÞÞ ¼ 2 sinA cosA ¼ 2 tanhðx0tÞ sechðx0tÞ;
cosðh0ðtÞÞ ¼ cos2 A� sin2 A ¼ sech2ðx0tÞ � tanh2ðx0tÞ;

ð19Þ

where A ¼ arctanðsinhðx0tÞÞ, which are quite useful for the computations. Then

M�ðt0Þ ¼ �
XN
p¼0

2pþ1xp
0ap

Z þ1

�1
dt sechpþ1t � 2x0e1

Z þ1

�1
dt f1ðt þ t0Þ 2sech3ðx0tÞ

�
� sechðx0tÞ

�
� 4x0e2

Z þ1

�1
dt f2ðt þ t0Þ tanhðx0tÞ sech2ðx0tÞ � 2x0e3

Z þ1

�1
dt f3ðt þ t0Þ sechðx0tÞ; ð20Þ

that can be taken to be a generalized Melnikov function for the simple pendulum. This expression comprises in a

compact way a lot of particular results that can be found in the literature. Obviously this generalized result comprises

the results of authors who have analyzed particular cases, such as Koch and Leven [45] and Huilgol et al. [57], and

Ravindra and Mallik [58,59], among others.

4. Application to particular cases

Consider now the most used case in which all the driving forces f1ðtÞ, f2ðtÞ and f3ðtÞ are periodic. Then, we can write

fiðtÞ ¼ cosðxit þ diÞ (i ¼ 1; 2; 3), and interpret ei, xi and di as the amplitudes, frequencies and initial phases of the

perturbations, respectively.

In this case, the generalized Melnikov function (20) reduces to

M�ðt0Þ ¼ �
XN
p¼0

2pþ1xp
0apB

1

2
;
p þ 1

2

� �
� 2pe1

x1

x0

� �2

sech
px1

2x0

� �
cosðx1t0 þ d1Þ

� 2pe2
x2

x0

� �2

csch
px2

2x0

� �
sinðx2t0 þ d2Þ � 2pe3 sech

px3

2x0

� �
cosðx3t0 þ d3Þ; ð21Þ

in which we have used some basic integrals that are tabulated at the end of this article in the Appendix A. In this

expression, Bðm; nÞ is the Euler Beta function, defined in terms of the Euler Gamma function as Bðm; nÞ ¼
CðmÞCðnÞ=Cðmþ nÞ [56]. Since the Melnikov function is related to the distance between the stable and the unstable

manifolds associated with the hyperbolic fixed point, when destroyed by the perturbation, this implies that when this
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function has simple zeros, there is a critical set of parameters for which homoclinic tangles intersect. For this purpose,

and taking into account the behavior of the trigonometric functions, it is enough to consider only the positive branch.

Thus, in the following, we study this Melnikov function Mðt0Þ ¼ Mþðt0Þ for different particular cases. Some of them

shows very interesting properties.

4.1. Critical parameters for the case of one forcing term

The first case that we are interested approaching here is the case when only one forcing term fiðtÞ is acting on the

simple pendulum. A particular example of this approach is a damped pendulum in which the supporting point moves

harmonically along the horizontal direction, so this implies e2 ¼ e3 ¼ 0. Moreover, we assume that the dissipative force

is linear in the velocity, ap ¼ 0 for p 6¼ 1, and for simplicity the initial time is chosen in such a way that the initial phase

is d1 ¼ 0. The idea is to apply the Melnikov analysis and to analytically compute the positive branch of the Melnikov

function in Eq. (21), which for this particular case is reduced to

Mðt0Þ ¼ �8x0a1 � 2pe1
x1

x0

� �2

sech
px1

2x0

� �
cosx1t0: ð22Þ

Then the set of critical parameters for which the invariant manifolds intersect is given by the condition that this function

has a simple zero. As a result, the critical forcing amplitude e1c is given by

e1c ¼
4x3

0a1

px2
1

cosh
px1

2x0

� �
: ð23Þ

In order to gain an understanding of this behavior, it is convenient and useful to define the ratio Rðx0;x1Þ ¼ e1c=a1

between the critical forcing amplitude and the damping coefficient, which is given by the expression

Rðx0;x1Þ ¼
4x3

0

px2
1

cosh
px1

2x0

� �
: ð24Þ

To have a visual information on this ratio, we have plotted in Fig. 5 its dependence with respect to the forcing frequency

x1 for the values x0 ¼ 0:5, x0 ¼ 1 and x0 ¼ 1:5 of the natural frequency. The observation of this figure shows that for

the range of forcing frequencies up to approximately 1.3, the Melnikov ratio increases as the natural frequency x0

increases. This is not, however, a general result, since it changes for higher values of the forcing frequency as shown in

the figure. From our point of view, the shape of the curves is more important, and, in particular, the presence of a local

minimum for every value of x0. This means that the system has different sensitivities to the onset of homoclinic chaos

depending on the forcing frequency of the pivot. Also, we can infer from Fig. 5 that the region in which the system is

Fig. 5. Plot of the natural logarithm of the Melnikov ratio between the critical parameters versus the frequency of the driving force for

x0 ¼ 0:5 (––), x0 ¼ 1 (– – –) and x0 ¼ 1:5 (- - -). The case shown corresponds to a damped pendulum in which the supporting point

moves harmonically along the horizontal direction. For forcing frequencies up to 1.3, the Melnikov ratio increases as the natural

frequency x0 increases. This behavior changes for higher values of the forcing frequency, which are not shown in this figure.
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more sensitive to the onset of homoclinic chaos (the Melnikov ratio is lower), increases as x0 increases. This means that,

in general, it is more difficult to find a region in which the system evolves in a nonchaotic regime when x0 is raised, for

any given forcing frequency x1. In other words, suppression of chaos is easier when the natural frequency is lower. In

these cases of low x0 we only need to slightly modify the forcing frequency x1 from the one that minimizes the

Melnikov ratio. For higher values of x0, the modification of x1 must be stronger.

Another interesting result appears when we consider nonlinear damping terms. For example, if we introduce a cubic

damping term to the previous example, then the Melnikov function is

Mðt0Þ ¼ �8x0a1 �
64

3
x3

0a3 � 2pe1
x1

x0

� �2

sech
px1

2x0

� �
cosx1t0; ð25Þ

in which a3 is the cubic damping coefficient. The critical value of the forcing amplitude e01c becomes

e01c ¼
4x3

0a1 þ 32=3x5
0a3

px2
1

cosh
px1

2x0

� �
¼ e1c 1

�
þ 8x2

0a3

3a1

�
: ð26Þ

This clearly shows that the introduction of the nonlinear damping terms has the effect that the critical value of the

forcing amplitude increases linearly with the nonlinear damping coefficient. As is easily inferred from this expression,

the positions of the local minima are not modified by the inclusion of nonlinear damping terms of the type considered

here. Also, it should be noticed that the critical value of the forcing amplitude has a stronger dependence on the natural

frequency than in the case when only linear damping terms are used. Furthermore, in terms of sensitivity, the inclusion

of nonlinear damping terms makes more difficult the onset of homoclinic chaos in the system. Some interesting results

concerning these ideas are illustrated in [37].

4.2. Critical parameters for the case of two forcing terms

Now we consider the case when two forcing terms fiðtÞ are acting on the simple pendulum. We may have three

different possibilities.

(a) The supporting point of the linearly damped simple pendulum moves harmonically in both the horizontal and

vertical directions (e3 ¼ 0). Then the equation of motion reads

€hh þ a1
_hh þ x2

0 sin h þ e1 cosðx1t þ d1Þ cos h þ e2 cosðx2t þ d2Þ sin h ¼ 0: ð27Þ

Note that the supporting point is subjected to a superposition of two orthogonal harmonic oscillators, so the re-

sultant trajectory of the motion of this point depends strongly on the value of the frequency ratio x1=x2 and the phase

difference d1 � d2. A very well known mechanical example is the rotating pendulum, in which the supporting point

presents circular polarization. This model was also considered in [60]. In this case, e1 ¼ e2, x1 ¼ x2 and d1 � d2 ¼ p=2.
The Melnikov function then appears as

Mðt0Þ ¼ �8x0a1 � 2pe1
x1

x0

� �2

sech
px1

2x0

� ��
þ csch

px1

2x0

� ��
cosðx1t0 þ d1Þ: ð28Þ

The ratio between the critical forcing amplitude and the damping coefficient is

Rðx0;x1Þ ¼
4x3

0

px2
1

sech
px1

2x0

� ��
þ csch

px1

2x0

� ���1

: ð29Þ

In Fig. 6, a plot of the ratio Rðx0;x1Þ ¼ ec=a1 versus the forcing frequency x1 for the values x0 ¼ 0:5, x0 ¼ 1 and

x0 ¼ 1:5 of the natural frequency is given. As we have done the same study as in Fig. 5, it is easy to see what is the

difference between these two cases: the introduction of the vertical harmonic forcing in circular polarization with the

horizontal forcing makes the intersection of the tangles to occur before, i.e., the value of the critical parameter ec is
lower than in the previous case and then the sensitivity of the system to the onset of chaos is increased. But it is im-

portant to note that this is a property of the particular case of circular polarization, not of any superposition of two

orthogonal harmonic oscillators in the supporting point. In particular the expression Eq. (29) may result much more

complicated for more general cases.

(b) The supporting point of the linearly damped simple pendulum moves harmonically in the horizontal direction

and the bob is subjected to a harmonic forcing (e2 ¼ 0). Then the equation of motion is

€hh þ a1
_hh þ x2

0 sin h þ e1 cosðx1t þ d1Þ cos h ¼ e3 cosðx3t þ d3Þ; ð30Þ
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and the Melnikov function

Mðt0Þ ¼ �8x0a1 � 2pe1
x1

x0

� �2

sech
px1

2x0

� �
cosðx1t0 þ d1Þ þ 2pe3 sech

px3

2x0

� �
cosðx3t0 þ d3Þ: ð31Þ

A three-dimensional plot of this function versus the external frequencies x1 and x3 is shown in Fig. 7. The parameters

we are using are set to d1 ¼ d3 ¼ 0, x0 ¼ 1, a1 ¼ 0:1 and e1 ¼ e3 ¼ 0:1, for the time t0 ¼ 1. Our analysis shows that the

Melnikov function smoothly decreases with the frequency x3 for a fixed horizontal frequency x1. However, if we fix x3

there is a local maximum and a local minimum in the range of frequencies considered.

A very interesting case appears when both forcing terms have the same amplitude (e1 ¼ e3), and they are in phase

(d1 ¼ d3) and in resonance (x1 ¼ x3 ¼ x0). In this case, the Melnikov function does not depend on t0 and, conse-

quently, the possible chaotic behavior that the horizontal forcing may introduce is suppressed by the external forcing

Fig. 6. Natural logarithms of the Melnikov ratio between critical parameters versus frequency of the forcing for x0 ¼ 0:5 (––), x0 ¼ 1

(– – –) and x0 ¼ 1:5 (- - -). Here the supporting point of the pendulum oscillates harmonically in the horizontal and vertical directions.

This figure is rather similar to the previous one, and shows that the ratio is smaller due to the introduction of two forcing terms in

circular polarization. Consequently, the value of the critical parameter ec is lower than in the previous case.

Fig. 7. A three-dimensional plot of the Melnikov function versus the external frequencies x1 and x3 for the case of a pendulum whose

supporting point oscillates harmonically in the horizontal direction and the bob is subjected to a harmonic forcing. The figure shows

the particular case for which the parameters are set to d1 ¼ d3 ¼ 0, x0 ¼ 1, a1 ¼ 0:1 and e1 ¼ e3 ¼ 0:1, and the time is t0 ¼ 1. The

Melnikov function decreases smoothly with the frequency x3 for a fixed horizontal frequency x1. However if we fix x3 there is a local

maximum and a local minimum in the range of frequencies considered.
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term. This means that the Melnikov function is constant, and, hence, there is no possible nontrivial zero. This is indeed

a way of controlling chaos via the nonfeedback mechanism [61]. In fact, the idea of modifying the onset of chaos by

studying the Melnikov function of the newly perturbed system was already used in [62].

(c) The supporting point of the linearly damped simple pendulum moves harmonically in the vertical direction and

the bob is subjected to a harmonic forcing (e1 ¼ 0). Then

€hh þ a1
_hh þ x2

0 sin h þ e2 cosðx2t þ d2Þ sin h ¼ e3 cosðx3t þ d3Þ; ð32Þ

and its associated Melnikov function is

Mðt0Þ ¼ �8x0a1 � 2pe2
x2

x0

� �2

csch
px2

2x0

� �
sinðx2t0 þ d2Þ þ 2pe3 sech

px3

2x0

� �
cosðx3t0 þ d3Þ: ð33Þ

What we have mentioned in the previous case does not occur here, since it is not possible that the time-dependent terms

cancel.

To investigate this case, take for example the values d2 ¼ 0, d3 ¼ �p=2, e2 ¼ e3 and x2 ¼ x3. Then the ratio between

the critical value of the external forcing and the damping coefficient is given by

Rðx0;x2Þ ¼
4x0

p
sech

px2

2x0

� �(
� x2

x0

� �2

csch
px2

2x0

� �)�1

: ð34Þ

A plot of this ratio versus the forcing frequency x2 for the values x0 ¼ 0:5, x0 ¼ 1 and x0 ¼ 1:5 of the natural fre-

quency is depicted in Fig. 8. The figure shows an asymptotic behavior for the resonant frequencies, suggesting that it

is not possible to find chaotic solutions in these cases.

4.3. Critical parameters for the case of three forcing terms

As a last final example, we consider now the more general case when all the three harmonic forcing terms fiðtÞ are
acting on the linearly damped pendulum. In this case, the equation of motion is given by Eq. (12) where ap ¼ 0 for

p 6¼ 1.

Of course, this general case comprises many particular situations. For this reason we have chosen to analyze the

simplified case x1 ¼ x2 ¼ x3 ¼ x, e1 ¼ e2 ¼ e3 ¼ e and d1 ¼ d2 ¼ d3 ¼ 0, for which the Melnikov function is simpler.

As a result, we obtain for this situation the following expression

Mðt0Þ ¼ �8x0a1 þ 2pe 1

�
� x2

x2
0

�
sech

px
2x0

� �
cosðxt0Þ þ 2pe

x2

x2
0

� �
csch

px
2x0

� �
sinðxt0Þ: ð35Þ

Fig. 8. Semilogarithmic plot of the Melnikov ratio versus the forcing frequency x2 for the values x0 ¼ 0:5 (––), x0 ¼ 1 (– – –) and

x0 ¼ 1:5 (- - -). Notice the asymptotic behavior of this ratio for the resonant frequencies, which suggest that chaotic solutions in these

cases are not possible to find. The case shown corresponds to a damped pendulum in which the supporting point moves harmonically

in the vertical direction and the bob is subjected to a harmonic forcing.
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By simple inspection of this formula, it can be noted that there are two kinds of terms here, one of them affecting the

sine function and the other one affecting the cosine function, something that does not occur in the previous cases under

analysis. Since in the above examples there is only a kind of oscillating function, searching for the zeros of the Melnikov

function is simpler. However, in the case we are analyzing here, this does not happen and we need to find first the timeet0t0 , which maximizes Mðt0Þ. This time et0t0 satisfies the condition

tanðxet0t0Þ ¼ x2

x2
0 � x2

coth
px
2x0

� �
; ð36Þ

and the value of the Melnikov function at this point et0t0 is given by

Mðet0t0Þ ¼ �8x0a1 þ
2pe
x2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 csch2 px

2x0

� �
þ ðx2

0 � x2Þ2 sech2 px
2x0

� �s
: ð37Þ

It is important to recall that the previously computed value Mðet0t0Þ represents the maximum of the Melnikov function

and, thus, all we need to do is to set it to zero to find the corresponding critical parameters for which the invariant

manifolds intersect. Once this computation is carried out, the ratio Rðx0;xÞ between the critical value ec of the external
amplitude e and the damping coefficient a1 is given by

Rðx0;xÞ ¼ 4x3
0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 csch2 px

2x0

� �
þ ðx2

0 � x2Þ2 sech2 px
2x0

� �r : ð38Þ

Fig. 9 shows a plot of this ratio versus the forcing frequency x for the natural frequency values x0 ¼ 0:5, x0 ¼ 1 and

x0 ¼ 1:5. We have mainly analyzed frequencies on a small range up to 1.5. For this range of values, the Melnikov ratio

increases with the natural frequency and shows a local maximum for values slightly smaller than the natural frequency.

This means that when the pendulum is perturbed using frequencies in the vicinity of x0, one needs to increase the

strength of the perturbation in order to get chaotic behavior, because the system tends to be locked to the external

frequency by a mechanism of resonance, so avoiding the appearance of chaos. Note that this is exactly the opposite case

to the situation described in Fig. 5, where the system sensitivity has a maximum near the natural frequency.

5. Discussion and conclusions

Application of Newton�s law to the motion of the simple pendulum with nonlinear damping terms and incorporating

several drivings leads to the equations of motion of what we call a generalized perturbed pendulum. This model is a

paradigm for the study of many properties of continuous dynamical systems, with many applications to physical and

technological problems.

Fig. 9. Semilogarithmic plot of the Melnikov ratio versus the forcing frequency x for the values x0 ¼ 0:5 (––), x0 ¼ 1 (– – –) and

x0 ¼ 1:5 (- - -). This example represents a simplified version of the case when the three forcing terms are acting at the same time.
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We apply Melnikov method, which has proved useful in many practical cases to ascertain the chaotic responses of

certain dynamical systems, to the generalized harmonically perturbed pendulum, resulting in general expressions that

comprise particular cases. Among all the examples analyzed, an interesting particular situation appears when the

supporting point of a linearly damped pendulum moves harmonically in the horizontal direction and the bob is sub-

jected to a harmonic forcing, because there is a set of forcing parameters that removes the effect of the driving from the

Melnikov function.

One of the strategies we have pursued here is analyzing the Melnikov ratio between the critical forcing amplitude

and the damping coefficient for some specific examples. Its dependence with the natural and forcing frequencies has

been determined for each case.

Finally, we would like to stress that even though most of the particular cases of this generalized perturbed pendulum

have been studied separately by different authors, here we have attempted to offer a general scheme comprising all them

and also showing general formulae that can be of further use, and that which might be extended to attack other

problems in nonlinear dynamics.
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Appendix A

All the integrals used areZ þ1

�1
dt

sinhl t
coshm t

¼ B
l þ 1

2
;
m � l
2

� �
; ðA:1Þ

Z þ1

�1
dt sechAt cosBt ¼ p

A
sech

pB
2A

� �
; ðA:2Þ

Z þ1

�1
dt sech2At tanhAt sinBt ¼ pB2

2A3
csch

pB
2A

� �
; ðA:3Þ

Z þ1

�1
dt sech3At cosBt ¼ p

2A
1

�
þ B2

A2

�
sech

pB
2A

� �
; ðA:4Þ

Z þ1

�1
dt sechAt tanh2 At cosBt ¼ p

2A
1

�
� B2

A2

�
sech

pB
2A

� �
: ðA:5Þ
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