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Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
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We consider an overdamped bistable oscillator subject to the action of a biharmonic force with very different
frequencies, and study the response of the system when the parameters of the high-frequency force are varied.
A resonantlike behavior is obtained when the amplitude or the frequency of this force is modified in an
experiment performed by means of an analog circuit. This behavior, confirmed by numerical simulations, is
explained on the basis of a theoretical approach.
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I. INTRODUCTION

During the last three decades, investigation of signal pro-
cessing in nonlinear systems in the presence of noise has
revealed several intriguing phenomena. One of the most
counterintuitive examples of these phenomena is the effect of
stochastic resonance ~SR!, which was initially found in
bistable systems @1#, and it has been confirmed in a large
variety of different dynamical @2–4# and nondynamical sys-
tems @5,4#, seeming to be recurrent in biological systems
~e.g., see Refs. @6–12#!. Its basic effect consists in the fact
that an optimal quantity of noise, added to the driving signal,
improves its detection by a nonlinear system. The very gen-
eral phenomenon of SR appears in the processing of har-
monic @13–15# and aperiodic signals @16–19# by nonlinear
systems. Different kinds of noise have been used in order to
improve the signal processing such as white noise and col-
ored noise @20–22#. Furthermore, similar effects have been
found as well when a chaotic signal is used instead of noise
@23#.

Another related phenomenon has been described recently
@24#, where a resonant behavior in a bistable potential with
respect to a low-frequency force appears. This phenomenon,
called vibrational resonance ~VR!, closely resembles SR al-
though here, a high-frequency harmonic signal plays the role
of noise. Besides the case of the bistable potential considered
in Ref. @24#, the phenomenon of VR has also been found in a
spatially extended system where the collective behavior of
individual units gives rise to an effective bistable potential,
due to the action of multiplicative noise @25#.

There is an essential difference between SR and VR. In
the first case, noise changes both the effective stiffness and
the damping factor of the system, whereas in the latter case
the high-frequency vibration changes only the effective stiff-
ness. This can be explained by the fact that in the first case,
the third moment of the noise force of the resulting signal is
different from zero whereas in the second one, the amplitude
to the cube of the high-frequency force is equal to zero @26#.

In VR, a bistable system is under the action of a bihar-
monic perturbation with very different frequencies. It is
worth noticing that two-frequency signals are important for

communication, since usually a low-frequency signal modu-
lates a high-frequency carrier signal, and is also an object of
interest in several other fields such as acoustics @27#, neuro-
science @28#, laser physics @29#, or engineering. Engineering
constructions can be very sensitive to external perturbations
and it is often assumed that this danger exists if the fre-
quency coincides with one of the natural frequencies of the
constructions. Our study shows that this is not necessarily
the case, as it is indeed possible that frequencies far from
them can also cause resonance phenomena.

The goal of this paper is to compare analytical, numerical,
and experimental results, related to VR, in a bistable poten-
tial driven by two forcing terms, one with a low frequency
and the other with a high one. We start with the development
of a theoretical approach which explains the phenomena de-
scribed here. Later, we carry out some numerical simulations
and compare the results with the ones given by the theory
and the experimental measurements that, as far as we know,
have been obtained using a nonlinear electronic circuit for
the first time in this work. Our experimental results confirm
the appearance of a resonant behavior in the response of the
system, both with respect to the amplitude and frequency of
the high-frequency component of the biharmonic signal. Fi-
nally, we discuss some effects of additive noise on the be-
havior of this system.

II. DESCRIPTION OF THE MODEL AND THEORETICAL
APPROACH TO VR

As the starting point in this paper, we consider the model
described by the following equation:

ẋ2ax1bx3
5A cos~vt !1B cos~Vt1Q !, ~1!

which corresponds to an overdamped bistable Duffing oscil-
lator driven by two harmonic signals of different frequencies.
Here, we assume that V@v , i.e., the term B cos(Vt1Q) is a
high-frequency force with amplitude B and A cos(vt) is a
low-frequency signal of amplitude A.

An approximate solution of this equation, by using the
method described in Ref. @30#, is given in Refs. @31,32#.

PHYSICAL REVIEW E 67, 066119 ~2003!

1063-651X/2003/67~6!/066119~7!/$20.00 ©2003 The American Physical Society67 066119-1



According to this method, and for the case of general values
of the parameters a and b of the restoring force, we look for
a solution in the form

x~ t !5X~ t !1C~ t ,Vt !, ~2!

where X(t) is the variable describing the slow motion com-
ponent of the response and C(t ,Vt) is a 2p-periodic func-
tion of the ‘‘fast’’ time t5Vt , with zero mean with respect
to this time

C~ t ,t !5

1

2p
E

0

2p

C~ t ,t !dt50. ~3!

Starting from Eqs. ~2! and ~3!, it is possible to obtain the
following evolution equations for X(t) and C(t ,Vt):

Ẋ2aX1bX3
13bXC̄2

1bC̄3
5A cos~vt ! ~4!

Ċ2aC13bX2~C2C̄ !13bX~C2
2C̄2!1b~C3

2C̄3!

5B cos~Vt1Q !. ~5!

Remembering that C is a rapidly changing force, we can
expect to find that

Ċ@C ,C2,C3, ~6!

thus obtaining an approximate evolution equation for the fast
part of the motion @Eq. ~5!#

Ċ5B cos~Vt1Q !. ~7!

This equation can be trivially solved, leading to

C5

B

V
sin~Vt1Q !. ~8!

Now we use this result to find the differential equation gov-
erning the slow component of the motion X(t) within this
approximation. Taking into account that C̄3

50 and C̄2

51/2(B2/V2), Eq. ~4! becomes

Ẋ2aX1bX3
1

3

2
b

B2

V2
X5A cos~vt !. ~9!

For convenience, we write this expression in the following
form:

Ẋ2 â~B !X1bX3
5A cos~vt !, ~10!

where

â~B !5a2

3

2
b

B2

V2
. ~11!

Equation ~10! can be understood as the forced motion of a
particle in the effective bistable potential

V~X !52 â~B !
X2

2
1b

X4

2
. ~12!

An analysis of V(X) shows that two different situations, de-
pending on the sign of â(B), may be found. If â(B).0, the

potential has two minima @situated in X56Aâ(B)/b] and a
maximum ~in X50), i.e., we have a typical double-well po-
tential. However, if â(B)<0, we have a single minimum
situated in X50, and consequently, the potential is
monostable. Coming back to the parameters of our original
problem, we can write

if B>A2a

3b
V we have one minimum in 0, ~13!

if B,A2a

3b
V we have two minima in 6Aâ~B !/b .

~14!

Then, the high-frequency component, which is equivalent to
noise in SR, induces a bifurcation in the system, whose prin-
cipal effect consists in changing the number of equilibrium
points in the effective potential from two to one as B in-
creases. We will show in the following sections that the ori-
gin of the resonant behavior discussed in this paper is closely
related to this change in the shape of the effective potential.

In order to analyze in detail the referred bifurcation, let us
consider first the situation corresponding to Eq. ~14!. In this
case, we have two equilibrium points situated in

X1,256Aa

b
2

3

2 S B

V
D

2

. ~15!

We are interested in obtaining the equation for the deviation
of the response X apart from each one of the minima X1,2 .
Following this idea, we write Y5X2X1,2 and substitute this
quantity in Eq. ~10!, thus getting, after some algebraic ma-
nipulations,

Ẏ12 â~B !Y1bY 3
13bX1,2Y

2
5A cos~vt !. ~16!

Assuming that our system evolves near one of the equilib-
rium points and that the deviations from the equilibrium
points are small (A!1 and t→`), linearization of this equa-
tion results in

Ẏ1k~B !Y5A cos~vt !, ~17!

where we have written k(B)52 â(B). Using standard meth-
ods, we define a parameter Q as the ratio of the amplitude of
the low-frequency output oscillations, governed by Eq. ~17!
within our approximation, to the amplitude of the low-
frequency forcing A. In this case Q becomes

Q5

1

Ak2
1v2

5

1

Av2
14S a2

3bB2

2V2 D
2

, ~18!
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whereas the phase shift c is given by

c52arctanS 2

v

k D . ~19!

Analogously, we can write the equation for the deviation of
X from the equilibrium point in the case described in Eq.
~13!, where we have a single minimum situated in X050. It
is straightforward to see that after linearization under the
same conditions given above, the equation obeyed by Y reads

Ẏ2 â~B !Y5A cos~vt !, ~20!

which is exactly Eq. ~17! where k(B) is changed by
2 â(B). Then, the response and phase shift are given by Eqs.
~18! and ~19!, where we write 2 â(B) instead of k(B). In
particular,

Q5

1

Av2
1S a2

3bB2

2V2 D
2

. ~21!

Let us write the solutions for the deviations Y obtained
above, in both cases ~two and one equilibrium points! in
terms of the parameters of the high-frequency forcing signal,
i.e., its amplitude B and frequency V . Let us suppose also
that we fix the value of the forcing frequency. Then, for a
given bistable potential (a and b fixed!, Q increases if B
,A2a/3bV when B increases @Eq. ~18!# and decreases if
B.A2a/3bV when B increases @Eq. ~21!#. As Q gives us an
idea about the amplitude of the slow component of the out-
put of the system in relation to the amplitude of low-
frequency input, this means that a resonance occurs in the
system when

B5A2a

3b
V , ~22!

which corresponds to the critical value of the effective stiff-
ness parameter ( â50) where the renormalized potential
changes its number of equilibrium points from two to one. It
is not difficult to see that a similar behavior can be obtained
if we fix the amplitude B and change the high frequency V .
This point will be confirmed also by the numerical simula-
tions and experiments presented in the following section.

III. NUMERICAL AND EXPERIMENTAL RESULTS

One main point in this paper is the experimental confir-
mation of the theory presented in the preceding section. In
particular, we will focus our attention in the experimental
evaluation of the response parameter Q. To this end, we have
used the electronic circuit shown in Fig. 1.

It is composed of three LM741 operational amplifiers,
two AD633 analog multipliers, one capacitor, and eight re-
sistors. In order to minimize the effect of parasitic noise, the
circuit has been designed with a minimum number of com-
ponents. Similar circuits have been already described in the
literature in order to analyze some phenomena related to sto-
chastic resonance @33#.

Functionally, the circuit consists of two main parts. The
first one ~operational amplifier OA3 and resistors Re , Re1,
and Re2) is an adder, whose function is to add the low- and
high-frequency signals. The second part is the integrator in
the double-well potential, which consists of another adder
(Ra , Ra1 , Ra2 , Ra3, and the operational amplifier OA1!,
two multipliers ~AD633 with coefficient a) and an integrator
(Rb , Cb , and the operational amplifier OA2!. This whole
circuit implements the dynamical equation of an overdamped
double-well Duffing oscillator of the form

RbCbV̇x5Vx

Ra

Ra2
2Vx

3a2
Ra

Ra1
1Vs

RaRe

Ra3Re1
1Vn

RaRe

Ra3Re2
,

~23!

where 2Vx is the voltage at the output of the operational

FIG. 1. Circuit used in the analog simulations of the overdamped Duffing oscillator. The use of the parameter values given in the text
gives rise to a double-well potential with a separation between minima equal to L52 and a barrier height H59.3.
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amplifier OA2, Vs is the low-frequency signal, and Vn is the
high-frequency modulation @compare with Eq. ~1!#.

We have chosen the following set of values for the resis-
tors and the capacitor: Ra556 KV , Ra15150 V , Ra2
515 KV , Ra3522 KV , Re52.2 KV , Re156.7 KV , Re2
52.2 KV , Rb510 KV , and Cb510 mF. The resistors and
the capacitor, both have a tolerance of 5%. These parameter
values lead to a dynamical equation for the circuit similar to
that of a conventional symmetric double-well potential sys-
tem with a separation between the minima equal to L52 and
a barrier height H59.3. The reason for using these param-
eters instead of a and b is that in our experimental setup, it is
easier to change the barrier height H and the separation be-
tween minima L of the bistable potential than constants a and
b themselves. Both pairs of constants are related to each
other through the expressions

a5

16H

L2
, b5

64H

L4
. ~24!

The low-frequency signal Vs and the high-frequency modu-
lation Vn have been generated with two 33120A Agilent
wave form generators, and the response Vx of the system has
been captured with a Tektronix digital oscilloscope.

Besides the analog experiments, we have carried out nu-
merical simulations of the same system by using a second
order Runge-Kutta integration scheme, with a time step of
Dt52.531024, in order to compare with both the theory
and the results obtained from the circuit. The same values
H59.3 and L52 used in the experiment have also been used
in the numerical simulations.

Following Ref. @24#, we have calculated experimentally
and numerically the response of the system, defined by

Q5ABc
2
1Bs

2, ~25!

where Bc and Bs are the cosine and sine components of the
output signal, that is,

Bs5
2

nTE0

nT

x~ t !sin~vt !dt , Bc5

2

nTE0

nT

x~ t !cos~vt !dt ,

~26!

where T52p/v and n is an integer. Notice that the defini-
tion of the response given above differs from that of Eqs.
~18! and ~21!. In particular, it must be taken into account
that, in order to compare theory and simulations, we need to
normalize the results obtained by means of Eq. ~25! ~by di-
viding by A), and to multiply the theoretical ones @given by
Eqs. ~18! and~21!# by a factor of 2 appearing in Eq. ~26!.

In Fig. 2, we show the numerical and the experimental
values for the response @Eq. ~25!# of the systems given by
Eq. ~1! and Eq. ~23!, respectively, to the varying amplitude
of the high-frequency signal ~natural frequency equal to 10
Hz!, clearly showing a resonant behavior as expected from
our theoretical predictions. The different symbols mean dif-
ferent values for the amplitude of the low-frequency signal
~natural frequency equal to 0.2!. We observe that the experi-
mentally obtained values are somehow displaced to the right

and the corresponding responses are a bit smaller than the
numerical ones, although the behavior is very similar in both
cases. The differences observed among numerical and ex-
perimental results could be explained by considering the fact
that some components of the experimental circuit ~in particu-
lar, resistances! could introduce a certain variability in the
experimental values of the parameters of the bistable poten-
tial ~mainly in the barrier height!.

In Fig. 3, the numerical values of the normalized response
corresponding to the cases of Fig. 2 are depicted and com-
pared with the theoretical approximation given by the theory
~see also Refs. @31,32#!. Notice that in the evaluation of the
theoretical approximation of the response, we must use two

FIG. 2. Numerical and experimental values for response Q ~in
volts! vs amplitude B of the high-frequency signal. The continuous
lines correspond to numerical values, whereas the dashed ones
stand for the experiment. The different symbols mean different val-
ues for the amplitude of the low-frequency signal: circles, A
56.656; squares, A53.328; stars, A51.248; and triangles, A
50.416.

FIG. 3. Numerically calculated values of the system response
vs. theory ~thick line!. Symbols mean the same as in Fig 2. Note
that we have normalized the numerical values by dividing by A, and
the theoretical ones have been multiplied by a factor of 2 in order to
compare numerics and theory. As it is clearly seen, the numerical
values tend to the theoretical resonant curve when A is diminished.
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different expressions of Q, one for the left side of the reso-
nant point, i.e., Eq. ~18!, and Eq. ~21! for the right side. In
this figure, it is clear that when the amplitude of the low-
frequency signal A is decreased, the value of B for which the
maximum is obtained tends to the theoretical one. Indeed,
the results suggest that the theory describes properly the ob-
served behavior only for small values of the amplitude of the
low-frequency signal A, as expected from the approximation
under which the theory has been obtained. Moreover, it can
be seen that even for small values of the amplitude A, some
differences persist among theory and numerics. The origin of
these differences lies in the fact that the linearization is per-
formed on a result that is itself an approximation, i.e., that
given by Eqs. ~2! and ~3! corresponding to the time scale
separation.

In Fig. 4 the resonance emerging when V/2p ~instead of
the amplitude! is varied in the high-frequency signal, is
shown by means of the experiment and the numerical simu-
lations. The notation is the same as in the previous figure.
Here, the experimental curve is shifted towards the left and
the values for Q are a bit smaller than those obtained from
the numerical simulations, but again the resonant behavior is
very similar in both cases. The frequency of the slow signal
is again 0.2, but we have chosen an amplitude equal to
0.832. The amplitude for the fast signal is now 52.6815. This
value corresponds to the location of the maximum response
of the system provided by the theory.

Finally, in Fig. 5, theoretical and numerical results are
compared in the same way as before, for the case of the dual
resonant curve that results when V is varied for a fixed value
of B. As observed from the figure, the simulations predict a
value for the maximum location, which is rather well esti-
mated by the theory. Nevertheless, the numerical values for
Q are smaller than the theoretical ones, as occurred previ-
ously.

IV. EFFECTS OF NOISE ON VIBRATIONAL RESONANCE

As is well known, noise can play an important role in the
behavior of certain dynamical systems. In particular, the

standard bistable potential considered in this work consti-
tutes a paradigm in the study of the effects of noise on non-
linear systems, for example, in the context of SR. So, it
seems natural to investigate the action of a certain amount of
additive noise on the resonant behavior described above
~VR!. It should be noted that we do not pretend to explore in
detail the effects of noise on VR in this section, but only
some of the main consequences of including a stochastic
term in our system. In particular, we add white Gaussian
noise to the model described by Eq. ~1!, and get the follow-
ing equation:

ẋ2ax1bx3
5A cos~vt !1B cos~Vt1Q !1j~ t !, ~27!

where the moments for the noisy term are

^j~ t !&50, ^j~ t !j~s !&5Dd~ t2s !, ~28!

D being the intensity of the noise.
We consider first the implications of adding a stochastic

term when only the amplitude of the high-frequency force B
is varied. We have carried out numerical simulations by us-
ing a stochastic version of the Heun algorithm ~cf. @34#!. The
results are depicted in Fig. 6. The first striking effect is that
the maximum of the resonance curve diminishes as D in-
creases and, at the same time, its location is shifted towards
lower values of the high-frequency amplitude B. This is due
to the fact that, in this situation, noise works as a fraction of
the high-frequency signal component, thus advancing the
resonance. Another interesting result is that the vibrational
resonance effect completely disappears for large values of D.
The origin of this effect comes from the fact that white noise
provides an input to the system with contributions coming
from all frequencies. This masks the contribution of the high-
frequency signal, and its relative importance in the response
of the system is decreased. Of course these two effects will
become more and more relevant as D increases. Likewise, it
is worth noting that the classical stochastic resonance behav-
ior is recovered precisely when B is 0, as is observed in this

FIG. 4. Resonant behavior of the system with frequency V

when v/2p50.2, A50.832, and B552.6815. Circles correspond
to numerical simulations and squares to the experiments.

FIG. 5. Theoretical and numerical values for the case of the
resonance with the frequency. The values of the parameters are the
same as used in Fig. 4.
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figure. This means that response Q of the system passes
through a maximum as D is increased.

The frequency resonant behavior that we have reported in
the preceding section is also modified in the presence of
noise. To show this, we have fixed the amplitudes of both the
high- and the low-frequency signals and have computed the
response Q of the system when V is varied for different
values of the noise intensity D. The results are drawn in Fig.
7. This phenomenon is similar to the one found when B is
varied. In both cases, the maximum of the response curve
decreases as D increases. Additionally, for high enough val-
ues of D, there is no more resonance effect with respect to
the frequency ~see Fig. 7!.

V. CONCLUSIONS

We have discussed the phenomenon of vibrational reso-
nance in a bistable system under the action of a two-
frequency signal with one frequency much larger than the
other one. Changing the amplitude of the high-frequency
component improves signal processing of the low frequency
in a resonant way. First the response of the system is in-
creased and then decreased. Additionally, resonant behavior

in the response of the system is also observed with respect to
the high frequency, demonstrating two different but related
resonances. We have compared analytical, experimental, and
numerical results, and found a good matching. To our knowl-
edge, this is the first experimental evidence of the phenom-
enon of vibrational resonance described in the literature. Fi-
nally, we have studied the influence of white noise on VR in
bistable systems, showing that noise can advance VR and, at
the same time, decrease the resonant effect.

We hope that our theoretical, experimental, and numerical
findings will stimulate further work on VR in different kinds
of systems. The potential applications of these phenomena
include neuronal dynamics, communications technologies,
and mechanical engineering.
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