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A stochastic model of the electrophysiological behavior of the pancreaticb cell is studied, as a paradigmatic
example of a bursting biological cell embedded in a noisy environment. The analysis is focused on the
distortion that a growing noise causes to the basic properties of the membrane potential signals, such as their
periodic or chaotic nature, and their bursting or spiking behavior. We present effective computational tools to
obtain as much information as possible from these signals, and we suggest that the methods could be applied
to real time series. Finally, a universal dependence of the main characteristics of the membrane potential on the
size of the considered cell cluster is presented.
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I. INTRODUCTION

The pancreaticb cells are responsible for the secretion of
insulin, the hormone that regulates the glucose concentration
in the blood. Autoimmune destruction ofb cells results in
type-I diabetes, and this illness, if not treated correctly, can
cause the death of the patient.

The electrophysiological behavior of pancreaticb cells
shows bursts in the membrane potentials for intact islets of
Langerhans, where the cells are coupled in groups of
1000–10 000 cells. These bursts consist of the alternation of
active phases and silent phases. During the active phase, the
membrane potential oscillates rapidly, while it rests almost
unchanged during the silent phase. Besidesb cells, many
other cell types show bursting electrical activity[1]. The
bursting activity can be quantified by means of the so-called
plateau fraction, that is, the ratio of time that the cell spends
in the active phase over the total recording time. This quan-
tity seems to be physiologically very relevant, as several ex-
perimental reports[2–4] have concluded that there is a direct
correlation between the plateau fraction and the rate of insu-
lin release. The main reason is that the intracellular calcium
concentrationfCa2+gi increases during the active phase, andit
is generally accepted that calcium has a key role in the se-
cretion of insulin. The synchronization between the oscilla-
tions of fCa2+gi and the active-silent alternation of the elec-
trical activity has been thoroughly studied by Santoset al.
[5]

The bursting electrical activity in intact islets is often syn-
chronized, presumably via gap junctional coupling[6–9].
However, the bursts get distorted when we consider the
membrane voltage of smaller clusters, and about one third of
the isolatedb cells only show stochastically distributed
spikes[10]. A complete explanation is still lacking of this
difference in behavior between coupled and isolated cells,
although several possible answers have been proposed. An
obvious reason could be that the cells change their behavior
when removed from their normal environment. This is a
common phenomenon in cellular biology and an obstacle to
much experimental work. On the other hand, Shermanet al.

[11] and Chay and Kang[12] proposed the stochasticity as-
sociated with the random opening and closing of certain ion
channels to be the main reason for this peculiar behavior. In
coupled cells inside intact islets, the noise would be distrib-
uted among the membrane of many different cells and there-
fore its influence would be smaller, letting the bursting be-
havior appear. This explanation is commonly known as the
channel-sharing hypothesis. However, recent experimental
results on single-cell electrical behavior have shown that the
situation is not so simple. In fact, it was demonstrated by
Kinard et al. [13] that about half of the isolated cells do
burst, but showing shorter active phases of a few seconds,
while Jonkerset al. [14] observed isolated cells with active
phases of several minutes. As a different explanation, the
heterogeneity hypothesisfocuses on the different electrical
properties of the cells and the existence of a narrow param-
eter window for bursting as the key reasons to understand the
phenomenon[8,15–17]. A generic mechanism for the pro-
duction of global oscillations calleddiversity is analyzed in
Refs.[18,19]. The introduction of diversity amongst the ele-
ments destabilizes the quiescent state of an excitable medium
and leads to global oscillations even when each individual
element of the medium is quiescent in isolation. It is also
important to mention the works by Loewensteinet al.
[20,21], where a dynamic mechanism is presented by which
the electrical coupling of identical nonoscillating cells can
generate synchronous membrane potential oscillations. Fi-
nally, a hypothesis based on paracrine effects on theb cells
by glucagon secreted bya cells in the islet has been recently
developed[22].

Since the pioneering work of Atwateret al. [23], in which
the first biophysical model for the bursting activity in pan-
creatic b cells was presented, many mathematical models
have been proposed to study the electrical activity of these
cells. The first model, due to Chay and Keizer[24], was
based on the Hodgkin-Huxley equations for the squid giant
axon [25]. During the last two decades, dozens of models
have been analyzed, each of them trying to understand par-
ticular processes related to this phenomenon and making use
of the most recent experimental results. Of particular impor-
tance is the appearance of simple two-dimensional(2D)
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maps that produce bursting behavior similar to the electrical
activity observed in biological neurons and endocrine cells.
A thorough analysis of the synchronization of these maps is
developed in Refs.[26–28].

In the present paper we study a modification of the math-
ematical model for the pancreaticb cell proposed by Sher-
manet al. [11]. We have focused our attention on the transi-
tion from the deterministic model, which represents bursting
cells coupled in intact islet of Langerhans, to the stochastic
model representing an isolated spiking cell. We have studied
this model as a paradigmatic example of electrophysiologi-
cally bursting cell models, as we are interested in developing
an approach to obtain as much information as possible from
a biological system in a noisy environment. In the literature
several tools have been suggested for studying irregular bio-
logical phenomena, such as heart rate variability[29] or neu-
ral spiking signals[30], both in noiseless and in noisy envi-
ronments. We believe, however, thatb-cell models warrant a
thorough study all by themselves, and our work points in this
direction. Our first goal is to examine how the dynamical
properties of a bursting signal are distorted by increasing
noise, in order to find the most effective tools to obtain in-
formation from such noisy signals. We have used several
methods. Some are already known in the literature, but have
not been applied in this context. Other methods are new, such
as the analysis of the time series obtained from the number
of spikes in each burst. Second, we are interested in studying
the transition between the bursting and spiking behaviors of
the Sherman model, as it relates two easily measurable quan-
tities, the membrane potential and the number of cells in the
cluster. Obtaining useful ways to quantify this transition
might be of interest to actual biological research as the tran-
sition may influence the secretion of insulin[31,32].

We have organized the paper as follows. We start by re-
viewing the main features of the model, both in the deter-
ministic and the stochastic regime. In Sec. III we study the
Lyapunov exponents of the system and how they evolve with
the number of cells. In Sec. IV we propose the interspike
interval time series as a fruitful tool to obtain information
about the periodic or chaotic nature of the system, as well as
its bursting or spiking behavior, even when the level of noise
is acute. In Sec. V, we analyze the time series obtained from
the number of spikes in each burst, in particular the variation
of their mean and standard deviation in the transition from
the intact islet to the isolated spiking cell.

II. DESCRIPTION OF THE MODEL

The model that we have used for our investigations was
originally developed by Shermanet al. [11], as an update of
earlier models by Chay and Keizer[24] incorporating the
experimental results of Rorsman and Trube[10]. It was for-
mulated to examine if the hypothesis ofchannel sharing
could explain the different electrical behavior observed in
isolated and coupled cells. This model is often referred to as
thesupercellmodel, because the electrical coupling between
the cells is so strong(the conductivitygc=`) that all cells
behave in total synchrony, and a cluster of cells can be con-
sidered as a single cell with the total volume of the cluster.

The Sherman model is composed of three differential
equations, the independent variables being the membrane po-
tentialV, the concentration Ca of free intracellular Ca2+, and
the fractionn of open voltage-gated K+ channels. The math-
ematical expression of the model is presented in the Appen-
dix. As is usual in this kind of cellular model,V and n are
responsible for the fast spiking process, while the equation
involving fCa2+gi describes the slow processes that regulate
the transition between the active and the silent phases. This
model only takes into account the ionic currents of the
voltage-gated K+ channels, the voltage-gated Ca2+ channels,
and the calcium-activated K+ channels. The latter typically
shows just five or six open channels out of the several hun-
dreds that each cell has, and the stochastic opening and clos-
ing of them is supposed to be the key to understanding the
destruction of bursts in isolated cells and small clusters. A
very similar model was presented by Chay and Kang[12]
and the same results were obtained.

A. The deterministic regime

The model presents two regimes, the deterministic and the
stochastic. We first focus our attention in the deterministic
regime. It represents the electrical behavior of a cell in an
intact islet of Langerhans. It does not depend on the number
of cells of the cluster, as it can be seen as the limit of infi-
nitely many cells. Depending on the parameters, we obtain a
very wide variety of behaviors, such as long and short bursts,
continuous spiking, bursts with no spikes, etc. We are inter-
ested in the transition from bursts to isolated spikes. Varying
the Ca2+ reversal potentialVCa proved to be a good way to
reach different behavioral regimes, and hence we choseVCa
as the active parameter. This is illustrated in Fig. 1, where the
bifurcation diagram of the system is shown whenVCa is var-
ied. First, we note that if we vary the parameter the trajecto-
ries produce bursts of any number of spikes from1 to 45, the
transition from one case to another occurring via a complex
mixture of different bifurcations. ForVCa.136.5 mV we
have regular periodic spiking, that undergoes a period-
doubling cascade to chaos whenVCa decreases. For
VCa.134.5 mV several periodic windows of increasing pe-
riod are present, starting in their right sides with saddle-node
bifurcations and ending to the left in period-doubling cas-
cades[see Fig. 1(b)]. If VCa is decreased even further, the
transition from i-periodic orbits tosi +1d-periodic orbits fi-
nally becomes a period-adding transition, in which there is a
brief coexistence of both orbits and there are no more chaotic
regimes separating both behaviors. Detailed studies of this
phenomenon in similarb cell models were presented in Refs.
[33,34]. This wide variety of behaviors will be very useful to
examine the different tools that will be developed later in the
paper.

B. The stochastic regime

Now that we have presented the broad range of signals
that the deterministic model offers, it is time to introduce the
main features of the stochastic regime. While the determin-
istic model represents an intact islet and could be understood
as a cluster of infinitely many cells, the stochastic regime is
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governed byN, the number of cells in the cluster. The main
idea is to substitute the expression Ca/Ca+Kd, which repre-
sents the fraction of open channels in the deterministic re-
gime, by the stochastic variablep=no/no+nc (see Appen-
dix). Kd is the ratio between the closing and opening
probability of the kinetic equation associated to the process
(i.e., the calcium dissociation constant), while no andnc are
the number of open and closed calcium-activated K+ chan-
nels. The variablesno andnc are stochastic and their evolu-
tion is determined by a probabilistic Poisson distribution(see
Ref. [11] for more details). This substitution is valid, as the
mean value of the fraction of open channelskpl=Ca/Ca
+Kd. For Dt sufficiently small, the probability that one open
channel closes in the intervalst ,t+Dtd can be approximated
by

PsO → Cd =
noDt

to
, s1d

while the probability that one closed channel opens in the
interval st ,t+Dtd is

PsC → Od =
ncDt

tc
. s2d

to andtc are the mean open and closed times for each chan-
nel, respectively, being

to =
tcCa

Kd
, s3d

tc = 1000 ms. s4d

Shermanet al. [11] solved the stochastic system choosing
the time stepDt short enough to make the probability of
opening or closing a channel in the intervalst ,t+Dtd smaller
than 0.1, ensuring then that the opening or closing of two
channels in that interval of time is a rather improbable event.
In this way, the fraction of open channels suffers permanent
noisy perturbations after every time step, and can be under-

stood as a so-called birth-and-death process[35]. While the
influence of these fluctuations in the evolution of the signal
is very weak if the number of channels(and also the number
of cells in the cluster) is high, it will become very strong
when this number is low. In fact, the stochastic signals tend
to those obtained by the deterministic regime whenN be-
comes very large.

This approach for the stochastic regime has a disadvan-
tage when considering it from a computational point of view.
The time stepDt~1/N and the calculations can therefore
become extremely long when studying big clusters in order
to get close to the deterministic limit. To avoid this problem
and make the time step independent of the number of cells in
the cluster, we make use of the central limit theorem and
suppose that the result ofn events of probabilityP will fol-
low a Gaussian distribution of meanm and standard devia-
tion s expressed by

m = nP, s5d

s = ÎnPs1 − Pd, s6d

as far asP,0.5 andnP.5. We have seen that this ap-
proximation can be applied to our case forN.150, while
for N,150 we have been using the algorithm explained
before. As it will be seen during the text, the matching of
both algorithms aroundN<200 cells is good enough from
a qualitative point of view, although several quantitative
results differed slightly depending on the model used. Fur-
thermore, whenn becomes large, we can approximate the
distribution of the probabilityP of each event with a
Gaussian of meankPl and variancekPls1−kPld/n. As the
standard deviation of the distribution verifies

s ~
1
În

~
1

ÎN
, s7d

when the number of cellsN→`, P tends to its mean value
kPl and the stochastic model resembles the deterministic

FIG. 1. (a) Bifurcation dia-
gram of the deterministic system
when the parameterVCa is varied.
Periodic and chaotic behaviors are
shown.(b) Zoom in of (a) in the
region of low number of spikes
per burst, marked with an arrow in
(a).
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model ssee Ref.f12g for more detailsd. Finally, it is worth
saying that it is obviously possible to bridge the Poisson and
the Gaussian approaches by considering multievent pro-
cesses in the Poisson distribution.

In Fig. 2 we can see a plot for the membrane potential of
a periodic orbit of 6 spikes per burstsVCa=131 mVd, a cha-
otic orbit sVCa=134 mVd, and a periodic orbit of 40 spikes
per burstsVCa=111 mVd. From now on, we will refer to
these three orbits asP6, Ch, and P40, respectively. They
have been plotted for the deterministic model, as well as for
N=1000 cells and forN=10 cells in the stochastic regime. It
is clear that the noise affects each orbit in a different way.
While decreasing the number of cells makes the average time
period of all orbits decrease, we can see that the orbits with
many spikes per burst are more robust than those with few
spikes per burst. ForN=1000 it seems that the chaotic orbit
still maintains its main properties and can easily be distin-
guished from the periodic orbits. However, forN=10 only
the orbit of period 40 still shows structures that resemble the
bursts. For such a small cluster, the two other modes already
show exclusively a randomly spiky behavior. Obviously, all
signals will be even more spiky if we plotted them forN
=1.

III. LYAPUNOV EXPONENTS

The Lyapunov exponentssLEdli (i =1, . . . ,d, d being the
dimension of the system) give useful information about the
nature of the systems. Our model has three Lyapunov expo-
nents, one of them always being equal to zero(correspond-
ing to the direction of the flow). The other two can be either
positive or negative. If at least one of the Lyapunov expo-
nents is positive, then the orbit is considered to be chaotic,
while the orbit will be periodic if all of them are smaller or
equal to zero. As we showed in the last section, varying a
parameter(in our caseVCa) we can obtain a wide range of
periodic orbits, from a few to many spikes per burst, as well
as chaotic orbits.

Figure 3 shows the largest LEÞ0 (lL from now on) as a
function of the parameterVCa, for different sizes of the cell
cluster. The lower line corresponds to the deterministic
model, that is, the limit of infinitely many cells. We can
observe that most of the chaotic orbits fall in a narrow range
of values ofVCa aroundVCa=135 mV, that is, in the zone of
small number of spikes per burst(NSB from now on). Fur-
thermore, it is clear thatlL decreases almost linearly when
VCa decreases, that is, when NSB increases. The calculation
of lL confirms that bursts with many spikes are more robust
than those with few spikes. The other three curves in Fig. 3
were calculated forN=5000,N=1000, andN=150 cells in
the stochastic regime. The values oflL suffer a translation
towards higher values whenN decreases. This makes sense,
as the value of the largest Lyapunov exponent for a random
time series should be infinity. However, even forN=150
cells, when the level of noise is quite high, the main features
of the deterministic curve are still recognizable, and there is
a range of orbits that still show negative values of the
Lyapunov exponent. Furthermore, the slope of the approxi-
mately linear curve is maintained even for very small clus-
ters. This means that even in very noisy environments we
can find traces of the original properties of the orbits, their
robustness, their periodic or chaotic nature, etc., and the de-
velopment of tools to pursue this idea will become the main
goal of our work.

Figure 4 shows the variation oflL for the periodic orbits
P6 andP40 and for the chaotic orbitCh, when we decrease
the number of cells in the clusterN (from right to left). We
have started with a very high value ofN, where the stochas-
tic regime is almost indistinguishable from the deterministic
regime. The values oflL are nearly constant until a threshold
value aroundN=106 is crossed. After this point, all curves
start to grow and the periodic orbits eventually cross the
horizontal axis. Obviously, when a periodic orbit shows a
positive value oflL, it is impossible to recognize its periodic
nature any more. However, as observed in Fig. 3, the value
of N for which this happens depends strongly onVCa.

The Lyapunov exponents shown in Figs. 3 and 4 have
been calculated making use of the algorithm proposed by

FIG. 2. Plots of the membrane
potential forP6, Ch, andP40. (a)
Deterministic case,(b) N=1000,
(c) N=10. We can see that the
noise affects each orbit in a differ-
ent way. For small values ofN,
only P40 still shows a recogniz-
able bursting behavior.
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Wolf et al. [36] for mathematical models. However, we are
also interested in calculating the Lyapunov exponents ana-
lyzing the signals as time series. We have used the algorithm
due to Rosensteinet al. [37], already compiled in theTISEAN

package[38]. In order to apply this method, it is necessary to
calculate the optimum time delay for each time series, and
we have chosen the value that minimizes the mutual infor-
mation function. The results oflL analyzing the signals as
time series coincided with the ones obtained with the Wolf
algorithm for models, both for the deterministic case and the
stochastic case with high values ofN. For very noisy signals
(that is, for low values ofN) extracting Lyapunov exponents
from a time series is always a difficult task, but we were able
to reproduce the main features shown in Fig. 3. For very low
values ofN, signals with low NSB show positivelL and
therefore are indistinguishable from chaotic orbits, while the
periodicity of signals with high NSB is recognizable even in
the presence of a quite high level of noise. In the following
sections, we will examine in depth the differences between

periodic orbits of low NSB, periodic orbits of high NSB, and
chaotic orbits in noisy environments.

IV. STUDYING THE INTERSPIKE TIME INTERVALS

Since the work of Sauer[39], in which the possibility of
reconstructing chaotic attractors from interspike intervals
was presented, several works have focused on the study of
time series for interspike intervals[40–42]. In fact, the inter-
spike intervals(ISI from now on) have proved to be a fun-
damental source of information to characterize the nature of
many biological signals. Furthermore, they are easily mea-
surable in experimental data, and this fact encouraged us to
study them in our system.

A. ISI return maps

The study of return maps is a well known method to dis-
tinguish chaotic from periodic signals in systems with weak

FIG. 3. Largest Lyapunov ex-
ponent as a function of the param-
eter VCa for the deterministic
model, forN=5000,N=1000, and
N=150 cells.

FIG. 4. Largest Lyapunov ex-
ponent as a function ofN for the
periodic orbits P6 and P40, as
well as for the chaotic orbitCh.
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chaos. We have started our approach to ISI analysis studying
qualitatively the return maps of the ISI time series, in which
we plot thesn+1dth ISI against thenth ISI. The six small
crosses in Fig. 5(a) show the return map for the periodic
orbit P6 sVCa=131 mVd, while thecontinuouscurve in the
same figure shows the return map forCh sVCa=134 mVd.
Figure 5(b) shows the return map for the periodic orbitP40
sVCa=111 mVd and in the inset a zoom of this picture is
plotted. It is remarkable that the return maps for the periodic
orbits are composed of three isolated groups of dots, while
the chaotic signal gives rise to an apparently continuous
curve. Strictly speaking this curve is not one dimensional, as
a chaotic attractor necessarily shows a fractal dimension
[43]. Due to the low chaoticity of this model, a unimodal
map like this one would reproduce very precisely the ISI
time series of our 3D continuous time model. Similar results
have been obtained, for example,for the Belousov-
Zhabotinskii reaction[44,45], among many other systems.
Furthermore, this kind of map gives rise to an intermittency

phenomenon. In our case, the trajectory spends the active
phase of the bursting activity developing several iterations
close to the bottom-left extreme of the map, and eventually
escapes from it to make a big loop that represents the silent
phase.

The apparent continuity of the chaotic curve shows that
almost all ISIs between a minimum and a maximum value
are possible, while there is a forbidden range in the periodic
case. This qualitative difference has proved to be of signifi-
cant importance when trying to characterize the nature of an
orbit in a noisy environment. Figure 6 shows the return maps
for the same three orbits(P6, P40, andCh) for N=5000 and
N=500 cells. We can see that for a certain amount of noise
sN=5000d, the periodic orbit still shows three isolated
groups of dots and, therefore, its periodic nature is clearly
recognizable. The dots with small ISIsnd and ISI sn+1d
represent interspike intervals between two spikes in the same
burst, while the dots with one high coordinate represent the
long interspike interval between two different bursts. As

FIG. 5. (a) ISI return maps for
P6 (six crosses) and the chaotic
orbit (dots). (b) ISI return map for
P40. (c) Zoom in of the region
marked with an arrow in(b). The
return maps for the periodic orbits
are composed of three isolated
groups of dots, while the chaotic
signal gives rise to an apparently
continuous curve.

FIG. 6. ISI return maps forP6,
Ch, and P40. The pictures to the
left correspond toN=5000 cells,
while the pictures to the right cor-
respond toN=500 cells. The three
groups of dots in the return map
of a periodic orbit become more
and more spread when the size of
the cluster decreases(and there-
fore when the noise is increased).
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these three groups of dots get more and more spread because
of the increasing value of the noise, the distance between
them diminishes. Eventually there is a value of the number
of cells Nd that makes all points collide in an indivisible
single group. Using this method, a periodic orbit is indistin-
guishable from a chaotic one forN,Nd, but we will be able
to characterize its periodic or chaotic nature ifN is higher
than this critical value.Nd depends on each orbit and a robust
method to measure it must be defined. If we examine Fig.
6(b) with the naked eye, we can deduce that forN=500,P6
is already mixed, and therefore it shows a similar aspect to a
chaotic orbit with the same amount of noise[see Fig. 6(d)].
This means that, at least as a rough guess,Ndù500 for P6,
while for that value ofN, P40 clearly maintains its periodic
nature and still shows a gap between the three different
groups of dots[see Fig. 6(e) and 6(f)]. However, the use of
numerical techniques related to clustering theory can in-
crease substantially the effectiveness of this method, obtain-
ing lower values forNd, and distinguishing periodic from
chaotic signals even in very noisy environments. This fact
will be shown in the following section.

B. ISI histograms

In order to develop these ideas and obtain more quantita-
tive results, we have applied several numerical techniques to
the histograms of interspike intervals. The ISI histogram is a
very powerful tool, because it gives information about both
the periodic or chaotic nature of the orbit and about its burst-
ing or spiking character.

1. The periodic or chaotic nature of the orbit.

If an orbit is periodic, then the histogram consists of sev-
eral disconnected bars, each of them representing one ISI
(assuming that the bars are thin enough). This is seen in Fig.
7(a) for P6. If the bursts haven spikes, thenn−1 bars will
have low values of ISI and will represent the interspike time

interval due to spikes belonging to a certain burst. However,
one bar, representing the interval between the first spike of a
burst and the last spike of the previous burst, will be found at
high values of the interspike time interval. In the presence of
small noise, the first group ofn−1 bars will become a con-
tinuous distribution, and the isolated bar will be widened into
a Gaussian-like curve. We have namedd the distance be-
tween the closest extremes of both peaks and this quantity
will be very useful for our analysis(hH and hPDF will be
defined in the following section).

In a chaotic orbit, even in the absence of noise the ISI
histogram follows a continuous curve, made out of several
peaks[see Fig. 8(a)]. Therefore, the value ofd is zero for a
chaotic orbit no matter how noisy the system is, but for a
periodic orbitd will decrease and tend to zero when the noise
of the system grows and makes the two peaks come closer.
From this point of view,d becomes a natural parameter to
distinguish a chaotic orbit from a periodic orbit in a noisy
environment.

Figure 7 shows the ISI histogram for the periodic orbitP6
and different values ofN, while Fig. 8 shows the same
curves for the chaotic orbitCh. The height of the second
peak, that we will callhH, and the distance between peaksd
are shown. Figures 7(a) and 8(a) show the deterministic case
for each orbit. Figures 7(b) and 8(b) show the histograms for
N=1000. If the noise grows strongly, as it is shown in Fig.
7(c) and 8(c), where N=500, then the tails of both peaks
come in contact in the periodic case and we can no longer
distinguish a periodic orbit from a chaotic one(unless we
make use of numerical clustering techniques). Finally, Figs.
7(d) and 8(d) show the histograms forN=100, which are the
typical ones expected for a random spiking process.

As was already mentioned, measuringd by analyzing the
histograms with the naked eye can result in rather ineffective
measurements, especially for low values ofN. First, it might
be difficult to separate the dots that belong to each peak in
very noisy signals. To solve this problem, we have made use
of theHartigan’s k-means clustering algorithm[46,47]. This

FIG. 7. ISI histograms forP6.
(a) Deterministic case, (b) N
=1000, (c) N=500, (d) N=100.
The quantitiesd, dmax, dmin, hH,
andhPDF are shown.

ANALYSIS OF THE NOISE-INDUCED BURSTING-… PHYSICAL REVIEW E 69, 041910(2004)

041910-7



numerical technique classifies the dots into two clusters, the
ones that represent interspike intervals and the ones that rep-
resent interburst intervals. Second, we must obtain robust
values ofd that are not strongly influenced by isolated mea-
surements or the length of the time series. A good method is
to suppress the spurious isolated values placed in the gap
between both peaks erasing the highest 1% of the cluster to
the left and the lowest 1% of the cluster to the right. After
these two transformations, we measuredmin as the maximum
value for the remaining cluster on the left,dmax as the mini-
mum value for the remaining cluster on the right, andd
=dmax−dmin as the distance between both values[see Fig.
7(b) for an example].

In Fig. 9 we have plotted the variation withN of dmin,
dmax, and d, for the periodic caseP6, when we apply the
clustering algorithm. We have also plotted the values ofd
that were obtained with the naked eye to compare the effi-

ciencies of both methods. We are interested in measuringNd,
that is, the value of the number of cells that makes all points
collide in a single inseparable group, and, therefore, makes it
impossible to distinguish the periodic orbit from a chaotic
one whenN,Nd. As we already said, a chaotic orbit should
show d=0 ms for all values ofN. However, as our method
erases several measurements from a region of very low
population, a finite gap appears also in chaotic time series.
Our algorithm has proved to give values of arounddCh
<200 ms for all values ofN in Ch. Therefore, a periodic
orbit should show sufficiently bigger gaps to be recogniz-
able. As a criterion, we have decided to defineNd for a pe-
riodic orbit as the value ofN for which d=d0<1.5dCh
<300 ms. Following this criterion, and observing Fig. 9,
Nd<300 cells forP6. The high efficiency of this method is
remarkable, as the level of noise that the signal suffers when
N=300 cells is quite high. We measuredd directly from the

FIG. 8. ISI histograms for the
chaotic orbitCh. (a) Deterministic
case,(b) N=1000,(c) N=500,(d)
N=100. In a chaotic orbit, even in
the absence of noise the ISI histo-
gram follows an apparently con-
tinuous curve.

FIG. 9. Variation withN of d,
dmax, and dmin, for P6, when we
apply the Hartigan’s clustering al-
gorithm (circles). The values ofd
obtained from direct measurement
are also shown(triangles). Nd

<300 for P6. The two solid lines
represent mathematical approxi-
mations ofd.
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histograms and we obtained much higher values ofNd
(aroundNd<500 for P6, as it was shown in the preceding
section, and can be now observed in Fig. 9).

The relations betweend and N plotted in Fig. 9 have
proved to fit very accurately a mathematical expression of
the form

d = dDetftanhsa ln N + bdg = dDetFANB − 1

ANB + 1
G , s8d

where dDet=2930 ms,A=0.077±0.008,B=0.48±0.01, for
the higher curvescorresponding to the clustering algo-
rithmd, anddDet=2930 ms,A=0.057±0.005,B=0.47±0.01,
for the lower curvescorresponding to the direct measure-
mentd. The correlation coefficients arer =0.9977 andr
=0.9984,respectively. We can observe that the exponentB
of the number of cellsN is approximately equal to 1/2. In
fact, the dependence of different signal properties onÎN
will be present all throughout the work and we will refer
to it later in the paper.

Finally, it is reasonable to examine whether the number of
spikes per burst might influence the stability of the signal.
Figure 10 shows the ISI histograms forP40 and four very
low values ofN. It is clear once again that the more spikes
per burstsNSBd, the more robust to noise the orbits are. For
high values of NSB, we obtain lowerdmin because the spikes
in the burst become narrow and higherdmax because the si-
lent phases get longer. Hence, higherd=dmax−dmin are ob-
tained andNd is smaller than for orbits with lower NSB. In
the case ofP40, d<6500 ms whendsP6d=d0, that is,
aroundN=300. AsNø150 in Fig. 10, it was necessary to
use theN dependent time-step stochastic method to calculate
these curves, and therefore this figure was far more time
consuming than the other ones. Figure 10(a) shows the his-
togram forN=150, where it is clear that the periodicity of
the signal is still recognizable. Only when we examine clus-
ters of around 25 cells do the tails of both peaks touch each

other [see Fig. 10(b)], and applying our clustering method
we see thatNd<15 cells for P40. Figure 10(c) shows the
histogram forN=10 and now the second peak is no longer
present. However, there is a long tail, which means that for
this level of stochasticity the signal presents a mixed nature
of varied bursts and isolated spikes(see Fig. 2). Finally, Fig.
10(d) presents the typical histogram expected for a random
spiking signal.

2. The bursting-spiking transition

Our system shows bursts for most values of the param-
eters. This behavior is shown in the ISI histograms as two
differentiated peaks. However, if the system becomes very
noisy, the organized structure becomes spiky, such that the
histograms tend to show a unique peak. In order to charac-
terize this transition, we have measuredh, the height of the
second peak. This height tends to zero when the system gets
more and more noisy and, therefore, we can say that the
system does not show bursts any more when the two peaks
become indistinguishable in the histogram[see Figs. 7(d)
and 8(d), whereN=100].

The shape of a histogram is in fact an approximation of
the probability density function of the signal(PDF from now
on). The histogram only tends to the invariant curve when
there is a large number of points for each bar and the width
of the bars tends to be very narrow. Then, for finite data, the
height of a peak in a typical histogram depends strongly on
the width of the bars and the length of the data series. For
this reason, we have measured the heighthH directly from
the histograms, and we have also calculatedhPDF approxi-
mating the second peak with a mathematical expression. We
have verified that the secondary peaks fit quite accurately to
a normal distribution by applying a Gaussian quantile-
quantile test to the data. After calculating the averagem and
the standard deviations for each signal, we obtain the maxi-
mum of the Gaussian fit as

FIG. 10. ISI histograms for
P40. (a) N=150, (b) N=25, (c)
N=10, (d) N=1. The higher num-
ber of spikes per burst, the more
robust to noise the signals are.
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hPDF =
1

Î2ps2Sn2

nt
D . s9d

The termn2/nt, wheren2 is the number of data points in the
right cluster andnt the total length of the ISI time series, is
necessary to take into account the totality of the data in the
normalization. Figure 7sbd showshH, hPDF, and the Gaussian
approximation for the second peak ofP6 for N=1000cells.

Figure 11 shows the variation ofhH and hPDF for the
periodic orbitP6 whenN is varied. We can see that for high
values ofN, hPDF andhH show very different behavior. This
is due to the fact that the bars of our histograms have a fixed
width of wH=50 ms, and therefore the Gaussian fit for sig-
nals with very little noise is so narrow that these bars are far
too wide for them. For that value ofwH, hH tends to the fixed
value of s1/wHdsn2/ntd=0.003 333. . .. However,hPDF grows
indefinitely, as the probability density function will tend to a
Dirac delta function in the deterministic limit. As we can see
in the figure,hH andhPDF are very similar forN,105, as for
this range ofN the Gaussian curves are wide enough to be
accurately approximated by the histograms withwH=50 ms.
However,hH shows slightly higher values thanhPDF. This is
very common in mathematical approximations of histo-
grams, in which the typical noisiness of the histograms
makes the maximum of the fitting generally lower than the
height of the highest bar[see Fig. 7(b) for an example].

If the noise is sufficiently high, the tails of the two peaks
superimpose one onto the other, and the calculation ofhPDF
starts to lose precision giving exceedingly high results. We
have labeledNhPDF

the approximate value beyond which the
second peak becomes significantly different from a Gaussian
and therefore this technique begins to fail. The curve ofhPDF
can be very accurately approximated by an expression of the
type

hPDF = ANB. s10d

If we use for the fitting the values withNùNhPDF
, in order to

avoid the values ofN for which both peaks superimpose, we

obtain hPDF=4310−6N0.50±0.02. The correlation coefficient
of the linearization of this expression isr =0.9975. Ac-
cording to this approximation and taking into account Eq.
s9d, the standard deviation of the Gaussian approximation
satisfies

s =
1

Î2phPDF
2 Sn2

nt
D ~

1

hPDF
~

1
ÎN

. s11d

It is worth noting its relation with the real source of the noise
in our system. As discussed in Sec. II, the channel opening
and closing probabilities of a single channel follow a Gauss-
ian distribution of meanm=kpl and standard deviations
~1/ÎN. This fact points to the possible existence of a
general law, in which many different phenomena related
to this system are scaled by the square root of the number
of cells ÎN sas it happened, for instance, in the relation
betweend and Nd.

If we decrease the size of the cluster belowNhPDF
, there is

a valueNhH
for which the second peak becomes flat(NhH

<200 cells forP6). For N,NhH
, it is not possible to find a

duration of the silent phase that is more probable than the
rest, and therefore we can say that beyond this point we have
a bursting-spiking coexistence, described by a unique long
tail. This long tail finally disappears and for very low values
of N we can only distinguish a spiking behavior.

We have calculated the same curve forCh and P40 and
very similar results were obtained for the chaotic signal. In
the case ofP40 the slopes of the curves are also very similar
to the ones shown in Fig. 11. However, this case shows much
smaller values ofhH andhPDF because the relative weight of
the second peak in the histogram is very small; in fact it only
represents one spike out of 40. This makes, obviously, the
acquisition of data a harder task.

V. TIME SERIES OF NUMBER OF SPIKES PER BURST

In the last section of this work, we consider the variation
of the time series formed by the number of spikes per burst

FIG. 11. Variation of hH

(circles) and hPDF (triangles) for
P6 with the number of cellsN.
The solid line is the mathematical
approximation ofhPDF.
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NSB, when we decrease the number of cells. As we already
mentioned in the Introduction, the model ofb cell that we
are studying was created to explain why the bursting behav-
ior of intact cells in clusters is converted into random spikes
in isolated cells[11]. Our target in this section is to study
such transition, in particular making use of a quantity that
again is easy to measure experimentally, the NSB time se-
ries. It is known that a precise study of a time series might be
done from different perspectives and many different tools
can be used. We have worked calculating the mean and the
standard deviation of different signals.

Figure 12 shows the NSB time series forP6 andP40, for
the deterministic regime and an example of the stochastic
regime. In the deterministic regime, all bursts show the same
number of spikes if the orbit is periodic. Therefore, the mean
m is an integer and the standard deviations is zero. How-
ever, when noise is introduced, the NSB signals start to fluc-
tuate makingm ands vary. The dashed lines in Fig. 12 plot
the convergence of the meanm for P40 and P6 when N
=1000.

A. Evolution of NSB in the presence of noise

We can observe that the noise makes some bursts show
more spikes than the deterministic signal, while others die
before reaching this value. To understand this double behav-
ior, the system must be analyzed as the interaction between a
2D fast subsystem and the influence of a slow variable work-
ing as a parameter. As discussed by Belykhet al. [48], this
approach is incomplete and, for instance, cannot explain the
existence of chaotic dynamics. However, it is sufficient for
our purposes. Figures 13(a) and 13(b) show the deterministic
P6 andP40 orbit in theV-Ca plane. Thez nullcline for V
−n sfdV/dtg=fdn/dtg=0d and the nullcline for CasdCa/dt
=0d are plotted in both figures. Thez nullcline is formed by
the fixed points of the fast subsystem. These fixed points are
plotted with a solid line if they are stable and with a dashed
line if they are unstable. The highest branch of thez curve
corresponds to an unstable fixed point labeled with FP1. It is

surrounded by a limit cycle. The middle branch is formed by
a saddle point FP2 whose manifolds surround the limit cycle
and prevents the orbit from jumping down to the silent
phase. The lowest branch of thez curve corresponds to the
stable fixed point FP3, which attracts the orbit in the silent
phase. The typical dynamics of the signal is to follow the
limit cycle turning around FP1, while Ca increases. When
the limit cycle collides with the saddle point FP2 in a ho-
moclinic bifurcation, the manifolds of FP2 collapse into a
homoclinic orbit which destroys the limit cycle. In the fol-
lowing moment, the homoclinic orbit is destroyed, and the
unstable manifold of FP1 becomes the stable manifold of
FP2 forming a heteroclinic orbit[see Fig. 13(c) for a diagram
of the manifolds of the fixed points in that moment]. As the

FIG. 12. Evolution forP6 and P40 of the
number of spikes per burst with the time, during
the first 150 bursts. The curves are plotted for the
deterministic case(wide horizontal lines in NSB
=6 and NSB=40) andN=1000 in the stochastic
regime. The dashed lines represent the conver-
gence of the meanm in both cases.

FIG. 13. (a) Deterministic signal forP6 in theV-Ca plane.(b)
Deterministic signal forP40 in theV-Ca plane. TheV-n and the Ca
nullclines are plotted both in(a) and (b). (c) Unstable points FP1
and FP2, stable point FP3 and their invariant manifolds forP6, just
after the homoclinic bifurcation.

ANALYSIS OF THE NOISE-INDUCED BURSTING-… PHYSICAL REVIEW E 69, 041910(2004)

041910-11



limit cycle has disappeared, the only remaining attractor is
FP3. This is the end of the active phase, as the trajectory is
obliged to cross the Ca nullcline and relaxes into the stable
fixed point FP3 while Ca decreases. After some time, FP3
collides with FP2 in a saddle-node bifurcation, and the tra-
jectory restarts the process reaching the active phase and
following once again the limit cycle.

Figure 14 shows theP6 and P40 orbits whenN=1000,
plotted in theV-Ca plane. When the system suffers some
kind of noise, the situation is transformed in the following
manner. While the trajectory is turning around the limit cycle
inthe active phase, the boundary between the limit cycle ba-
sin and the FP3 basin is formed by the stable manifolds of
FP2. A particularly strong perturbation might push the par-
ticle beyond this boundary, make it cross the middle line of
the z nullcline, and reach FP3 and the silent phase. This
mechanism explains the bursts that show fewer spikes than
the deterministic orbit and it was already studied in Ref.[11].
However, we have found two different mechanisms that ex-
plain the existence of extra-long bursts in a noisy environ-
ment. To present the first one, we must analyze the invariant
manifolds of the three fixed points shown in Fig. 13(c), for a
value of Ca just beyond the one that corresponds to the ho-
moclinic bifurcation. First, the orbit must survive in the pres-
ence of noise until it reaches the point in which the limit
cycle collides with FP2 and gets destroyed. Up to that point,
it has already made as many spikes as the deterministic sig-
nal. The typical behavior is that it leaves the active phase and
falls to the stable fixed point FP1. However, the unstable
manifold of FP1 has become the stable manifold of FP2 via
a heteroclinic connection. As the unstable manifold of FP1
used to die in the limit cycle, it still shows a very dense
spiral around FP1 before reaching FP2. For this reason, if the
orbit is pushed by the noise towards the interior of this spiral,
the trajectory can make several extra spikes before getting
close to FP2 and then reaching FP3. This situation cannot be
repeated indefinitely, however, and there is a maximum num-
ber of spikes per burst. When the value of Ca reaches the

right knee of thez curve, the unstable point FP1 collides with
FP2 in a saddle-node bifurcation. In that moment, the het-
eroclinic spiral disappears and the particle is necessarily
pushed to the remaining attractor FP3, no matter how strong
the noise is. In fact, the maximum NSB<45 for the values
of the parameters we are using. Figure 14(b), where an ex-
ample of a noisyP40 orbit is plotted, only shows two cases
of these extra-long bursts, giving us an idea of the infrequent
occurrence of this phenomenon.

The second mechanism that allows the trajectories to
show longer bursts and compensate the noise-induced pre-
mature death of the active phase is only possible for systems
with low NSB. We have named it thereinjection effectand
can be understood if we analyze in detail the noisyP6 orbit
in Fig. 14(a). In that figure we can observe that the orbits for
P6 andP40 show several evident differences. We must re-
member that P6 is less robust thanP40 (the largest
Lyapunov exponentlL of P40 is much smaller than thelL of
P6). For this reason,P6 shows strong noisy fluctuations
when crossing the middle branch of thez nullcline (the
dashed line) in its way to the lower branch, that is, to the
silent phase. The orbit crosses the Ca nullcline just before
crossing thez nullcline, and therefore it tends to move to the
left (to lower values of the calcium, Ca). As the orbits are not
so robust, they start a pseudorandom walk backwards. Some-
times, this erratic movement reaches the attractor FP1 and
the signal is pushed to the silent phase. However, we can see
in Fig. 14(a) that for sufficiently strong noise it is quite com-
mon that the orbits cross the middle branch of thez nullcline,
move to the left in the region between the middle and the
lower branch, and restart a new spike in the middle of the
burst. This little loop in theV-Ca plane takes so little time
that the new burst is born totally joined to the old one, re-
sulting in an extra-long burst. Furthermore, the reinjection
effect can be very frequent, because the orbit does not need
the help of noise to survive up to the homoclinic bifurcation,
as it happened with the former mechanism. Nevertheless,
this phenomenon does not exist in systems with high NSB.
We can see in Fig. 14(b) that for P40, when the orbits cross
the dashed line of FP2 and go down to the attractor FP1, they
follow an approximately straight line. This is because they
are much more robust and do not show the erratic movement
seen forP6. However, another important fact is that in this
case the middle branch of thez nullcline is over the Ca
nullcline. Therefore, when the trajectories cross the dashed
line the system pushes them to the right until they reach the
Ca nullcline, making impossible the reinjection until they are
too far away from the limit cycle.

B. Dependence of the mean value of NSB on the number
of cells N

In order to measure quantitatively the relation between the
NSB time series and the number of cellsN, we must take
into account that measuring the number of spikes in each
burst is not always an easy task, as in very noisy environ-
ments it might be difficult to define the concept of burst.
Several methods can be used. We have focused our interest
on studying the membrane potential, as this potential is easy

FIG. 14. Stochastic signals forP6 (a) and P40 (b) in the V-Ca
plane, whenN=1000. TheV-n and the Ca nullclines are plotted.
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to record using patch clamping techniques. Other methods,
using for example the Ca signal, could also be applied.

First, a burst can be defined as the signal between two
intersections with a certain value of the membrane potential
chosen in the silent phase, that is, between the values of the
voltage in the unstable point FP2 and the stable point FP3.
V=−60 mV has proved to be a good choice. We have named
this method theintersection algorithm. In this case we must
check that between these two intersections the cell shows at
least one spike in order to avoid spurious bursts due to small
noisy fluctuations(we measure one spike when the signal for
the voltage membrane intersects a sufficiently high value, for
exampleV=−35 mV). Second, we can use the ISI time series
to define a burst, in what we call the ISIalgorithm. As we
already mentioned, periodic orbits showd.0 whenN.Nd,
whered is the distance between the extremes of both peaks
in an ISI histogram. ForN.Nd, we know that there are no
significant values of ISI belonging tofdmin,dmaxg and, there-
fore, a burst will be finished whenever ISI. ISCc, ISIc being
any value that verifies ISIcP fdmin,dmaxg. For N.Nd, this
method gives exactly the same results as the former one.

For chaotic orbits, in whichd<0 for all N, as well as for
periodic orbits in the rangeN,Nd, the ISI algorithm proves
to be of little use. However, by again making use of the ISI
histograms it is possible to choose a critical value of the
interspike interval ISIc to distinguish spikes from bursts. The
histograms are continuous in the considered cases, but a
good choice is to use the value of the ISI for which the
histogram shows a minimum between both peaks. Of course,
this method is only useful forN.NhH

, that is, for values of
N for which the histograms still show two peaks. After sev-
eral tests, we have seen that the results of this method are
very similar to the ones given by the intersection algorithm,
only differing by a few bursts per time series.

Figure 15(a) shows the variation withN of the mean value
m of the NSB time series forP6 and the chaotic orbit. Up to
200 bursts have been computed to calculatem ands. These
quantities are calculated for values ofN,106, limit in which
the orbits can be supposed completely indistinguishable from

the deterministic limit. The standard deviationss for both
orbits are shown in Fig. 15(b). Surprisingly, the mean value
of the periodic orbit does not depend onN, at least untilN is
very small. Therefore, for low NSB, the effect of the noise
pushing the trajectories downwards in theV-Ca plane, cross-
ing the z nullcline and making them enter prematurely the
silent phase is balanced by the lengthening influence of the
reinjection effect, and the net conclusion is that the mean
valuem is maintained approximately constant. We have not
plotted the value of the mean forP6 whenN,150 andCh
for N,300, because here the destruction of the bursts is so
strong that the two methods give substantially different re-
sults. Furthermore,N<150 is the limit of the Gaussian ap-
proximation of the stochastic process and we have already
mentioned the slight changes in the results that this fact can
produce. It is remarkable that the mean value for the chaotic
orbit is also constant. It is approximately equal to 5, which is
explained if we look at its location in the bifurcation diagram
in Fig. 1, just by aP5 orbit. The standard deviation for the
periodic orbit is zero forN*53105, which means that for
N.53105 the noise is not strong enough to vary the num-
ber of spikes in any burst, all of them showing six spikes.
The chaotic orbit, however, starts withs<0.9 in the absence
of noise, and it maintains this value until it reachesN<104,
where it also starts to grow.

It is widely known that when the number of cells is small,
the bursts are destroyed and they are replaced by a more
random spiking behavior. However, the variation of the mean
values in Fig. 15(a) for orbits with low NSB does not seem
to be consistent with this result. In order to clarify this fact,
we have analyzed in detail the approach fromN=150 toN
=1 for P6. We have done it only from a qualitative point of
view, as for very smallN the signals are so noisy that there is
not a robust way to measure the number of spikes in each
burst. For small values ofN, we obtain very short silent
phases. Furthermore, the signal between two spikes of the
same burst starts to reach very low values of the voltage,
sometimes they even get down to the silent phase(around
V=−60 mV) and go up again to make another spike. There-
fore, the concept of burst disappears as these structures be-

FIG. 15. (a) Variation of the mean valuem
with N, for P6 (triangles) and the chaotic orbit
(circles). They are independent of the number of
cells in the cluster.(b) Variation of the standard
deviations for P6 (triangles) and the chaotic or-
bit (circles).
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come a mixture of independent spikes, sometimes very close
together and sometimes separated by a short silent phase. In
conclusion, we do not have a gradual transition from bursts
to spikes wherem tends slowly to 1. What we see is a de-
struction of bursts produced by a growing noise that, even-
tually, is able to make the trajectory jump in any moment
from the active to the silent phase and vice versa.

Figure 16 shows the variation ofm and s for a periodic
orbit with high NSB, in particular forP40. The results fors
are very similar to those obtained forP6 andCh in Fig. 15,
with the difference that the standard deviation reaches higher
values and starts to grow for higherN (we have not plotted
the values ofs for N,150 because, due to the inapplicabil-
ity of the Gaussian approximation for such smallN, they did
not fit very accurately with the rest of the points). However,
the variation ofm is totally different from that shown byP6,
as it clearly decreases whenN decreases. The reason for this
opposite behavior is the already mentioned inexistence of the
reinjection effect to balance the premature death due to the
noisy escaping from the limit cycle basin. In this case only
the first mechanism to show extra-long bursts is possible and
eventually a few bursts show more spikes than the determin-
istic case. However, we already mentioned that this is a rare
phenomenon, which cannot compensate the shortening effect
of the noise. Furthermore, it is remarkable that the variation
of the mean valuem with N for P40 can be described very
precisely by the following expression:

m = mDetftanhsa ln N + bdg = mDetSANB − 1

ANB + 1
D , s12d

wheremDet is the NSB of the deterministic signal. Making
use of genetic algorithm techniques, we have obtained that
A=0.42 andB=0.45. The sameexpression obtained by
least squares fitting, givesA=0.37±0.04 and B
=0.52±0.02.Both fittings show a correlation coefficient
of r =0.995. We can seethat the exponent ofN is very
close to 0.5. Furthermore, the mathematical fittings for
other orbitssP30, P20, andP10d also showB<0.5.There-

fore, we obtain another example of the existence of a gen-
eral dependence that relates the dynamics of our system
with the square root of the number of cellsÎN.

VI. CONCLUSIONS

In this work we have studied a mathematical model of the
electrophysiological behavior of the pancreaticb cell. Using
this model as a paradigm of a bursting cell, we have focused
our attention on the transition from the deterministic limit of
large number of cells in an intact islet to the very stochastic
behavior of an isolated cell. As mentioned in the Introduc-
tion, there are discrepancies to the hypothesis defended in
this paper(the so-called channel sharing) to explain the dif-
ferent behavior shown by intact islets and isolated cells.
However, the signals for the membrane potential obtained
from the model appear quite similar to the actual signals
obtained by the patch clamping techniques[31,32]. Further-
more, our analysis explores a stochastic regime that is not
based on the simple addition of a noisy factor to the equa-
tions, but is one of the few examples that describesbiologi-
cal noise in terms of the underlying processes that generate
the noise. For these reasons, we decided to use it to examine
which tools are the best to obtain information from a burst-
ing signal measured in a very noisy environment.

We started by analyzing briefly the main features of the
deterministic model, and we have shown that depending on
several parameters it can present continuous spiking, bursts
with no spikes, and a wide range of bursts containing from
very few to many spikes per burst. These signals could be
both periodic and chaotic, being therefore a perfect environ-
ment to analyze how noise can blur and finally destroy the
main properties of a signal. The characteristic period-adding
transitions were previously described by Mosekildeet al.
[33].

By making use of the Lyapunov exponents, we have seen
that bursts with many spikes are much more robust under
noise than those with few spikes. It should be remarked that
bursts with many spikes show negative Lyapunov exponents

FIG. 16. (a) Variation of the mean valuem
with N for P40. It decreases whenN decreases.
The solid line represents the mathematical ap-
proximation.(b) Variation of the standard devia-
tion s for P40.
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even for very strong noise. The bursts that appear in real data
are of this type, and this fact makes the task of calculating
the Lyapunov exponents of experimental recordings very
promising. Furthermore, we show that whenN decreases all
Lyapunov exponents seem to grow more or less at the same
rate, which is an important result because it means that they
will maintain their relation even under strong noise.

In the development of this work we have paid special
attention to the return maps and histograms of interspike
time intervals and we have found out that they are fruitful
sources of information. They can be easily obtained from
real data with a very high accuracy, and applying clustering
techniques they have proved to be extraordinarily useful to
distinguish periodic from aperiodic orbits. Furthermore, we
have used them to analyze the process of destruction of
bursts when the cell clusters become very small and the level
of noise reaches very high values.

Finally, we have studied the time series of the number of
spikes in each burst for different types of orbits. In particular,
we have explained why the mean of the NSB time series
decreases whenN decreases for orbits with large number of
spikes per burst, while in the cases in which this number is
small the mean seems to be independent ofN.

Throughout the paper, we have presented several math-
ematical expressions that fit our computational results with a
very high accuracy. The dependence of all magnitudes on the
square root of the number of cellsÎN shows the existence of
a deep relation between the source of the noise and the mem-
brane potential signals. In some sense, themicroscopicchan-
nel opening and closing processes are intimately connected
with the macroscopicbehavior of the cell. Furthermore, a
direct consequenceof this fact could be a universal depen-
dence of the main characteristics of the membrane potential
on the size of the cellular cluster. If we suppose that the cells
are located filling up the totality of the islets of Langerhans,
and the islets are taken approximately spherical, we obtain
that

N ~ V ~ r3 ⇒ Cellular properties~ ÎV ~ r3/2, s13d

whereV is the volume of the islet of Langerhans andr its
average radius. However, if we suppose that mostb cells are
located in the surface of the islets, then a better geometrical
approximation could be the following:

N ~ S~ r2 ⇒ Cellular properties~ ÎS~ r , s14d

whereS is the surface of the islet. In order to cast light on
this subject, the development of the research about the de-
pendence of the electrical properties of the cells on the ge-
ometry of the clusters seems to be a promising task.

In summary, it would be of significant interest to apply the
tools developed in the present paper to experimental data
obtained by patch clamping techniques. This way, we would
be able to obtain valuable information about the behavior of
clusters of pancreaticb cells.
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APPENDIX
The b-cell model studied in this work was first presented

by Shermanet al. in Ref. [11]. The three differential equa-
tions for the deterministic model are the following:

Cm
dV

dt
= − ḡKnsV − VKd − ḡCam`sVdhsVdsV − VCad

− ḡKCapsV − VKd, sA1d

dn

dt
= lFn`sVd − n

tnsVd G , sA2d

dCa

dt
= ff− aICa− kCaCag, sA3d

where

p =
Ca

Ca + Kd
in the deterministic regime,

and

p =
no

no + nc
in the stochastic regime.

Furthermore

m`sVd = F1 + expHVm − V

Sm
JG−1

, sA4d

hsVd = F1 + expHV − Vh

Sh
JG−1

, sA5d

n`sVd = F1 + expHVn − V

Sn
JG−1

, sA6d

tnsVd = cFexpHV − V̄

Sa
J + expH− sV − V̄d

Sb
JG−1

, sA7d

a =
1

2VCellF
. sA8d

The parameter that we have been varying isVCa. Other pa-
rameters are the cell volumeVCell=1150mm3 scell radius
R=6.5 mmd, the total membrane capacitanceCm=5310 fF,
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ḡK =2500 pS,VK =−75 mV, ḡCa=1400 pS,ḡKCa=30 000 pS,
Kd=100mM, l=1.7, f =0.001, kCa=0.03 ms−1, Vm=4 mV,
Sm=14 mV, Vh=−10 mV, Sh=10 mV, Vn=−15 mV, Sn

=5.6 mV, Sa=65 mV, Sb=20 mV, c=60 ms, and V̄=
−75 mV.F=96 487 C/mM is the Faraday constant.ḡK, ḡCa
and ḡKCa are the maximal conductances.l is similar to the

temperature in the Hodgkin-Huxley model and is nondi-
mensional.f is the fraction of free calcium in the cell.a is
a unit conversion factor to change current into
concentration/time.kCa is the net Ca2+ removal rate. Fi-
nally, no and nc represent the number of open and closed
channels in the stochastic regime.
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