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We present a way of coupling two nonautonomous, periodically forced, chaotic CO2 lasers in a master-slave
configuration in order to achieve complete synchronization. The method consists of modulating the forcing of
the slave laser by means of the difference between the intensities of the two lasers, and lends itself to a simple
physical implementation. Experimental evidence of complete synchronization induced by a suitable coupling
strength is shown, and a numerical model is used to achieve further insight of the synchronization phenomena.
Finally, we describe a possible application of the investigated technique to the design of a digital communi-
cation system.
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I. INTRODUCTION

Chaotic synchronization is of fundamental importance in
a variety of complex physical, chemical, biological, and eco-
logical systems[1–5]. When two chaotic systems interact,
different synchronization regimes can be obtained, including
complete or identical synchronization[1,6,7], lag synchroni-
zation [8], phase synchronization[9], and generalized syn-
chronization [10,11]. These synchronization regimes have
been described theoretically and observed experimentally in
many different systems, some of them reviewed in Ref.[3].
Among the different systems where synchronization has
been achieved, lasers are of particular interest, due to the
potential applications to secure optical communications
[12,13].

Synchronization has been usually studied for autonomous
chaotic systems, that is, systems which are not subject to an
external time-dependent driving. In this situation a coupling
between two or more systems(identical or not) can induce
changes in some properties of the dynamics of the systems,
giving rise to a common behavior.

Here, we focus our attention on the synchronization of
coupled nonautonomous chaotic systems, where the chaotic
behavior of each system is a consequence of an external
periodic forcing. A theoretical investigation on this problem
for the case of the forced Van der Pol oscillator can be found
in Ref. [14]. Experimental works on modulated lasers where
the coupling is carried out by a superposition of the two
electric fields with a common laser medium have also been
reported[15–18].

In this work, we consider the connection of two chaotic
lasers in a master-slave configuration that are coupled by
modulating the amplitude of the external forcing of the slave
laser. The introduction of this new coupling scheme is the
main contribution of this paper. The control signal to be used
for modulating the amplitude of the external forcing signal in
the slave laser is obtained as the difference between the in-
tensities of the two lasers. This difference must go to zero in
the synchronized regime[6,19]. This technique is simple to
implement in most practical setups and can be easily ex-

tended to other systems with external periodic forcing.
The paper is organized as follows. Section II describes the

experimental setup including the details of the implementa-
tion of the proposed coupling method. A numerical model
that accurately reproduces the experimental behavior is pre-
sented in Sec. III. Both experimental and numerical results
that characterize the synchronization phenomenon are pre-
sented and analyzed in Sec. IV. Section V is devoted to a
simple application example in the field of digital communi-
cations, and concluding remarks are made in Sec. VI.

II. EXPERIMENTAL SETUP

In order to experimentally investigate the synchronization
between two CO2 lasers in a master-slave configuration, we
have designed the experimental setup shown in Fig. 1. The
laser cavity is defined by a totally reflecting grating and a
partially reflecting mirror(R andM2), and the gain medium
is pumped by an electric discharge current of 6 mA. An elec-
trooptic modulator(EOM) is inserted in the laser cavity in
order to control the cavity losses by an external forcing ob-

FIG. 1. Experimental setup for a CO2 laser with modulated
losses. EOM: intracavity electrooptic modulator,R: total reflecting
grating,M2: partial reflecting mirror,D: fast infrared detector, SG:
sinusoidal generator, DO: digital oscilloscope,S: switch, WG: arbi-
trary wave-form generator which can reproduce a wave form pre-
viously acquired with DO.
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tained from a sinusoidal generator(SG). Such a signal has a
frequency of fsin=100 kHz, which is around the double of
the relaxation frequency of the laser. By increasing the driv-
ing amplitude of the external periodic forcing signal, the sys-
tem displays a transition to chaos through a sequence of sub-
harmonic bifurcations[see Fig. 2(a)]. A further increase of
this amplitude, which plays the role of our control parameter,
leads the system to an interior crisis[23] characterized by a
widening of the chaotic attractor, as shown in the bifurcation
diagram in Fig. 2(a). In the experiment, we set the system in
the chaotic region before the occurrence of the interior crisis,
as indicated by the arrow in Fig. 2(a). A return map of the
laser intensity of this chaotic state is represented in Fig. 2(b),
where a chaotic attractor is shown. The temporal evolution of
the laser intensity is plotted in Fig. 2(c), to show that the
frequency of the spikes is constant while the amplitudes are
chaotic. This particular behavior, not so typical in physical
systems, was previously described in Ref.[24] as uniform
phase evolution with chaotic amplitudes in relation to some
synchronization phenomena in a model of an ecological sys-
tem.

We achieve a master-slave configuration with a single la-
ser by an adequate use of the experimental setup of Fig. 1.
Specifically, a “master” signal is obtained by recording the
time sequence of the laser when there is no amplitude modu-
lation (AM ) on the sinusoidal generator(i.e., the switchS is

open, so that there is no feedback in the loop of Fig. 1). A
long time sequence(more than 1000 laser pulses) is stored
by means of the digital oscilloscope(DO) with high time
resolutions0.1 msd. In a second stage, the recorded master
signal is reproduced by the wave-form generator(WG) and
the feedback loop is activated. The CO2 laser behaves now
as a slave system, and coupling is achieved by using the
difference between the master signal and the slave-laser in-
tensity, amplified by a coupling factor, as an amplitude
modulation applied to the sinusoidal generator of the slave
laser. If the coupling factor is high enough and both systems
are sufficiently close in phase, a complete synchronization
regime is achieved. It is worth noting that we are considering
the phases of the laser intensities and not the phases of the
laser electric fields. Since we use an optoelectronic system
(see Fig. 1), instead of an all-optical(coherent) system, as in
Refs.[15–18], it is not necessary to match the phases of the
electric fields.

The coupling scheme is a fairly general one and can be
applied to a broad class of periodically forced chaotic sys-
tems. This is so because, from a dynamical point of view, by
modulating the amplitude of the external periodic forcing
signal we have found a very simple and experimentally real-
izable way of adaptively shifting the position of the slave
system in its bifurcation diagram[see Fig. 2(a)]. If the modu-
lating signal is sufficiently small, then the slight changes in
the bifurcation diagram are constrained to the region of in-
terest, where a chaotic regime withsmallamplitude and con-
stant frequency is attained, and the slave system correctly
tracks the time evolution of the master.

Driving a system with a recorded signal coming from an
identical response system was also implemented in a far-
infrared ammonia laser[20] and in a multimode Nd-ytrium
aluminum garnet(YAG) microchip laser subjected to elec-
trooptic feedback[21]. In both cases generalized synchroni-
zation has been demonstrated. Note, however, that the latter
systems are autonomous chaotic oscillators.

III. NUMERICAL MODEL

The chaotic behavior of the previously described laser can
be reproduced numerically by using the following model of
five differential equations[22]:

ẋ1 = kx1hx2 − 1 −a sin2fFstdgj,

ẋ2 = − g1x2 − 2kx1x2 + gx3 + x4 + p,

ẋ3 = − g1x3 + gx2 + x5 + p, s1d

ẋ4 = − g2x4 + zx2 + gx5 + zp,

ẋ5 = − g2x5 + zx3 + gx4 + zp,

where

Fstd = b sins2pft + fmd + b s2d

is the external forcing signal of the master laser. In the above
equations,x1 represents the laser output intensity,x2 is the

FIG. 2. (a) Experimental characteristic bifurcation diagram for
the CO2 laser with modulated losses as a function of the amplitude
of the external forcing. The arrow indicates the region where our
laser is set.(b) Return map of the laser intensity showing a chaotic
attractor.(c) Experimental temporal evolution of the laser intensity,
showing uniform phase evolution with chaotic amplitudes, which
take values in the intervals0, 550d mV.
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population inversion between the two resonant levels, andx3,
x4, andx5 account for molecular exchanges between the two
levels resonant with the radiation field and the other rota-
tional levels of the same vibrational band. The parameters of
the model are the following:k is the unperturbed cavity loss
parameter,g is a coupling constant,g1 andg2 are population
relaxation rates,z accounts for an effective number of rota-
tional levels,a accounts for the efficiency of the electrooptic
modulator, andp is the pump parameter. The rest of the
parameters are related to the external periodic forcing. In
particular, f andfm are, respectively, the frequency and the
initial phase of the external forcing,b is the bias voltage, and
b is the amplitude of the external forcing. One important
feature of this system is that the phase of the output intensity,
x1, is locked to the phase of the forcing signal,Fstd.

These equations are employed to reproduce the behavior
of the master laser. Note that a simpler model, consisting of
only three differential equations, is enough for aqualitative
simulation of the laser behavior, but using the complete
model (1) yields far more accurate results[25]. The set of
parameters chosen to reproduce the chaotic regime is given
by k=32.97, a=4, g1=10.0643, g=0.05, p=0.0198, g2
=1.0643,z=10, b=0.08, f =1/7, andb=0.2. The stability
analysis provides a value of the relaxation oscillation fre-
quency of 0.07, which is around half of the frequency of the
forcing signal.

The slave laser is modeled by the same differential equa-
tions as the master laser, but adequately modifying its exter-
nal sinusoidal forcing functionFstd. In particular, the ampli-
tude of the external forcing functionb is modulated by the
intensity difference between the two lasers to yield

Fstd = bf1 + esx1 − y1dgsins2pft + fsd + b, s3d

wherey1 and x1 represent the output intensity of the slave
and the master lasers, respectively,fs is the initial phase of
the forcing signal applied to the slave laser, ande represents
the coupling strength between the two systems. By modulat-
ing the amplitude we move on the bifurcation diagram of the
slave laser[see Fig. 2(a)] in order to correctly follow the
time evolution of the master system.

The two initial phases of the forcing signals are set to
zero, that is,fm=fs=0. It has been shown that the phase
difference between the external forcings plays an important
role in the control of such a system[25] but, due to the
complexity of the problem, it is not investigated in this
manuscript and will be addressed in a future work.

IV. RESULTS

In this section we present both experimental and numeri-
cal results that illustrate the complete synchronization of the
coupled nonautonomous chaotic lasers. In order to measure
the degree of synchronization between the two systems, we
define the following discrete-time integrated error signal

eTskd =
1

T
E

sk−1dT

kT Sx1 − y1

kx1l
D2

dt, k = 0,1, . . . , s4d

where k is the spike number,T is an arbitrary integration
period, andkx1l is the mean value of variablex1. In this case,

a straightforward choice is to setT=1/ fsin, where fsin is the
frequency of the sinusoidal signal generator employed to
synthetize the external forcing functions for both the master
and the slave lasers.

In order to characterize the role of coupling in synchroni-
zation, we have calculated the error signal for the uncoupled
(see Fig. 3) and coupled(see Fig. 4) systems in our experi-
ment. In Fig. 3(b), we present the temporal evolution of the
master- and slave-laser intensities,x1 and y1, respectively.
The phase of the laser intensity, in the considered setup, de-
pends directly on the phase of the external periodic forcing.
Since the phases of the forcing signals applied to the master

FIG. 3. Master and slave lasers when there is no coupling be-
tween them.(a) Integrated error signal defined as in Eq.(4), ob-
tained from experimental data, and represented as a function of
time. (b) Experimental temporal evolution of the output intensity of
the master and the slave laser, that is,x1 andy1, respectively. Notice
that for a better observation of the spike amplitudes,y1 has been
represented in the negative part of the vertical axis, that is, repre-
sented as −y1.

FIG. 4. Master and slave lasers when both systems are coupled.
(a) Integrated error signal, obtained from experimental data, and
represented as a function of time.(b) Experimental temporal evo-
lution of the output intensity of the master laser and the slave laser,
that is,x1 andy1, respectively. As in the previous figure, in order to
obtain a better observation of the spike amplitudes,y1 has been
represented in the negative part of the vertical axis, that is, repre-
sented as −y1.
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and the slave lasers are identical, intensitiesx1 and y1 are
always in phase. Despite this phase lock, when the lasers are
not coupled there is no correlation between the spike ampli-
tudes of the two intensities and, as a consequence, the mean
value of the integrated error signal in the stationary state
reaches a high value, around 0.10[see Fig. 3(a)]. If the lasers
are coupled, the mean value of the integrated error dimin-
ishes considerably. In particular, for an adequate coupling
strength, set by the gain of the feedback amplifier, this re-
duction is of one order of magnitude, that is, the mean value
of eTskd is less than 0.01[see Fig. 4(a)]. For this situation,
synchronization between the intensities of the master and the
slave lasers is obtained, as seen in the temporal evolution of
x1 andy1, represented in Fig. 4(b).

We also present the experimentally obtained correlation
plots between the amplitudes of the spikes corresponding to
the master and slave lasers for the uncoupled[Fig. 5(a)] and
coupled[Fig. 5(b)] cases. In the former case the points are
spread around the plane, whereas in the latter they are con-
centrated around the diagonal, indicating synchronization.
The deviation from the diagonal observed in Fig. 5(b) is
associated with sampling and experimental noise effects.

We have experimentally verified synchronization using
the proposed scheme, but, in order to better characterize the
conditions that enable synchronization and the robustness of
our method, it is convenient to resort to the numerical model
described in Sec. III. We pay attention first to the transient
regime, that is, to what happens just after coupling the lasers.
Figure 6 has been obtained numerically with a coupling fac-
tor e=200. We have plotted:(a) the intensity of the master-
laser signal during 400ms after the coupling,x1; (b) the in-
tensity of the slave-laser signal,y1, during the same time;
and(c) the resulting error signal,eTskd, during an interval of
1500ms after the coupling. We can see how in 500ms, the
integrated error signal decreases from a value of, approxi-

mately, 100 to less than 10−5. In fact, the two signals,x1 and
y1, are practically indistinguishable after 250ms. This is ob-
served in Figs. 6(a) and 6(b), and corroborated by the corre-
lation plot of Fig. 7. This plot is strictly linear, since it is free
from the experimental noise effects observed in Fig. 5(b),
and shows a clear evidence that complete synchronization is
achieved.

FIG. 5. Experimental correlation plots between the amplitudes
of the spikes corresponding to the master and the slave lasers.(a)
Uncoupled systems: the points are scattered all over the plane.(b)
Coupled systems: the points are concentrated around the diagonal
(with deviations due to sampling and experimental noise effects).

FIG. 6. Numerical example of the complete synchronization
achieved between the master and the slave lasers when the coupling
parametere=200.(a) Temporal evolution of the output intensity of
the master laser,x1. (b) Temporal evolution of the output intensity
of the slave laser,y1. (c) Error signal defined as in Eq.(4) and
represented in logarithmic scale as a function of the time.

FIG. 7. Numerical correlation plot between the amplitudes of
the spikes corresponding to the master and the slave lasers, after
transient behavior, when the coupling parameter ise=200. Unlike
in Fig. 5(b), a perfect diagonal is observed because numerical cal-
culations are free from experimental noise effects and disturbances.
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Let us consider now the dependence of the complete syn-
chronization regime with respect to the coupling strength,
controlled by the parametere in the model. This information
is easily obtained by computing the conditional Lyapunov
exponents of the coupled system as functions ofe. In Fig. 8
it is shown that the conditional Lyapunov exponent respon-
sible for the synchronization phenomenon moves from posi-
tive to negative values as the coupling strength is increased.
In particular, our study indicates that complete synchroniza-
tion is achieved fore.160.

A further investigation on the dependence of the synchro-
nization behavior on the coupling parameter,e, has been car-
ried out by means of computer simulations to estimate the
average time required to bring the integrated error,eTskd,
below a certain threshold for a range of values of the cou-
pling parameter where synchronization takes place, namely
eù160. For each value ofe, 30 simulation trials(with inde-
pendently drawn random initial conditions) have been per-
formed and the time required to attaineTskd,10−4 has been
determined. The results are plotted in Fig. 9. From this fig-
ure, it is clearly observed that the average synchronization
time decreases with the coupling strength, up to a value of
approximately 200ms.

Both experimental and numerical studies give evidence
that the regime of complete synchronization is not affected
by changes of a small percentage of the two control param-
eters(bias parameter,b, and pump parameter,p) on the slave
laser with respect to those of the master. Therefore, to illus-
trate the actual robustness of our scheme, we have carried
out numerical simulations to estimate the average value of
the integrated error after 340ms, that is,eTsk=34d, when the
bias and the pump parameters of the master laser are fixed to
b=0.2 andp=0.0198, respectively, and the corresponding
parameters in the slave laser are varied as represented in the
horizontal axis of Figs. 10(a) and 10(b). The remaining pa-
rameters of both lasers have the values indicated in Sec. III

and the coupling strength ise=250. We have performed 100
simulation trials with different initial conditions for each
value of the slave and pump parameters in order to estimate
the mean value of the integrated erroreTs34d, represented by
circles in Figs. 10(a) and 10(b). The crosses in these plots
represent the 0.9 quantile of the empirical distribution of the
integrated erroreTs34d, i.e., the valueq such that the prob-
ability of the eventeTs34d,q is 0.9 according to the simu-
lations. From this information it is deduced that the inte-
grated error grows smoothly as the master and slave
parameters diverge, but synchronization is still achieved.

V. APPLICATION TO DIGITAL COMMUNICATIONS

As an example of practical application of the synchroni-
zation properties of the investigated nonautonomous chaotic
system we address the design of a simple digital transmission
system, depicted in Fig. 11. We consider a message consist-
ing of a sequence of bits “1” and “0” and lets=x1m be the
transmitted signal, wherex1 is the output intensity of the
master laser andm is the information carrying signal. When
a bit “0” is transmitted,m=1, while m=d coss2ptd, with d
=1.2, during the transmission of a bit “1.” The received sig-
nal, sr =s+n, wheren is a white Gaussian noise process, is
used to couple the master and slave lasers through the exter-
nal sinusoidal forcing function of the slave laser, that is,

Fstd = bf1 + essr − y1dgsins2pft + fsd + b, s5d

wheree is selected in the range of values that allows syn-
chronization, as calculated from the conditional Lyapunov
exponents and shown in Fig. 8. As before, we have con-
strained ourselves to the case in which the forcing functions
of the master and the slave lasers are in phase. Recall that
setting the forcing signals of the lasers in phase is equivalent
to getting the corresponding intensities also in phase. Fortu-
nately, it is simple in practice to put the received signal,sr, in
phase with the slave intensity. It is enough to use a buffer to
briefly hold sr as it is received and then release it with an

FIG. 8. Conditional Lyapunov exponents, obtained from the nu-
merical model, as functions of the coupling strengthe. Note that for
a certain range of parameters of the coupling strength the exponent
responsible for the synchronization phenomenon moves from posi-
tive to negative values, meaning that synchronization has been
achieved.

FIG. 9. Synchronization time, obtained from the numerical
model, as a function of the coupling parametere. A large decrease
of the synchronization time is observed, reaching a value of 200ms
for e.350.
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adequate delay that compensates for the phase difference.
It turns out that, when the noise is not too high, during the

transmission of a bit “0” the slave follows the dynamics of
the master(synchronization), but during the transmission of
a bit “1” there is no synchronization between master and
slave. This can be seen in Fig. 12, wheree=250. Figure
12(a) shows the message, as a temporal sequence of bits “1”
and “0.” The duration of each bit has been chosen equal to
18 spikes, that is, around 180ms. Figure 12(b) is the differ-
ence in absolute value between the received signal,sr, and
the slave intensity,y1. When the mean value of this differ-
ence during a bit is above(below) a certain threshold, a bit
“1” (“0” ) is recovered.

In order to study the robustness of this simple communi-
cation scheme we have carried out a set of computer experi-
ments corrupting the transmitted signal with an additive
zero-mean white Gaussian noise component. Let us define
the signal-to-noise ratio(SNR) as 10 log10smx

2/mn
2d (dB),

wheremx
2 andmn

2 are the average signal power and the noise
power, respectively. Figure 13 represents the bit error rate

FIG. 10. Synchronization error, obtained from the numerical
model, when considering different values of the slave bias and
pump parameters. These parameters in the master laser have been
fixed to 0.2 and 0.0198, respectively, and the coupling parameter
e=250. (a) Mean value of the integrated erroreTs34d (represented
by circles) and 0.9 quantiles ofeTs34d (represented by crosses),
when the slave bias parameter takes different values from the mas-
ter bias parameter.(b) Mean value of the integrated erroreTs34d
(represented by circles) and 0.9 quantiles ofeTs34d (represented by
crosses), when the slave pump parameter takes values which are
different from the master pump parameter.

FIG. 11. Plot diagram of a digital communication system based on the master-slave configuration.

FIG. 12. Example of a communication scheme using the syn-
chronization phenomenon between the master and the slave lasers.
Numerical results.(a) Information message, represented by a se-
quence of bits “1” and “0”; each bit has a temporal duration of
180 ms. (b) Difference in absolute value between the received sig-
nal, sr, and the slave intensity,y1, when they are coupled with a
coupling factore=250.
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(BER) attained by the system for different values of the
SNR. We can see how for SNR=20, the BER is very close to
10−4. In the simulations, the transmission of 105 bits has been
considered for each value of the SNR. This number is suffi-
ciently high, so the BER estimates are not affected by an
increase of the number of simulations.

Additional applications of the proposed synchronization
scheme potentially exist wherever nonlinear dynamical sys-
tems with external forcing can be used. One further example
without leaving the field of digital communications is the
problem of achieving synchronization with a chaotic carrier
signal. Another area of potential application is control engi-
neering, since the proposed coupling scheme can be viewed
as an open-loop control system.

VI. CONCLUSIONS

We have introduced a scheme for coupling two nonauto-
nomous, periodically forced, chaotic CO2 lasers in a master-
slave configuration in order to achieve complete synchroni-
zation. In this scheme, the forcing of the slave laser is
introduced according to the difference between its intensity
and that of the master. This way of coupling, that is, the
modulation to the external forcing, is easy to implement in
practice and can be applied not only to lasers but also to a
broad class of periodically forced chaotic systems.

In this paper, experimental evidence of complete synchro-
nization induced by a suitable coupling strength have been
provided together with a detailed study of the synchroniza-
tion properties by a numerical model that accurately repro-
duces the behavior of the physical system. In particular, we
have calculated the conditional Lyapunov exponents as a
function of the coupling strength, evaluated the time needed
for synchronization, and also studied the robustness of the
synchronization to parameter mismatches.

Finally, the proposed technique is applied to the design of
a digital transmission system, the performance of which re-
sults to be satisfactory.
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