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Abstract

We study Hamiltonian chaos generated by the dynamics of passive tracers moving in a two-dimensional fluid flow

and describe the complex structure formed in a chaotic layer that separates a vortex region from the shear flow. The

stable and unstable manifolds of unstable periodic orbits are computed. It is shown that their intersections in the Poin-

caré map as an invariant set of homoclinic points constitute the backbone of the chaotic layer. Special attention is paid

to the finite time properties of the chaotic layer. In particular, finite time Lyapunov exponents are computed and a scal-

ing law of the variance of their distribution is derived. Additionally, the box counting dimension as an effective dimen-

sion to characterize the fractal properties of the layer is estimated for different duration times of simulation. Its behavior

in the asymptotic time limit is discussed. By computing the Lyapunov exponents and by applying methods of symbolic

dynamics, the formation of the layer as a function of the external forcing strength, which in turn represents the pertur-

bation of the originally integrable system, is characterized. In particular, it is shown that the capture of KAM tori by

the layer has a remarkable influence on the averaged Lyapunov exponents.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The motion of a fluid flow can be visualized by adding passive tracers into the flow and studying their dynamics.

Besides important practical applications like the spread of pollutants in the atmosphere and the oceans [1], this ap-

proach provides an alternative view on pattern formation in hydrodynamic systems. This description is called Lagrang-

ian dynamics. Unlike the Eulerian point of view it emphasizes the motion of the individual fluid particles along their

pathlines. Thus, Lagrangian dynamics describes the motion of tracers injected into the fluid, that are directly visible in

fluid experiments. For a steady flow, the pathlines of the individual fluid particles coincide with the streamlines of the

flow. However, for a time-dependent flow they are different. Indeed it is well known that even in simple two-dimensional

flows, which are periodic in time, the trajectories of the fluid particles can show very complicated, wrinkled and chaotic
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patterns [2]. A good introduction to the topic of Lagrangian dynamics and mixing theory is given in the book by Ottino

[3], while a survey of newer research developments can be found in Ref. [4]. Especially, in order to demonstrate the nice

structures which are produced by the chaotic advection in experiments we refer to Refs. [5–9].

The model studied here arose in a study of passive tracers in a two-dimensional Navier–Stokes flow. A chain of dri-

ven vortices serves as the model for some fluid experiments performed by Tabeling and co-workers [10–12]. Their tran-

sitions from a laminar flow dynamics to chaos were studied on the basis of the two-dimensional Navier–Stokes

equations (NSE) by Braun et al. [13]. By increasing the Reynolds number they found that the first bifurcations are

in a good agreement with the experimental observations. In the following we are interested in the dynamics which ap-

pears after a Hopf bifurcation. The motion of the tracers is already chaotic even when the velocity field varies only peri-

odically in time. To study the Lagrangian dynamics for this situation, a low-dimensional stream function model

consisting of five modes was derived by Witt et al. [14]. They also studied the existence of a chaotic saddle by approx-

imating its invariant manifolds.

In this work we start with their model but our main interest is concentrated on a better understanding of the nature

and the structure of the chaotic layer and how it is modified by varying an experimentally relevant parameter, namely

the amplitude of the time periodic perturbation. We study the formation process of the layer and the influence of cap-

tured KAM tori on its dynamics. It has to be noted that we look at the structure of the chaotic layer under the view-

point that it is generated as a result of a finite time simulation. In particular, we define and determine the effective

dimension, as the box counting dimension of the stable and unstable manifolds for finite duration time of the simula-

tion. We also consider the time asymptotic limit by discussing some features of this object if the simulation time is ex-

tended asymptotically.

For this purpose the stream function model used in Ref. [14] is again reduced, keeping only the essential properties

of the flow in a two-mode model. The stream function, we consider here, is then given by
wðx,yÞ ¼ wð0,1Þ sinðyÞ þ wð2,1Þ sinð2xÞ sinðyÞ, ð1Þ
where the indices of the stream function coefficients mark the wave number k = (kx,ky) of the corresponding modes.

The flow consists of two components, a chain of driven vortices expressed by the second term, and a shear flow which

is generated by the first term. The stream function is periodic in x with a period of p. Hence, we consider the phase space
of the tracer dynamics restricted to the square, x 2 [0,p], and y 2 [0,p]. In accordance with the values used in Ref. [14],

and with the results of the Navier–Stokes simulations in Ref. [13], we fix the mode coefficients to w(0,1) = 8.35 and

w(2,1) = �2.55. Moreover, in order to model the time dependence of the velocity field beyond a Hopf bifurcation, the

w(0,1) coefficient is varied periodically in time as
wð0,1ÞðtÞ ¼ wð0,1Þ½1þ d sinðxtÞ�, ð2Þ
where d is a constant that measures the strength of the modulation and we set x = p. In accordance with the Navier–

Stokes simulations the other mode coefficient w(2,1) of the driven vortices remains independent of time. For the follow-

ing investigations of the Lagrangian dynamics the flow is specified by the analytic stream function model (Eq. (1)), by

the special choice of the coefficients given above, and by the time variation of w(0,1) as given by Eq. (2).

The equations of motion of the passive tracer particles are given by
vx ¼ _x ¼ ow
oy

, vy ¼ _y ¼ � ow
ox

, ð3Þ
which constitutes a Hamiltonian system, where w(x,y, t) plays the role of a time-dependend Hamiltonian.

The unperturbed system of Eq. (1), i.e., when both d = 0 and w(0,1) does not depend on time, represents a stationary

flow. It is integrable and resembles the phase portrait of the undamped pendulum. A homoclinic orbit encloses the vor-

tex region and separates the vortex from the shear flow. After turning-on the periodic excitation according to Eq. (2),

the fixed point is transformed into an unstable periodic trajectory which we call the primary periodic orbit. The separ-

atrix breaks off and intersections of the stable and unstable manifolds form a complex web of chaos.

Stroboscopic maps are an appropriate technique to visualize the dynamics of periodically driven systems. In the case

under consideration, Eqs. (1)–(3), it provides the visualization of the dynamics of passive tracers in physical space mov-

ing in a two-dimensional vortex flow which is varying periodically in time.

Figs. 1 and 2 show the stroboscopic map for two values of the periodic excitation, (d = 0.1 and 0.2). One clearly

recognizes the different regions where the dynamics is either regular or chaotic. The motion in the vortex region is given

by closed orbits which represent the dynamics on KAM tori. The regular motion of the shear flow embedding the vortex

region is also reflected by smooth lines. The more interesting region addressed here is the chaotic layer which results

from the break-off of the separatrix. In this layer the particles move in a non-periodic fashion.



Fig. 1. Stroboscopic map of the tracer dynamics for a periodic excitation (d = 0.1), the arrays mark the two KAM tori regions which

are immersed in the chaotic layer.

Fig. 2. Stroboscopic map of the tracer dynamics for a periodic excitation (d = 0.2).
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The original homoclinic orbit breaks off for very small values of the excitation parameter d. Due to intersections of

the stable and unstable manifolds of the primary hyperbolic periodic orbit, a thin chaotic layer is formed. The layer

thickness grows as d is increased and this process is essentially ruled by the KAM theorem. In the specific situation

under investigation one observes that the KAM tori which belong to the shear flow are captured by the growing layer.

Fig. 1 shows an example of this process in which two surviving KAM tori regions are immersed in the chaotic layer at

its upper and lower boundary. The influence of these KAM tori on the dynamics of the tracers will be discussed in Sec.

3.

By a further increase of the parameter d, the shape of these KAM tori changes only slightly up to a value of d = 0.16.

At this point a sudden drop in the size and a change in the shape of the KAM tori proceed. We do not want to give a

complete explanation of this bifurcation because it happens in a very small region of the configuration space and a large

zoom of the KAM tori region would be required for this purpose. In fact, as a result of a more detailed investigation, we

conclude that tangencies of the stable and the unstable manifolds of a chain of periodic orbits enclosing these KAM tori

regions are responsible for these changes. Due to these global bifurcations, the KAM tori shrink and get typical profiles

as shown in Fig. 2.

A large zoom of the KAM tori regions shows that they are in turn surrounded by a chain of further smaller KAM

tori. Repeating this procedure again and again, a self-similar structure becomes visible, which is a typical phenomenon

of Hamiltonian systems. Extensive numerical investigations and a comprehensive overview on this topic, especially with

regard to the KAM theory, are given in the book by Zaslavsky et al. [15].
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2. Invariant sets and fractal structures

When a drop of tracers is injected in the layer, it is strongly deformed after a short time due to stretching, squeezing

and folding. The generated pattern resembles that of a colored foam bath dropped into a filling bathtub that is stirred

by the influent water. The drop is stretched along an unstable direction which can be identified as an approximation to

the unstable manifold. In the same way, the drop is squeezed along a direction which is consistent with the stable man-

ifold. In summary, the drop is stretched, squeezed and folded, a process involved in the dynamical creation of a fractal

object. Next we discuss the nature of this mechanism.

An invariant non-attracting chaotic set, which we call a chaotic saddle, comprises the backbone of the chaotic

layer. Its existence is closely related with the appearance of chaos in this region. We mentioned already about the

generation of the primary periodic orbits of saddle type after the turning-on of the periodic excitation. But inside

the layer there are many more periodic orbits of arbitrarily high period. All these periodic orbits possess stable

and unstable manifolds. By definition, there cannot be intersections between stable manifolds and there cannot be

intersections between unstable manifolds [16]. But intersection points between stable and unstable manifolds, the

homoclinic and heteroclinic points, respectively, are possible. Applying the closure operation to these points gives

the chaotic saddle.

Chaotic saddles for several open systems were studied in the context of scattering problems in the Refs. [17–21].

Often the sprinkling of tracer particles in the region of the chaotic saddle was applied to obtain an approximation

to the unstable manifolds. Reversing the integration time for the same tracer particles, one gets the stable manifolds.

As a result, the evolution of a dye of passive tracers does approximate these manifolds.

In the following we compute the manifolds of several periodic orbits of saddle type by using DYNAMICS [22]. Fig. 3

shows the unstable manifolds and Fig. 4 shows the stable manifolds of some of the unstable periodic orbits which we

identified in the chaotic layer. We use four periodic orbits of period one, four orbits of period two, and three orbits of

period three for the construction of the figures. It should be noted that the invariant sets considered here are not only

one stable and one unstable manifold of one periodic trajectory but rather bundles of manifolds. In principle, in the

chaotic layer exists an infinite number of periodic orbits with all periods. This number is infinite but countable. All these

periodic orbits have stable and unstable manifolds and they form bundles of manifolds as suggested in Figs. 3 and 4,

respectively. The intersection between stable and unstable bundles gives the chaotic saddle shown in Fig. 5. It is a fractal

Cantor-like set.

However, we have to note that this structure is a result of a finite time computation. In the infinite time limit the

chaos is area filling in the Hamiltonian case, and hence these stable and unstable foliations have also the full dimension

of the space. However, here we are thinking of finite times, and that are the structure one gets in practice. In summary,

we state that the chaotic saddle forms the backbone of the chaotic region in Hamiltonian systems, and it controls the

mixing properties of the tracer dynamics in fluid experiments.
Fig. 3. The unstable manifold of some of the periodic orbits (d = 0.2).



Fig. 4. The stable manifold of some of the periodic orbits (d = 0.2).

Fig. 5. Approximation of the chaotic saddle by plotting the points which have a smaller distance than a prescribed � from both a stable

and an unstable manifold (d = 0.2).
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3. Finite time Lyapunov exponents

Lyapunov exponents are held as a standard measure to characterize the dynamics of chaotic systems. They describe

the evolution of an arbitrarily chosen infinitesimal volume element v in phase space, and they measure the strength of

exponential divergence or convergence in several directions. They are calculated by integrating the linearized equations
_v ¼ JðtÞ 	 v, ð4Þ
where J(t) denotes the Jacobian matrix at time t. The Lyapunov exponents ki are the logarithms of the eigenvalues nor-

malized by the integration time in the limit t !1. Since the system under consideration is Hamiltonian and thus area

preserving, the sum of the Lyapunov exponents is zero. We have, in our case, a periodic time-dependent stream func-

tion, which plays the role of a Hamiltonian function. The periodic forcing produces a zero exponent along the phase of

the forcing direction, consequently the remaining two exponents are symmetric about zero, making the calculation of

the largest exponent sufficient. In Fig. 6 this Lyapunov exponent as a function of the forcing amplitude d is presented.

In general the exponents are growing with the forcing amplitude, but around d = 0.10, there is a drop. This drop is due

to the capture of two larger KAM tori regions by the expanding chaotic layer, as seen in Fig. 1. When a tracer moving

chaotically in the layer approaches the KAM tori region sufficiently close, it sticks for a long time in its neighbourhood.

During this time the motion looks regular and there is no exponential repulsion of neighbouring tracers [23,24]. This

sticking effect is responsible for the drop of the largest Lyapunov exponent around d = 0.10.



Fig. 6. Maximum Lyapunov exponent depending on the forcing amplitude d.

952 F. Feudel et al. / Chaos, Solitons and Fractals 24 (2005) 947–956
The maximum Lyapunov exponent describes the average stretching rate of an infinitesimal line element in the time

asymptotic limit. For finite observation times, however, the stretching rates differ from the asymptotic value. For study-

ing the fluctuations around the mean stretching rate, distributions of finite time Lyapunov exponents are considered

[25,26]. Technically, this is done by integrating Eq. (4) for a finite time t and a large set of initial conditions v(0) uni-

formly distributed in the layer. In Fig. 7 the distribution of finite time Lyapunov exponents for different integration

times t are plotted. The figure shows the longer the integration time t is, the stronger the distribution is concentrated

about the (time asymptotic) Lyapunov exponent k. Furthermore, if the finite time exponents are mapped to their initial
positions one finds rather low values near the KAM-tori and rather large ones around the unstable manifold. That

means that the dynamics near the KAM-tori is relatively stable, which is in good accordance with our remark made

above that the dynamics may stay rather long time in the vicinity of the KAM-tori. Near the unstable manifold the

dynamics is more irregular underlining the meaning of that manifold as a backbone of the dynamics.

For characterizing the convergence of the distribution of finite time exponents to the Dirac delta function, we con-

sider the variances r2(k) of these distributions in terms of the simulation time t. From Fig. 8 one can infer that these

variances scale as
r2ðkðtÞÞ � t�a, ð5Þ
where the special value of a depends in turn on the excitation amplitude d. We find that all values of a are greater than

one, i.e., their finite time Lyapunov exponents concentrate rather fast about the asymptotic exponent k.
A crucial point is the estimate of the dimension of the structures shown in Figs. 3–5, which are apparently fractal.

However, one has to take into account that they result from finite time computations. Applying the Kaplan–Yorke
Fig. 7. Distribution of finite time Lyapunov exponents for different times t (d = 0.2).



Fig. 8. Standard variances r2(k(t)) of the Lyapunov exponents versus integration time t for d = 0.1 (triangles), d = 0.15 (squares) and

d = 0.2 (diamonds) in a logarithmic plot.
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fformula gives a dimension of DKY = 2. Considering the chaotic layer in Figs. 1 and 2, it seems in fact that a typical

trajectory fills out the whole layer giving this integral dimension. But both the manifolds in Figs. 3 and 4 and the chaotic

saddle in Fig. 5 are not typical trajectories, because their Lebesgue measure is zero. On the other hand, they could ap-

proach arbitrary close to each point of the layer if one takes the closure. In order to demonstrate where these problems

are, we estimate the box counting dimension of the unstable manifolds as a function of their computation time. Our

intention is to look for any asymptotics.

For this purpose, we tracked the evolution of a line element of length 0.0002 which was placed initially on the center

of the chaotic saddle, i.e., in the neighbourhood of the primary periodic orbit. It is stretched and elongated along the

unstable directions, rapidly converging to the unstable manifolds. The length of the line grows exponentially. In order

to retain the discrete representation of this line element, new points are added if the distance between neighbouring

points exceeds a certain limit. In each time step the positions of neighbouring points are determined, and, if larger than

the critical distance 0.001, new points filling this gap are added. For finite time simulation this object looks fractal like

the plot of the unstable manifold in Fig. 3. In contrast to Fig. 3, this approximation to the unstable foliation contains

much more points and thus allowing for a more reliable computation of its box counting dimension. In order to reduce

the problem we consider the intersection with the horizontal line y = p/2 and determine the box counting dimension of

this intersecting set.

Fig. 9 shows the box counting dimension versus the logarithm of the box radius � for three duration times of the

simulation, t = 5T, 6T and 7T, where T = 2p/x is the period of the periodic excitation according to Eq. (2). For
Fig. 9. The box counting dimension of the line element versus the logarithm of the box radius computed after the integration of 5, 6

and 7 time periods T = 2p/x.
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t = 5T the integration time is too short and no plateau in the corresponding curve can be identified. However, for t = 6T

and t = 7T, in both curves a plateau is clearly discernible indicating the existence of a scaling behavior over several

length scales. For fractal sets the height of the plateau determines the box counting dimension. For both cases one gets

a dimension of D0 
 0.6, or equivalently, 1 + D0 
 1.6 for the dimension of the unstable manifolds. One recognizes that

the scaling region is broadened with growing integration time. Additionally, it seems that it is shifted rightwards by

increasing the integration time. The latter effect can be due to the fact that the system studied here is a closed system.

In contrast to scattering problems where the tracers escape from the region of the chaotic saddle, here the tracers are fed

back into this region. This re-entrance property inhibits a perfect scaling at the larger scales. In summary we conclude

that after the finite time evolution of the line element it becomes a fractal set with a constant box counting dimension

over a wider range of spatial scales.
4. A coarse-grained description of the dynamics

In the previous sections geometric properties on small scales for finite times are characterized. Now we study coarse-

grained dynamic structures. The main idea of coarse-graining the dynamics is to map each trajectory into a symbol

sequence. If the transformation into symbols is skillfully chosen, the properties of such symbol sequences are related

to those of the underlying dynamics. Maximal equivalence between symbolic and original dynamics is reached for sym-

bol transformations based on generating partitions. In this case the Shannon entropy of the symbol sequence coincides

with the maximum Lyapunov exponent of the full dynamics [27,28].

In case of periodically forced Hamiltonian systems there are some standard approaches for defining the transforma-

tion from phase space trajectories into symbol sequences on the basis of a complicated partitioning of the stroboscopic

plane [29,30]. Thus, each point of the stroboscopic plane T = 2kp, k integer, is mapped onto a symbol depending on its

spatial position. In this analysis, however, a different approach is suggested. It is based on the understanding of the

dynamics as an irregular switching between the motion in the shear flow and around the vortices. A symbol is produced

when the passive tracer has gone through the former separatix in the x or y direction, i.e., if the line x = p/4 is encoun-
tered, the symbol ‘‘1’’ appears and the symbol ‘‘0’’ is added by reaching y = p/2. Thus the symbol ‘‘1’’ marks motion in

the shear flow whereas a ‘‘0’’ symbolizes motion around the vortex. Consequently, for the motion outside the layer, one

gets sequences which are constantly zero in the vortex region and constantly one in the shear flow, respectively. How-

ever, for the motion in the layer, the symbols appear rather randomly reflecting its chaoticity. We use then complexity

measures as an appropriate tool to describe the structure of these symbol sequences in order to characterize the tracer

dynamics in the layer.

The next step is to characterize the structure of the symbol sequences. The traditional quantity for characterizing a

symbol sequence is the Shannon entropy [31]. The Shannon entropy of nth order Hn is based on the probability distri-

bution of length-n substrings sn (words of length n) of the symbol sequence:
Hn ¼ �
X

sn2An,pðsnÞ>0
pðsnÞlog2pðsnÞ, ð6Þ
where An denotes the set of all length-n words. Hn measures the average number of bits needed to specify an arbitrary

word of length n in a sequence S. Their differences hn = Hn+1 � Hn, h0 = H1 quantify the mean information needed to

determine the (n + 1)st symbol of an arbitrary word of a given sequence if the first n symbols are known. The Shannon

entropy h of the system is then defined as the limit of the hn
h ¼ lim
n!1

hn: ð7Þ
It describes the mean information contents per symbol. In case of constant or periodic symbol sequences, h vanishes,

whereas its maximum value of one is reached in the case of uncorrelated random sequences.

We have produced for the system under consideration symbol sequences of 200 000 elements with respect to different

forcing amplitudes d. For practical reasons the Shannon entropy is approximated by h10 here, which serves as an upper

bound for h. The Shannon entropy is a measure for the averaged information per symbol. However, we need measures

which are related to a time unit in order to compare them with the Lyapunov exponents. For this reason we use the

normalized measures by dividing them by the time Ts, the averaged time in which a new symbol is generated during

the simulation process. This time Ts is a function of the forcing amplitude d. Additionally, the algorithmic complexity
is calculated as an alternative estimator of the Shannon entropy [32]. The results are presented in Fig. 10. The figure

gives a comparison of the largest Lyapunov exponent, computed in the previous Section, with the normalized Shannon

entropy and the normalized algorithmic complexity resulting from the symbolic description of the dynamics. There is a

qualitatively good agreement of the measures derived from the symbolic dynamics with the curve of the Lyapunov



Fig. 10. Comparison of the largest Lyapunov exponent (squares) with the normalized Shannon entropy h10/Ts (triangles) and with the

normalized algorithmic complexity (diamonds) depending on the forcing amplitude d.
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exponents. In particular, the drop due to the KAM tori effect is also reflected by these measures. This confirms the

appropriateness of our choice of the transformation into symbols from the viewpoint of characterizing the nonlinear

dynamics. Although we are not able to prove that the chosen transformation into symbols is based on a generating

partition, these results show that this transformation might be considered as to be appropriate. Furthermore, we like

to mention that this symbolic transformation is rather robust and easily applicable to experimental data.
5. Conclusions

We have studied a two-mode time-dependent stream function derived from a two-dimensional Navier–Stokes flow.

In particular, a thin chaotic layer is formed due to the intersections of the invariant manifolds. Moreover it is worth to

emphasize once again that in time-dependent Hamiltonian systems the hyperbolic periodic orbits play an essential role

in the generation of chaos. In fluid dynamics this mechanism controls the mixing process [33]. Firstly, the fluid is com-

pressed and stretched along the eigendirections of the hyperbolic periodic orbits. Secondly, they are the source of stable

and unstable manifolds which in turn are the germs of the chaotic region. The hyperbolic orbits in relation with their

invariant manifolds and in an interplay with the KAM tori region establish a complex dynamics for the passive tracers.

Especially in finite times, pretty structures of fractal nature appear as image of these invariant objects.

We have also carried out quantitative measures of the chaoticity of the fluid flow with the help of the computation of

the finite-time Lyapunov exponents and the box counting dimensions of the invariant manifolds. Finally, a symbolic

dynamics description is found to be an appropriate transformation from trajectories into symbol sequences, showing

an excellent agreement between their finite time Lyapunov exponents and the normalized Shannnon entropies.

In summary, by using different techniques from nonlinear dynamics, we have characterized the Lagrangian chaos

present in the fluid flow that is generated by the chaotic saddle formed by the intersections of the invariant manifolds

associated to unstable periodic orbits inside the chaotic layer.
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