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ABSTRACT

In the present article we propose a new soft-input soft-
output (SISO) decoding module for a chaos-channel en-
coded binary signal. When the chaos based channel en-
coder is used as inner encoder and a convolutional encoder
is used as outer encoder in a serial concatenation scheme,
the signal can be thus iterativelly and jointly decoded by
means of the corresponding SISO decoders. This allows
the transfer of bit extrinsic information for a final Maxi-
mum a Posteriori (MAP) decoding of the bit information.
We believe that the design of this new chaos based SISO
decoding module opens a road for new developments to
make chaos based communications more robust and effi-
cient.

1. INTRODUCTION

Chaotic signals offer good properties for their use in com-
munication contexts, since they usually have low autocor-
relation and are suitable for spread spectrum systems. Af-
ter an initial outburst of research during the mid of the
90’s, the interest on chaotic communications has some-
what dropped due to the bad performance of the systems
proposed so far [1], in comparison to such simple mod-
ulation schemes as BPSK (Binary Phase Shift Keying).
Nowadays, the arising of proposals outperforming tradi-
tional systems [2] has opened the way to look further into
the possibilities of chaotic systems to act as channel en-
coders and decoders, taking advantage of their good in-
trinsic properties for some applications. In the past years,
some decoding algorithms were presented for the kind of
chaos based encoding we use in this paper [3]. The best
results were given by the Maximum Likelihood Sequence
Estimation (MLSE) approach based upon the Viterbi al-
gorithm [4]. This algorithm is not optimal in terms of Bit
Error Rate (BER) while a Maximum A Posteriori (MAP)
approach is usually successful in lowering the final BER.
This is one of the reasons for studying the adaptation of
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the soft-input soft-output MAP module proposed in [5] to
the decoding of the chaotic signal. This certainly will al-
low us to introduce the chaos based channel encoder and
the corresponding SISO decoder in a turbo-like frame-
work, in which there will be a convolutional encoder act-
ing as outer encoder and our chaos based encoder act-
ing as inner encoder. The data from this serially con-
catenated scheme will be decoded iteratively using both
a conventional SISO decoder (for the convolutional en-
coding) and the chaos based SISO decoder proposed here
(for the chaos based encoding). Both SISO modules will
exchange extrinsic bit information as in the known turbo
encoding and decoding scheme [6], and in a way very
similar to the turbo equalizer presented in [7]. We will
show that this scheme is practical and boosts the perfor-
mance in terms of BER. This opens a promising track
in chaotic communications and makes it possible to in-
troduce the sort of chaotic encoders based upon iterated
maps in known concatenated coding and iterative decod-
ing frameworks.
According to this aim, the next section will be devoted to
the introduction of the chaos-channel encoder and to the
channel model. In the following section, we will describe
in detail the SISO module for the chaos-channel decoder
and next, we will show the simulation results for a simple
example. Finally, the last section is devoted to the con-
clusions, where we mention some of the possible future
research tasks worth doing in this field.

2. TRANSMITTER

In order to encode a binary sequence denoted as {un},
where un ∈ {0, 1} and n = 1 · · ·N , we make use of
the method proposed in [8], substituting the aditive noise
perturbation by an effect of truncation which will be ex-
plained in the sequel. The map we are interested in is the
Bernoulli shift map defined as :

xn+1 = f(xn) =

{

2xn if xn ≤ 1
2

2xn − 1 if xn > 1
2

(1)
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It is a well known property of the Bernoulli shift map [3]
that, if we define the symbolic state of the system r as

r =
N

∑

m=1

um2−m, (2)

and we define the initial condition for the chaotic sequence
as x0 = r, then the binary sequence is encoded into the
chaotic sequence generated by x0 and the information can
be retrieved following:

un =

⌊

xn +
1

2

⌋

, (3)

where bxc is the nearest integer rounding towards zero.
For a real system, where the length N of the message,
even when sent in packet mode, could reach thousands of
bits, the proposed encoding process is not practical, since
it implies an almost infinite precision. In this case, the
method can be used by encoding blocks of D bits, in the
following form:

x′n = r′n =

n+D−1
∑

m=n

um2−m+n−1. (4)

It can be shown that the resulting truncated sequence {x′n}
is close to the original one, in a process equivalent to the
addition of noise in order to control the chaotic sequence,
x′n = xn + ηn, where ηn < 2−D is approximately a ran-
dom white noise whose power decreases as D becomes
larger. In the sequel, we will refer to the thus controled se-
quence as {xn}. To perform the encoding process shown
in (4), the bit sequence is padded with D − 1 zeroes after
uN .
On the receiver side, the sequence received {yn} will be

yn = xn + nn, (5)

where nn is an average white gaussian noise (AWGN)
with zero mean and power σ2. This is a useful and well
known channel model in telecommunications.

In Figure 1 we can see the transmitter chain when us-
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Fig. 1. Transmitter model.

ing a concatenated turbo-like scheme. The original infor-
mation bit sequence {bn} (independent and equiprobably
distributed) is first convolutionally encoded to {cn}, then
interleaved to {un} and, finally, this bit sequence is trans-
formed into a chaotic sequence {xn} as stated before. It
is worth noting that this kind of chaos based encoder has
a rate R = 1.

3. CHAOS BASED SISO MODULE

The chaotic sequence {xn} can be dealt with under a sym-
bolic dynamics basis [9], [10], where a quantization of the

phase space [0, 1] is needed. The interval [0, 1] is divided
into a series of nonoverlapping intervals Ii with limits i

P

and i+1
P for i = 0, · · · , P − 1 and center in ci = i

P + 1
2P .

P is the number of intervals, taken as a power of 2, so that
the threshold point 1

2 is the upper point of one interval and
the lower one of another. In this way, with the only knowl-
edge that a point xn lies in the interval Ii, we can ascertain
whether it has to be decoded as a 1 or as a 0. If we sub-
stitute the original sequence by the sequence of intervals
where the corresponding symbol lies, we get a symbolic
representation of the sequence that can be described as a
first order Markow process1, with a corresponding tran-
sition matrix T. The term tij in this matrix means the
transition probability between the interval Ii and the in-
terval Ij . In the case of the Bernoulli shift map, each
interval maps exactly into two contiguous intervals with
equal probability. For example, in the case of P = 4, this
transition matrix is:

T =
1

2









1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1









. (6)

When the number of bits D taken into account to encode
the signal is such that P = 2D, then the correspondence
is exact, as there will be only a possible symbol xn for
each interval considered. When D is such that P < 2D,
the symbolic dynamics principle mentioned is also valid,
but there will be more than one representative per inter-
val. Instead of substituting the signal by its representation
in terms of intervals, we can work with states and transi-
tions between states. We say that the Markow process is
in state sn = i at time n = 1 · · ·N if xn lies in Ii. Exam-
ining matrix (6), we see that there are only two possible
transitions for each state, each one corresponding to a dif-
ferent bit value2. Taking this into account, we can define
the edges of a trellis section, which is all we need to adapt
the algorithms in [5] to build our chaos based SISO de-
coding module. This trellis is such that, if the input bit is
un, and the current state is

sn−1 =

log2(P )
∑

j=0

wj2
j , (7)

where the variables wj take values 0 or 1, then the result-
ing state sn is

sn =

log2(P )
∑

j=1

wj−12
j + un. (8)

As the chaos based SISO module will act as inner decoder
in a concatenated scheme, it is only necessary to calculate
the output probabilities {πn(u;O)}. We use the notation
introduced in [5], where πn(u;O) = log [P (un = u;O)],

1This symbolic sequence contains exactly the same information as
the original one in point of bit information.

2This is easy to see considering P = 2
D : from state/interval 00 we

can go to 00 or 01, which means that the encoder has received as input
bit a 0 or a 1, respectively.
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meaning the logarithm of the extrinsic values of the a
posteriori probability of the data {un} given the a priori
probability πn(u; I) = log [P (un = u; I)]] and the out-
puts from the channel {yn}. Following the mentioned pa-
per, the output of the SISO module will be obtained as:

πn(u;O) =

log
[

∑

sn−1→sn

un=u

exp {α[sn−1] + πn(y; I) + β[sn]}
]

,

where the summation is over all valid transitions between
pairs of states sn−1 and sn given by the input bit un =
u. α and β are calculated through a forward-backward
algorithm as:

α[sn] =

log
[

∑

sn−1
exp {α[sn−1] + πn(y; I) + πn(u; I)}

]

β[sn] =

log
[

∑

sn+1
exp {β[sn+1] + πn+1(y; I) + πn+1(u; I)}

]

.

The summations are for all the valid transitions between
sn−1 and sn, and between sn and sn+1, including the cor-
responding input bits which determine the transitions, un

and un+1. In all cases, n = 1 · · ·N . The a priori values
from the channel are πn(y; I),

πn(y; I) = log

(

1

σ
√

2π
e−

(yn−csn )
2

2σ2

)

, (9)

where csn
is the center of the interval corresponding to the

state sn. Both α[s0] and β[sN ] are initialized to log
(

1
P

)

,
since the starting and ending states of the process are not
known nor set to 0 as is usual in convolutional encoders.

In Figure 2 we can see the receiver model, where the
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Fig. 2. Iterative receiver model.

SISO inner decoder is as explained so far and the SISO
outer decoder is a conventional convolutional SISO de-
coder [5]. The input of the a priori information for the
convolutional SISO module {πn(b; I)} is not shown as it
is constant and only depends on the a priori probability
of the information bit sequence (which is independent and
identically distributed). As it may be seen, the a posteri-
ori output extrinsic values of the outer SISO decoder for
the convolutionally encoded data {cn} are used as input
a priori probabilities in each iterative step for the chaos
based SISO decoder. In turn, the a posteriori output ex-
trinsic values from the chaos based SISO decoder are used
as input a priori probabilities for the convolutional SISO
decoder. The a posteriori values for the information bi-
nary sequence {bn} are finally hard decoded and provided
as estimated bit values to evaluate the resulting BER.

4. SIMULATION RESULTS
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Fig. 3. BER results for the case where no chaos channel
encoding is applied, and for the case with turbo decoding
after 1, 2 and 7 iterations.

To test the SISO module proposed, we have simulated
a system with a convolutional encoder of rate 1

2 , memory
8 and generating polynomials 101110001 and 111101011.
The interleaver is a 500 × 500 block interleaver and we
have chosen D = 20 in the chaos based encoder, so that,
in practice, the quantization effect over {xn} is negligible.
The number of states of the chaos based SISO decoder, to-
gether with the number of quantized intervals is P = 32.
In Figure 3 we can see the results (BER against Eb

N0

)3 when
performing turbo decoding after several number of itera-
tions, together with the performance when no chaos based
encoding is used4. The convergence of the iterative pro-
cess is very fast, so that, from the 5th iteration and on, no
further gain is achieved. The final result is not so good as
directlly sending the convolutionally encoded data, at least
to a simulated BER of 10−5. This is not surprising, since,
when encoding with the Bernoulli shift map and when no
additional channel encoding is present, the results are nei-
ther better than the results obtained for a simple BPSK
modulation [11]. However, the transmitter system pre-
sented here and the iterative decoding is at least able to
greatly improve the much poorer performance obtained
when separately decoding both encoding processes. This
provides a hint that, with further arrangements, a convolu-
tional chaos based turbo system could be devised to out-
perform the results shown by these simulations.

3 Eb

N0

=
σ2

x

2Rcσ2
, where σ2

x =
1

12
is the power of the signal and Rc

the rate of the code.
4In this case, the data {cn} is BPSK modulated and sent into the

channel, and SISO decoded without further processing.
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5. CONCLUSIONS

In this paper we have extended the concept of the SISO de-
coding module to a chaos channel encoder based upon the
Bernoulli shift map, and we have checked its behaviour
when placed in a serially concatenated scheme. As seen
in the previous section, the results obtained do not justify
the introduction of the chaos channel encoder when facing
the results against the possibility of using a BPSK modu-
lation and the same convolutional encoder. Nevertheless,
this study shows how to improve the overall performance,
and getting a performance at least as good as with BPSK
is already a big fact, since the properties of the chaotic sig-
nal make it suitable for spread spectrum systems, while a
BPSK signal would need further processing.
With respect to future developments, a deep study is lack-
ing on which chaotic maps and convolutional encoders are
able to provide better convergence behaviour (for exam-
ple, through the use of EXIT charts [12]). We suspect that
the fast convergence shown in our example could easily
be explained by an excessive correlation in the data be-
cause of the specific encoders we used, so that not all the
mutual information available from the codes is properly
exploited. Other possible reason for the poor results is
the instability of the iterative dynamics, which, when not
properly managed, can lead to roundabout or overflow er-
rors 5.
It is also worth studying the performance of the system
taking into account the property of its minimum distance
and it is also necessary to test how the performance is af-
fected by the use of other and more robust kinds of in-
terleavers (like the S-random interleavers [13]) and by the
length of the same.
Other possibility for future research is the design of chaos
based recursive encoders, as a known property of the seri-
ally concatenated schemes is that, when the outer encoder
is not recursive but the inner one is, there is a steady gain
in its final BER [5]. Finally, it could be interesting try-
ing to adapt the SISO decoding module introduced here
to more efficient chaos based encoders, as the ones pre-
sented, for example, in [14], or even to extend the princi-
ple to chaos based encoders with rates greater than R = 1.
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