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The present paper considers crisis-induced intermittency in a system composed of two coupled logistic
maps. Its purpose is to clarify a bifurcation scenario generating such intermittent behaviors that can be regarded
as a simple example of chaotic itinerancy. The intermittent dynamics appears immediately after an attractor-
merging crisis of two off-diagonal chaotic attractors in a symmetrically coupled system. The scenario for the
crisis is investigated through analyses of sequential bifurcations leading to the two chaotic attractors and
successive changes in basin structures with variation of a system parameter. The successive changes of the
basins are also characterized by variation of a dimension of a fractal basin boundary. A numerical analysis
shows that simultaneous contacts between the attractors and the fractal basin boundary bring about the crisis
and a snap-back repeller generated at the crisis produces the intermittent transitions. Furthermore, a modified
scenario for intermittent behaviors in an asymmetrically coupled system is also discussed.
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I. INTRODUCTION

Coupled chaotic systems show a rich variety of collective
phenomena such as chaotic synchronizationf1–4g and cha-
otic itinerancyf5–7g. The importance and interest in under-
standing collective dynamics of coupled chaotic systems lie
in the fact that they are often used to model a group of
interacting units such as biological networks and electronic
circuits. The present paper considers a scenario leading to
intermittent behaviors in a system composed of two coupled
chaotic maps, aiming at better understanding chaotic itiner-
ancy.

Chaotic itinerancy has been proposed as a concept to de-
scribe a dynamical state consisting of chaotic transitions
among nearly ordered behaviorsf6g. The mathematical foun-
dation of this concept has been intensively studiedf7g. Itin-
erant memory dynamicsf8,9g, or nonperiodic associative dy-
namicsf10g, found in chaotic neural networksf11g can be
also considered as an example of chaotic itinerancy. The
mechanism of the onset of itinerant memory dynamics in a
system of four coupled chaotic neurons has been recently
clarified in terms of global bifurcationsf8,9g. Before a global
bifurcation, four distant chaotic attractors symbolizing differ-
ent memories are coexisting. A trajectory asymptotes to one
of the attractors depending on the initial condition, i.e., the
network recalls one of the memories. At the bifurcation
point, the unstable manifolds of the unstable periodic points
embedded in the attractors intersect and then a trajectory
starts irregular itinerant transitions among the four originally
attracting regions.

Similar transient dynamics is also found in a system of
two coupled logistic maps. It corresponds to a dynamical
phenomenon calledcrisis-induced intermittencyf12,13g. The
intermittent behavior appears immediately after simultaneous

interior crises of two mutually symmetric off-diagonal attrac-
tors. This is called an attractor-merging crisisf12g. An ad-
vantage of using a two-dimensional map as a case study is
that observations of basin structures can be easier and helpful
for a better understanding of dynamical phenomena in
higher-dimensional systems. With this in mind, the present
paper studies the emergence of crisis-induced intermittency
in a simple two-dimensional model. We analyze bifurcations
of the two off-diagonal attractors and modifications of basins
of attraction, i.e., basin bifurcationsf14g or basin metamor-
phosesf15g. The noninvertible property of the model brings
about a complicated basin structure. We use some techniques
for analyses of chaotic dynamics and global bifurcations in
two-dimensional noninvertible mapsf14,16g.

A process leading to merging of two mutually symmetric
chaotic attractors has been studied in terms of basin bifurca-
tions in Ref. f14g. The attractors simultaneously contact a
fractal basin boundaryf17g of their basins of attraction. We
carry out a similar analysis of basins as well as quantitative
characterization of the changes of basins with the dimension
of the basin boundary in the two-dimensional model. More-
over, we discuss a modified scenario of basin bifurcations
leading to intermittent behaviors in an asymmetrically
coupled system to consider the robustness of the phenomena.

From another viewpoint, the attractor-merging crisis in
the symmetrically coupled maps can be considered as a re-
union of chaotic attractorsf18g. This occurs because the cri-
sis restores the symmetry that has been broken by a pitchfork
bifurcation of a fixed point on the diagonal. Maistrenkoet al.
f18g have investigated two mechanisms of reunion of several
pieces of a chaotic attractor into a one-piece chaotic attractor
in a system of two-dimensional piecewise linear maps. A
mechanism called acontact bifurcation of the first kindf19g
gives rise to a sudden change of two or more pieces of some

PHYSICAL REVIEW E 71, 016219s2005d

1539-3755/2005/71s1d/016219s11d/$23.00 ©2005 The American Physical Society016219-1



cyclic chaotic attractor into a larger chaotic attractor with the
appearance of bursts. This type of reunion is brought about
by a contact of chaotic pieces with a basin boundary. In
piecewise linear mapsf18g, the contact occurs with a fractal
basin boundary generated through a homoclinic bifurcation
of a saddle cycle. In this case, the boundary embeds acha-
otic saddle, i.e., a geometrically strange, invariant, nonat-
tracting set, which is made up of an infinite number of un-
stable periodic orbits. In our case, the contact occurs with a
fractal basin boundary that arises after a boundary crisisf20g
of an attractor. A chaotic repeller, or a strange repulsorf14g,
is embedded in the fractal basin boundary.

The organization of the paper is as follows. In Sec. II,
some properties of the system of two symmetrically coupled
logistic maps are described with the critical curve, which is a
useful tool for understanding a basin bifurcationf14g. In Sec.
III, bifurcations of two mutually symmetric off-diagonal at-
tractors are investigated and the parameter region where they
coexist is specified. In Sec. IV, basin structures are examined
with invariant manifolds of saddle cycles. In Sec. V, basin
bifurcations are qualitatively investigated with the genesis,
changes, and destruction of a fractal basin boundary. These
changes in basin structures are also quantitatively character-
ized using variation of a dimension of the fractal basin
boundary. In the last section, we discuss a modified scenario
leading to intermittent behaviors in a system of two asym-
metrically coupled logistic maps with a slight mismatch of
the nonlinearity parameters.

II. THE MODEL AND ITS PROPERTIES

We consider a family of transformationsT with two
coupled logistic maps in the following form:

xn+1 = s1 − edflsxnd +
e

2
fflsxnd + flsyndg,

s1d

yn+1 = s1 − edflsynd +
e

2
fflsxnd + flsyndg,

where flszd=1−lz2. In both equations, the second term rep-
resents the average coupling term of the two chaotic ele-
ments. This model corresponds to a two-dimensional case of
globally coupled logistic mapsf21g. Equations1d includes
two parametersl ande corresponding to the nonlinearity of
the single logistic map and the coupling strength, respec-
tively. For all parameter values, Eq.s1d has a symmetry with

respect to the diagonal that is invariant under the transforma-
tion Sd: sx,yd° sy,xd whereT+Sd=Sd+T. Therefore, if there
is an attracting region above the diagonal, then its symmetric
counterpart necessarily exists below the diagonal, and vice
versa.

It is useful for understanding this simple model to con-
sider its geometric properties. Figure 1 schematically illus-
trates the transformationT for the phase plane in the case of
no coupling, i.e.,e=0. It should be recalled that the single
logistic map consists of a pair of operations, stretch and fold,
for an interval. By the two-dimensional transformationT, the
phase plane is two-dimensionally stretched, and then folded
along the vertical axis and the horizontal axis, respectively,
as shown in Fig. 1. Since the transformed phase plane does
not cover the whole phase plane, it is divided into two open
regionsZ4 sgrayd and Z0 swhited. A point X in Z4 has four
preimagesXi

−1 si =1,2,3,4d, while any point inZ0 has no
preimages. According to the classification based on the num-
ber of preimages, the transformationT is a noninvertible map
of the sZ0−Z4d type f14g. The geometric property of the
model withe=0 also gives a hint in understanding the model
with eÞ0. The inverse maps defined for a pointsx,ydPZ4

are given as follows:

T1
−1:sx,yd ° „gsx,yd,hsx,yd…, s2d

T2
−1:sx,yd ° „gsx,yd,− hsx,yd…, s3d

T3
−1:sx,yd ° „− gsx,yd,− hsx,yd…, s4d

T4
−1:sx,yd ° „− gsx,yd,hsx,yd…, s5d

where

gsx,yd =Î 1

2l
H2 −S1 +

1

1 − e
Dx − S1 −

1

1 − e
DyJ ,

hsx,yd =Î 1

2l
H2 −S1 −

1

1 − e
Dx − S1 +

1

1 − e
DyJ .

With these notations, the relation between a pointX and its
rank-1 preimageXi

−1 is described asXi
−1=Ti

−1sXd for i
=1, . . . ,4. In a similar way, a rank-k preimage of a pointX is
denoted by Xi1i2¯ik

−k =Ti1i2¯ik
−k sXd;Tik

−1+Tik−1

−1 + ¯ +Ti1
−1sXd

wherei j =1, 2, 3, or 4 forj =1,2, . . . ,k, if it exists. The union
of all rank-k preimages of a pointX san areaUd is indicated
by T−ksXd fT−ksUdg.

FIG. 1. Schematic illustration of the transformationT with e=0 for the phase plane. The phase plane is two-dimensionally stretched, and
then folded with respect to the two axes. The critical curveL separates the two open regions,Z0 where any point has no preimages andZ4

where a pointX has four rank-1 preimagesXi
−1 si =1,2,3,4d.
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The curveL slines in this cased separating the phase plane
into the two regionsZ4 and Z0 is called acritical curve of
rank 1 f14g. The critical curve is generally an image ofL−1
given as the locus of points where the Jacobian determinant
vanishes. SinceL−1 is the union of the two axes in Eq.s1d,
i.e., L−1=hsx,yd ux=0 or y=0j, the critical curve is given as
the union of the two half lines as follows:

L = Hsx,ydUy = 1 +
e

2 − e
sx − 1dusx ø 1,y ø 1d

or x = 1 +
e

2 − e
sy − 1d sx ø 1,y ø 1d. s6d

It should be noted that the originO, which is the intersection
of the two axes, is mapped into the end pointC of the two
half lines ofL. In Secs. IV and V, the critical curve is used to
analyze basin bifurcationsf14g, i.e., qualitative changes in
basin structures.

III. BIFURCATIONS OF THE OFF-DIAGONAL
ATTRACTORS

In this section, we investigate a sequence of bifurcations
leading to two mutually symmetric off-diagonal chaotic at-
tractors using Kawakami’s methodf22g. The parameter re-
gion where the two off-diagonal attractors coexist is speci-
fied. In the following, a local bifurcation of a fixed point or a
periodic cycle on the diagonal is calledtransverseif the ei-
genvalue of the Jacobian matrix with absolute value 1 corre-
sponds to the eigenvector in a direction orthogonal to the
diagonal, andnontransverseif the direction is parallel to the
diagonal. A chaotic attractor consisting ofp distant pieces is
called ap-periodic chaotic attractor.

We consider bifurcations in the parameter space
hsl ,ed u0,l,2,1,e,2j, because a trajectory diverges in
the single logistic map ifl.2 and the transformationT is
symmetric with respect to the linee=1 in the parameter
plane as follows. Now we write the mapT asTl,e to specify
its dependence on the system parameters. Since the relation
Tl,2−e=Sd+Tl,e holds for all parameter values, it follows that

Tl,2−e
2 = sSd + Tl,ed + sSd + Tl,ed = Sd + Sd + Tl,e + Tl,e = Tl,e

2

s7d

from the properties of the transformationSd, i.e., T+Sd=Sd
+T andSd+Sd= I whereI is the 232 unit matrix. Due to the
symmetry in Eq.s7d, the bifurcation diagram ofT2 in the
sl ,ed plane is symmetric with respect to the linee=1. How-
ever, there is a little difference betweenTl,e and Tl,2−e re-
garding the symmetry in the phase plane. For instance, there
is a pair of two mutually symmetric chaotic attractors when
sl ,ed=s1.67,1.9d, while there is a two-piece chaotic attrac-
tor when sl ,ed=s1.67,0.1d. If the two chaotic attractors in
the former case are denoted byAQ and AR, then the two
pieces in the latter case are given asAQ and AR. Neverthe-
less, bifurcations in both cases are essentially the same due
to the symmetry in Eq.s7d. Thus, we consider the parameter
region withe.1, since coexistence of two attractors is con-
venient for observation of a basin boundary.

Figure 2 shows bifurcation sets related to the two off-
diagonal attractors. The gray region indicates the parameter
region where the two attractors coexist. For simplicity, we
explain the bifurcation scenario leading to the two chaotic
attractors along the dashed arrow in Fig. 2, wheree is fixed
at 1.9. Phase plots at the parameter values denoted bysad–shd
in Fig. 2 are correspondingly shown in Figs. 3sad–3shd.

sad→ sbd. Whenl,0.75, there is a stable fixed pointP
=sxP,yPd on the diagonal, where

xP = yP =
− 1 +Î1 + 4l

2l
. s8d

The stable fixed pointP changes into a saddle fixed point
and a two-periodic cycleP2 emerges on the diagonal through
the nontransverse period-doubling bifurcationsPDn in Fig.
2d.

sbd→ scd. The saddle fixed pointP turns into a repelling
fixed point via the transverse pitchfork bifurcationsPFt in
Fig. 2d at l=s2e−1d /4s1−ed2. The pitchfork bifurcation
generates a pair of mutually symmetric saddle fixed points,
Q=sxQ,yQd below the diagonal andR=SdsQd=syQ,xQd
above that, where

xQ =
− 1 +Î1 − 2e + 4ls1 − ed2

2ls1 − ed
, s9d

yQ =
− 1 −Î1 − 2e + 4ls1 − ed2

2ls1 − ed
. s10d

FIG. 2. Bifurcation diagram showing how a pair of two attrac-
tors out of the diagonal appears and develops. The gray region
indicates the parameter region where the two off-diagonal attractors
coexist. The bifurcation sets are denoted as follows: PDn, nontrans-
verse period-doubling bifurcation ofP; PFt, transverse pitchfork
bifurcation ofP; PDs, subcritical period-doubling bifurcations ofQ
and R; NS, Neimark-Sacker bifurcations ofQ and R; SN, saddle-
node bifurcations on the invariant circles; PDc, period-doubling bi-
furcations of the four-periodic cycles. The phase plots at the param-
eter values denoted bysad–shd are shown in Figs. 3sad–3shd. The
bold curves BC, BB, and IC indicate basin bifurcation setsssee Fig.
7 for detailsd.
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scd→ sdd. The saddle off-diagonal fixed points recover
their stability through the subcritical period-doubling bifur-
cation sPDS in Fig. 2d. The two-periodic saddle cyclesQ2

andR2=SdsQ2d generated at the bifurcation contribute to the
formation of a basin boundary as described in the next sec-
tion.

sdd→ sed. The invariant closed curvesAQ andAR are gen-
erated with loss of stability of the stable fixed pointsQ and

R, by the Neimark-Sacker bifurcationsNS in Fig. 2d, respec-
tively.

sed→ sfd. The four-periodic cyclesAQ and AR emerge
through the saddle-node bifurcationsSN in Fig. 2d on the
invariant closed curves.

sfd→ sgd. The four-periodic cyclesAQ and AR develop
into four-periodic chaotic attractors through successive
period-doubling bifurcationssthe first one is denoted by PDC
in Fig. 2d. The transition fromsed to sgd is a typical torus-
breaking route to chaosf23g.

sgd→ shd. Each four-periodic chaotic attractor merges into
a one-piece chaotic attractor through a global bifurcation.

The sequence of bifurcations of attractors described above
is similar to that in the system of two logistic maps with
linear couplingf23,24g. In our model, the two off-diagonal
chaotic attractors suddenly merge into a larger chaotic attrac-
tor by simultaneous interior crisessIC in Fig. 2d. The
attractor-merging crisis gives rise to intermittent transitions
between two distant regions that are originally attracting.
Since a crisis is generally caused by a contact between an
attractor and its basin boundaryf20g, it is needed for under-
standing of the attractor-merging crisis to analyze not only
bifurcations of the attractors but also changes of their basin
boundary. Thus, we focus on the formation of the basin
structure and the basin bifurcations in the next two sections.

IV. FORMATION OF BASIN BOUNDARY WITH SADDLE
CYCLES

In this section, we consider the basin structure and we
focus our attention on the immediate basins of the off-
diagonal attractors. The total basin of an attracting setA is
defined as the setD=økù0T

−ksUd whereU is some attracting
neighborhood ofA, while the immediate basinD0 of A is
defined as the largest connected component ofD containing
A f14g. The total basin of an attractorA is denoted byDsAd
and the immediate one byD0sAd. If a region belongs to
DsAd, then its preimages also belong toDsAd.

Figure 4 shows a basin structure under the coexistence of
the three attractors,P2, Q, and R, at the parameter value
denoted bysdd in Fig. 2. The corresponding phase plot is also
shown in Fig. 3sdd. The total basins ofP2, Q, and R are
indicated by silver, light gray, and dark gray, respectively.
The white region indicates the set of initial conditions with
which a trajectory diverges to infinity. By definition, the im-
mediate basinD0sQd fD0sRdg is the connected region includ-
ing Q sRd, which is bounded by the four solid segments. It
can be seen in Fig. 4 thatD0sQd is divided into two regions
D0sQdùZ4 andD0sQdùZ0 by the critical curveL. It should
be noted thatD0sQdùZ4 has preimages whileD0sQdùZ0

has no preimages. The union of the four rank-1 preimages of
D0sQdùZ4 is equivalent to the union ofD0sQd and its mirror
imageD08sQd in the opposite side with respect to the axisx
=0. In a similar way,T−1(D0sRdùZ4)=D0sRdøD08sRd where
D08sRd=Sd(D08sQd). The regions D08sQd and D08sRd are
bounded by four segments with four cusp pointsf14g, re-
spectively. A cusp point indicates a preimage of the repelling
fixed pointP. Hence, an isolated component ofDsQd fDsRdg,

FIG. 3. Phase plots at different values ofl with e=1.9. The
filled circles, the triangles, and the open circles indicate stable,
saddle, and repelling points, respectively. The off-diagonal attrac-
tors are indicated byAQ andAR and the other is represented byAP.
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which is a preimage ofD08sQd fD08sRdg, has a boundary con-
sisting of four segments with four cusp points.

Now we explain how the immediate basinD0sQd and its
basin boundary are formed. As mentioned in Sec. III, the
two-periodic saddle cyclesQ2 andR2 play a significant role
in the formation of the basin boundary. Figure 5sad shows the
immediate basinD0sQd corresponding to that shown in Fig.
4. The smooth segmentPM consisting of the stable invariant
sets of Q2 is the basic element for the immediate basin
boundary, whereM is the intersection of the invariant set and
the critical curveL. It should be noted thatQ2 is very close
to M and located on the left-hand side ofL. On the other
hand, one of the unstable invariant set ofQ2 extends in a
direction towardsQ in D0sQd and the other towardsP2 in the
outside ofD0sQd. The unstable invariant set ofP below the
diagonal also extends in a direction towardsQ as shown in
Fig. 5. A trajectory starting from an initial condition close to
P departs away from it along an integral curvef25g. These
integral curves can be locally approximated as the solutions
to the linearized mapDT in the vicinity of P. This leads to
the repelling tongue, which is now cusplike because the local
dynamics nearP is more expanding in a direction transverse
to the diagonal than along the diagonalf25g. The boundary
of D0sQd is made up of the basic segmentPM and its pre-
images, where the four boundary segments are represented as
follows:

PP2
−1 = T1

−1sPMd ø T2
−1sPMd, s11d

PP21
−2 = T1

−1sPP2
−1d, s12d

P2
−1P22

−2 = T2
−1sPP2

−1d, s13d

P21
−2P22

−2 = T1
−1sP2

−1Kd ø T2
−1sP2

−1Kd, s14d

where K is the intersection of the segmentP2
−1P22

−2 and L.
Consequently, the boundary ofD0sQd is formed by the in-
variant sets of the saddle cycleQ2 and their preimages.

With variation of the parameter values, the saddle cycle
Q2 undergoes successive period-doubling bifurcations as
shown in Fig. 6. Through the period-doubling bifurcation
denoted by PD2

k
, a 2k-periodic saddle cycleQ2k

changes into
a repelling cycle and a 2k+1-periodic saddle cycleQ2k+1

emerges. Figure 5sbd shows the immediate basin boundary at
the parameter value denoted bysbd in Fig. 6, where the basic
segmentPM consists of stable invariant manifolds ofQ4.
Accordingly, the smooth boundary ofD0sQd, which is made
up of PM and its preimages, still holds. Similarly, the
smooth boundary of the immediate basin holds for the
period-doubling cascade of the saddle cycles. The cascade
leads to a chaotic saddle after its accumulation. Hence, the
immediate basin boundary is made up of a chaotic saddle
and its preimages after the accumulation of the cascade.
However, it is not possible to concludesat this study leveld

FIG. 4. Basins of attraction ofP2 ssilverd, Q slight grayd, andR
sdark grayd wheresl ,ed=s1.1,1.9d. The white region indicates the
set of initial conditions with which a trajectory diverges. The largest
connected region includingQ sRd represents the immediate basin
D0sQd fD0sRdg.

FIG. 5. Boundary of the immediate basinD0sQd below the di-
agonal. It is formed by the segmentPM and its preimages. The
segment consists of stable invariant sets of a saddle cycle. The
saddle cycle issad Q2 where sl ,ed=s1.1,1.9d and sbd Q4 where
sl ,ed=s1.4,1.9d. The filled circles, the triangles, and the open
circles indicate stable, saddle, and repelling points, respectively.
The intersections ofL and the immediate basin boundary are de-
noted byM andK.
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whether the segmentPM remains smooth even after the ac-
cumulation of the period-doubling cascadessee p. 370 of
Ref. f14gd.

V. QUALITATIVE AND QUANTITATIVE CHANGES OF
FRACTAL BASIN BOUNDARY

In this section, successive changes in basin structures are
considered asl increases along the dashed arrow in Fig. 7.
The primary three subsections deal with basin bifurcations
including the genesis, changes, and destruction of a fractal
basin boundary. These three major changes in basin struc-
tures take place at the parameter sets denoted by BC, BB,
and IC in Fig. 7, respectively. In the last subsection, the
fractal dimension of the basin boundary characterizes these
basin bifurcations.

A. Genesis

We consider a genesis of a fractal basin boundary at the
parameter set of a boundary crisis denoted by BC in Fig. 7.
Before the boundary crisis, there are three coexisting attrac-
tors AP, AQ, andAR, as shown in Fig. 8sad. The basin struc-
ture is qualitatively the same as that in Fig. 4, though the
attractors are topologically different. Asl increases, two dis-
joint sets of the attractorAP become larger in size and their
two end points finally contact at the repelling fixed pointP
on the basin boundary. The boundary crisis leads to the dis-
appearance ofAP.

The boundary crisis set is specified by considering the
dynamics in the diagonal where the model is reduced to the
single logistic map. At the boundary crisis, the logistic map
exhibits merging of a two-band chaotic attractor into a one-
band chaotic attractor. From this fact, the boundary crisis
parameter valuelb satisfiesflb

3 s0d=xP, or

FIG. 6. Successive period-doubling bifurcations of saddle
cycles. The period-doubling bifurcation of a saddle cycleQ2k

is
denoted by PD2

k
sk=1,2,3,4d. The period-doubling cascade sug-

gests the existence of a chaotic saddleQ2`
. Immediate basin bound-

aries at the parameter values denoted bysad and sbd are shown in
Figs. 5sad and 5sbd.

FIG. 7. Phase diagram showing the parameter sets of boundary
crisis sBCd, basin bifurcationsBBd, and interior crisissICd. Phase
plots at the parameter values indicated bysad–sdd are shown in Figs.
8sad, 8sbd, 10sbd, and 12, respectively.

FIG. 8. Basin structures before and after the boundary crisis:sad
total basins ofAP ssilverd, AQ slight grayd, andAR sdark grayd where
sl ,ed=s1.53,1.9d; sbd fractal basin boundary separating the total
basins of AQ slight grayd and AR sdark grayd where sl ,ed
=s1.62,1.9d.
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lb
3 − 2lb

2 + 2lb − 2 = 0, s15d

which giveslb<1.543 68. Hence, the parameter set of the
boundary crisis is independent of the coupling parametere.

Figure 8sbd shows a basin structure after the boundary
crisis ofAP. A fractal basin boundary separating the basins of
AQ andAR appears in the region that is previously the basin
of attraction ofAP. In order to understand the basin fractal-
ization geometrically, we focus on the area near the end point
of the two half lines ofL. Figure 9 schematically illustrates
the relations between the basin boundary and the critical
curveL before and after the boundary crisis. The upper fig-
ure represents a neighborhood of the end pointC, while the
bottom one represents a neighborhood of the originO. It
should be recalled thatO is the fourfold rank-1 preimage of
C. Before the boundary crisis,L is distant from the two seg-
ments of the basin boundary connected atP31

−2 as shown in
Fig. 9sad. Since the neighborhood ofC belongs to the basin
of AP, the neighborhood ofO also belongs to the basin ofAP.
At the boundary crisis,C contacts the cusp pointP31

−2 on the
basin boundary. A contact between a critical curve and a
basin boundary is called acontact bifurcationf14g, because
it brings about a qualitative change in a basin structure. After
the contact,L intersects the two segments of the basin
boundary, and the rank-1 preimages of the regionB appear
near the origin as shown in Fig. 9sbd. The four tonguelike
preimages can be clearly confirmed in Fig. 8sbd. The bound-

aries of the four tongues are connected by the rank-3 preim-
ages ofP. The union of the four tongues,T−1sBd, has four
preimages with a similar shape. If all the preimages of
T−1sBd are cut out from the area that is previously the basin
of AP, then only a set of isolated points remains. The fractal
set is the basin boundary separatingDsAQd andDsARd. Due
to the chaotic dynamics in the area, a chaotic repeller is
embedded in the fractal basin boundary.

B. Changes

After the genesis of the fractal basin boundary, there are
infinitely many preimages of the repelling fixed pointP near
the end pointC of the critical curve. Therefore, asl in-
creases, the fractal basin boundary successively contacts the
critical curveL. This implies that the basin structure succes-
sively changes through the contact bifurcations. In fact, the
fractal dimension of the basin boundary gradually decreases
with increase ofl as shown later. However, the immediate
basinsD0sAQd andD0sARd remainsimply connectedf14g for
the successive minor changes. Further increase ofl gives
rise to a qualitative change of the immediate basins.

Figure 10sad shows a simply connected immediate basin
of AQ. It is bounded by four segments as examined in Sec.
IV. The simply connected region changes into a multiply
connected one as shown in Fig. 10sbd at the parameter set
denoted by BB in Fig. 7. In the multiply connected immedi-
ate basin, some points belonging to the basin ofAR sdark
gray pointsd intrude into the previously simply connected
region as shown in Fig. 10scd. The immediate basin ofAR
also changes into a multiply connected one due to the sym-
metry. The qualitative change of the immediate basin results
from a contact between the boundary of the immediate basin
and the critical curveL.

We focus on the upper-right region ofD0sAQd. The rela-
tion between the boundaryF andL is illustrated in Fig. 11.
Although it is hard to obtain the boundaryF precisely, the
repelling property ofF implies that two neighbor points on
different sides of the boundary move away from it in the
opposite directions. Using this property, the boundaryF is
approximately calculated as a boundary separating the two
sets of points leaving in opposite directions by iterations ofT
as shown in Fig. 11. Before the contact, the points on the
right-hand side ofF have no preimages sinceL is distant
from F as shown in Fig. 11sad. After the contact betweenL
and F, there appears the regionH belonging toZ4 on the
left-hand side ofL as shown in Fig. 11sbd. The regionH has
preimages in the previously simply connected region. IfH
had only points belonging toDsARd, then the preimages ofH
would look like holesf14,26g. In our case, however, the re-
gion H includes points belonging toDsAQd as well as those
belonging toDsARd. Consequently, the preimages ofH in-
cluding both the dark and light gray points do not appear to
be holes as shown in Fig. 10scd.

Kitajima et al. f27g has proposed a method to calculate a
parameter set of a basin bifurcation. The algorithm can be
used when a basin boundary is made up of stable invariant
sets of a saddle cycle. As suggested in Sec. IV, the boundary
of D0sAQd consists of a chaotic saddle and its preimages at

FIG. 9. Schematic illustration of the relations between the basin
boundary and the critical curveL, showing a mechanism of the
basin fractalization. A point near the originO sbottomd is mapped
into a point near the end pointC of the critical curvesupperd. sad
The cusp pointP31

−2 belongs to the regionZ0 before the basin frac-
talization.sbd The four preimages of the regionB are present as the
four tongues whose closures are connected at the four rank-3 pre-
images ofP after the basin fractalization.
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the changes of the immediate basins. Hence, the method is
not applicable to this case. To roughly estimate the parameter
set of the changes of the immediate basins, we prepare a
proper region belonging toD0sAQd \AQ, e.g., the right-half
region in Fig. 10scd. For a fixed parameter and a number of
initial conditions in the proper region, if all trajectories are
asymptotic toAQ, then the parameter value is regarded as
that before the basin bifurcation. If at least one of them is
asymptotic toAR, then it is regarded as the parameter value
after the basin bifurcation. Using this simple test, we obtain
the parameter set denoted by BB in Fig. 7.

C. Destruction

After the change of the simply connected immediate basin
into the multiply connected one, the regionH in Fig. 11sbd
grows in size with further increase ofl. With the growth of
H, basin bifurcations successively occur due to successive
contacts between the fractal basin boundary and the critical
curve L. Accordingly, the preimages ofH approach the at-
tractor AQ, and finally a certain preimage ofH contacts it
f14g. This is called a contact bifurcation of the first kindf19g,
which gives rise to a sudden change of multiple distant cha-
otic attractors into one larger chaotic attractor. The simulta-
neous contacts between the attractors and the fractal basin

boundary in both sides of the diagonal result in an abrupt
widening of the attractors and a destruction of the basin
boundary. The bifurcation can be viewed as an explosion of
chaotic setsf28g where the attracting chaotic sets contact a
repelling chaotic set embedded in the fractal basin boundary.

To roughly estimate the crisis parameter set, we prepare a
proper region belonging toAQ. For a fixed parameter and a
number of initial conditions in the proper region, if all tra-
jectories stay inAQ for a sufficiently long time then the pa-
rameter value is regarded as that before the crisis. Otherwise,
it is regarded as the parameter value after the crisis. Using
this simple test, we obtain the crisis parameter set denoted by
IC in Fig. 7, where it is also observed that the parameter sets
denoted by BB and IC merge ate,1.91. This means that the
contact occurs between the attractors and the boundary of the
immediate basin that is not multiply but simply connected.

Figure 12sad shows the chaotic attractor, which is gener-
ated immediately after the attractor-merging crisis. The crisis
can be understood through the unstable invariant manifolds
of P. Before the crisis, two unstable manifolds ofP extend-
ing towards the off-diagonal attractors never intersect. After
the crisis, they have infinitely many intersections. Figure
12sbd shows the unstable manifolds ofP immediately after
the crisis. It can be seen that they return to the neighborhood
of P. This implies that the crisis occurs whenP first becomes
a snap-back repellerf29g. An intersection of the two unstable
manifolds means infinitely many intersections of them.
Therefore, the intersections enable the everlasting transitions
between two distant regions corresponding to the original
attractors.

Figure 12scd shows irregular intermittent behaviors in-
duced by the attractor-merging crisis. A typical trajectory

FIG. 10. Immediate basins ofAQ before and after the basin
bifurcation:sad simply connected wheresl ,ed=s1.66,1.9d; sbd mul-
tiply connected wheresl ,ed=s1.67,1.9d; scd enlargement of the
middle part ofsbd.

FIG. 11. Relation between the basin boundaryF and the critical
curveL in the upper-right region ofD0sAQd.
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spends a long time in an original attractor region and occa-
sionally moves to the other region. The long lifetime is due
to transient chaosf20g related to the chaotic repellers in the
originally attracting areas. The frequency of the transitions
becomes higher asl surpasses the crisis parameter valuelc.
In other words, the average lifetimef30g in the transient
periods gradually decreases. Figure 13 shows dependence of
the average lifetimet on the parameterl, which is scaled as
follows f12,31g:

t , sl − lcd−g, s16d

for l close tolc. The scaling factorg is called acritical
exponentf12g. The scaling properties have been given for
two situations of boundary crises including a homoclinic tan-
gency and a heteroclinic tangencyf12,31g. In both cases, the
scaling properties are characterized by eigenvalues of a Jaco-
bian matrix at a saddle point. In our case, the mechanism of
the crisis is different from these two situations. Nevertheless,
the average lifetime is scaled with the parameter interval.

D. Fractal dimension

The successive basin bifurcations are characterized by
variation of the dimension of the fractal basin boundary.
Self-similarity of the fractal basin boundary is clearly ob-
served in Fig. 8sbd where the fractal structure does not dis-
appear no matter how greatly the phase plane is expanded. A
fractal basin boundary is a matter of importance since it
gives rise to a fundamental difficulty in prediction of the
asymptotic behavior of the system due to both the fractal
structure with fine-scale complexity and the inevitable small
errors in the specification of initial conditions and system
parametersf17,32g. An illustrating example of this last idea,
showing how the phase space of some prototypical Hamil-
tonian maps was fractalized, and consequently the predict-
ability of future states was lost, was recently shown in Ref.
f33g. Similar ideas applied to Hamiltonians systems are dis-
cussed in Ref.f34g. A highly complicated basin structure can
be formed due to a fractal basin boundaryf26,35g as well as
a riddled basinf18,36g and an intermingled basinf25g in
noninvertible maps.

A method to characterize a fractal basin boundary is to
investigate the uncertainty exponentf17g. For a fractal basin
boundary, the probability that several initial conditions with
a d distance apart asymptotically converge to different attrac-
tors is scaled withd as follows:

Prsdd , da, s17d

where the scaling exponenta with 0,a,1 is called the
uncertainty exponent. The probability Prsdd represents the
fraction that the destination of a trajectory is uncertain for a
perturbation ordered byd. As d decreases, the uncertainty
decreases but a more precise measurement of initial condi-
tions is needed to predict the final state.

To compute the uncertainty exponent of the fractal basin
boundary, we choose some values ofd in the range 10−11

ødø10−1. For each value ofd, an initial conditionsx0,y0d is
a certainty point if all the final states of the four perturbed
initial conditionssx0±d ,y0±dd coincide with that of the non-
perturbed initial condition. Otherwise, it is regarded as an
uncertainty point. Using 8192 random initial conditions, we
obtain the fraction of uncertainty points ford on a log-log
scale as shown in Fig. 14. The uncertainty exponenta is
estimated asa<0.08 with a linear fitting whenl=1.62. It
has been proved that the fractal basin boundary has a capac-
ity dimensiond=2−a for an uncertainty exponenta f17g.

Figure 15 shows variation of the fractal dimension of the
basin boundary with the change of the parameterl. As l
increases, the linear fitting of the fraction Prsdd first succeeds
at the genesis of the fractal basin boundary. After that, the
dimension roughly decreases through successive contacts be-
tween the fractal basin boundary and the critical curveL. The
dimension touches the bottom at the major change in the
basin structure where simply connected immediate basins
turn into multiply connected ones. The dimension increases
from the bottom with the development of the points intruding
into the previously simply connected regions. Finally, the
linear fitting of the fraction Prsdd fails at the final crisis.
Figure 15 illustrates that variation of a dimension of a fractal

FIG. 12. Crisis-induced intermittency between two distant re-
gions after the attractor-merging wheresl ,ed=s1.682,1.9d: sad
phase plot;sbd unstable manifolds ofP; scd time series.

FIG. 13. Dependence of the average lifetime on the parameterl.
The linear fitting indicated by the dashed line yields a critical ex-
ponentg<1.46 in Eq.s16d.

CRISIS-INDUCED INTERMITTENCY IN TWO COUPLED… PHYSICAL REVIEW E 71, 016219s2005d

016219-9



basin boundary can be an informative factor characterizing
qualitative changes in the basin structure.

VI. DISCUSSION

We have investigated crisis-induced intermittency in a
system of two symmetrically coupled logistic maps. The in-
termittent behaviors arise through the attractor-merging crisis
of two distant attractors that are mutually symmetric. To
study the mechanism of the crisis, we have elucidated the
topological changes of the attractors and the qualitative
changes of their basins with variation of system parameter
values. The main three basin bifurcations are the genesis of
the fractal basin boundary, the changes of the simply con-
nected immediate basins into the multiply connected ones,
and the destruction of the basins with the merging of the
attractors. The qualitative changes in the basin structure in-
cluding these major changes have been quantitatively char-
acterized by the variation of the dimension of the fractal
basin boundary.

The model that we have studied is a symmetrically
coupled system. However, the exact symmetry between sub-
systems does not hold owing to inevitable noise for the pa-

rameter values in the physical world. Thus, it is important to
investigate the robustness of the intermittent behaviors
against a slight parameter mismatch violating the symmetry
f37,38g. Let us consider a modified scenario of basin bifur-
cations in the following system with unbalance of the non-
linearity parameters:

xn+1 = s1 − edfl1
sxnd +

e

2
ffl1

sxnd + fl2
syndg,

s18d

yn+1 = s1 − edfl2
synd +

e

2
ffl1

sxnd + fl2
syndg,

wherel1=l+b andl2=l−b. If the mismatch parameterb
is sufficiently small, then the symmetry of the original sys-
tem is slightly violated.

Due to the asymmetry of the system, the off-diagonal at-
tractors are not mutually symmetric. However, each attractor
has a simply connected immediate basin similar to that as
shown in Fig. 8sad. Whenl increases, the basin fractalization
occurs due to the same mechanism as in the symmetric case.
There remain only the two attractorsAQ and AR. The basin
structure is similar to Fig. 8sbd after the basin fractalization.
With further increase ofl, one of the simply connected im-
mediate basins first changes into a multiply connected one as
shown in Fig. 16. The immediate basin ofAQ is already
multiply connected, while that ofAR is still simply con-
nected. A similar change of the immediate basin ofAR needs
further increase ofl. Therefore, the attractorAQ first disap-
pears due to an interior crisis caused by a contact between
AQ and the basin boundary. After the crisis, a trajectory with
an initial condition near the original attractorAQ shows tran-
sient chaos and finally converges to the only attractorAR.
The last event is the interior crisis ofAR, which brings about
a sudden attractor wideningf12g. Immediately after the final
crisis, intermittent transitions are observed because transient
chaos still remains in both originally attracting regions. Con-

FIG. 14. Scaling property of the fraction of uncertainty initial
points ford in a log-log scale. A linear fitting yields the uncertainty
exponenta<0.08, wheresl ,ed=s1.62,1.9d.

FIG. 15. Fractal dimension with change ofl wheree=1.9. The
variation of the dimension characterizes the genesis, the changes,
and the destruction of the fractal basin boundary.

FIG. 16. Basin structure in the asymmetric systems18d where
sl ,ed=s1.8,1.85d andb=0.01. The immediate basin ofAR is sim-
ply connected whereas that ofAQ is multiply connected.
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sequently, the crisis-induced intermittency is robust against
the small parameter mismatch, though the scenario of basin
bifurcations is slightly different.

The coupled systems that we have studied can be consid-
ered as very simple cases of globally coupled chaotic maps
f21,39g. A complicated basin structure with a fractal basin
boundary is formed and a contact bifurcation involving the
basin boundary brings about a sudden appearance of inter-
mittent transitions even in such simple systems. This may
imply that a contact bifurcation involving a basin boundary
separating multiple basins of attraction gives rise to intermit-
tent behaviors among multiple distant regions in higher-
dimensional coupled maps. Therefore, the results in this pa-
per can be useful for a better understanding of chaotic

itinerancy that is typically found in a wide class of such
systemsf6g.
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