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A known maximum a posteriori (MAP) algorithm is adapted to decode

chaotic signals sent over a noisy channel and get a low complexity

MAP decoder that could be easily implemented. It is shown that this

algorithm is useful for all chaotic encoding frameworks where

symbolic dynamics could be applied and that the final bit error rate

is better than that obtained with other usually employed maximum

likelihood (ML) algorithms of similar complexity.

Introduction: In the past, much attention has been devoted to the task

of estimating chaotic sequences affected by noise. Initial efforts were

devoted to ML algorithms applied to specific systems such as chaos

shift keying [1] or piecewise linear maps (PWLM) [2]. When the

chaotic system admits the application of symbolic dynamics [3], a

suboptimal ML Viterbi decoding is possible [4, 5].

MAP algorithms have been developed to estimate the initial condi-

tion in the case of PWLM [6]. Nevertheless, they are not easily adapted

for the purposes of chaotic communications and they are not extensible

to other kinds of encodings. As symbolic dynamics allow us to

understand the decoder as a first-order Markov process, it is possible

to adapt the MAP algorithm known as BCJR (after the initials of the

authors) [7]. Although the resulting scheme is normally more complex

compared to ML, we show that it is also possible to use it in a lower

complexity and practical sliding-window framework that outperforms

an ML Viterbi decoding of similar complexity.

Encoding: Though we focus on a very simple chaotic system for

brevity’s sake, it will be evident that all the following could be readily

applied to other chaotic systems. To encode the binary sequence {bn},

where bn 2 {0, 1} and n¼ 1, . . . , N, we will use the known Bernoulli

shift map setup [4]. The binary sequence {bn} is independent and

equiprobably distributed. The Bernoulli shift map iterates as follows:

xnþ1 ¼ f ðxnÞ ¼
2xn if xn � 1=2

2xn � 1 if xn > 1=2

�
ð1Þ

If we define x0¼
P

n¼1
N bn2�n, then the binary sequence is encoded into

the chaotic sequence generated by x0 and the information can be

retrieved following bn¼bxnþ (1=2)c, where bxc is the floor function,

giving the closest integer below x. The probability density function

(pdf) of the data generated is p(x)¼ 1 in [0, 1]. In other systems, where

it is not possible to get a closed expression for the pdf, it is always

possible to use a staircase approximation. The pdf is needed as a priori

information for the decoder.

But this kind of encoding is not practical. We can encode blocks of D

bits, following the discretisation x0n¼
P

m¼n
nþD�1bm2�mþn�1. This can be

seen as controlling the chaotic sequence with small perturbations or as

encoding through symbolic dynamics [5]. When D is about 15–20, the

quantisation effects are negligible, the samples keep the desired proper-

ties of a chaotic broadband noise-like signal and the discretised pdf is

reasonably well approximated by the continuous pdf. We will refer to

this chaotic controlled sequence simply as {xn}.

Decoding algorithm: The received signal is yn¼ xnþ nn, where nn

is an additive white Gaussian noise (AWGN) with zero mean and

power s2.

The setup for the chaotic BCJR algorithm needs the same definitions

as the ML Viterbi algorithm in [4]. We split the [0, 1] interval into a

series of non-overlapping intervals Ii with limits i=P and (iþ 1)=P for

i¼ 0, . . . , P� 1 and centre in ci¼ (i=P)þ (1=2P). P� 2D, the number

of intervals, is taken as a even number, so that the threshold point 1=2 is

the upper point of one interval and the lower one of another. If we

substitute the original sequence by the sequence of intervals where

the corresponding sample lies, we get a symbolic representation of

the sequence which also conveys the binary information and which can

be described as a first-order Markov process, with a corresponding

transition matrix T. The term tij in this matrix means the transition

probability between the interval i and the interval j, and it depends on

the quantisation grid and the form of the encoding. In the case of the

Bernoulli shift map, each interval maps exactly into two contiguous

intervals with equal probability. Note that this decoding framework can

be applied even if symbolic dynamics at the encoder side does not

match the symbolic dynamics at the receiver side.

We consider a decoding block of L < N received symbols {yn, . . . ,

ynþL�1}. We say that the state sk at time k¼ 1, . . . , L is sk¼ i when

xnþk�12 Ii. To build the BCJR algorithm, we have to calculate the

following probability functions g, a, b and l as stated in [8]:

gnði; jÞ ¼ Prfsn ¼ j; ynjsn�1 ¼ ig

¼
P

x

Prfsn ¼ jjsn�1 ¼ ig

Prfxn ¼ xjsn�1 ¼ i; sn ¼ jgPrfynjxg ð2Þ

We substitute the possible values of xn (which are 2D ) by the values

of the centre of the intervals cj (which are P). When 2D
¼P, we have an

instance of Ungerboeck’s trellis coded modulation, and it is not

necessary to obtain the pdf to characterise the transitions. To calculate

(2) we see that in a transition from sn�1¼ i to sn¼ j, the only possible

quantised encoder output is cj, and Pr{xn¼ xjsn�1¼ i, sn¼ j} is 1 when

xn 2 Ij and is 0 in the rest of cases. Pr{sn¼ jjsn�1¼ i} is the transition

probability tij and Pr{ynjcj}¼ [1=(s
p

2p)]e�(yn�cj)
2=2s2

is the channel

output probability. Note that for systems with rate R¼ 1=p less than

one, we have only to include in this channel metric the p possible

symbols for each transition. The algorithm operates as follows over

each block of L symbols.

Calculate the probability function:

gn
k ði; jÞ ¼ tij

1

s
ffiffiffiffiffiffi
2p
p e�ðynþk�cj Þ

2=2s2

k ¼ 1; . . . ; L i; j ¼ 0; . . . ;P � 1

ð3Þ

Forward calculate the probability function:

an
k ð jÞ ¼ Prfsk ¼ j; fyn; . . . ; ynþk�1gg

¼
P

i

an
k�1ðiÞg

n
k ði; jÞ k ¼ 1; . . . ;L i; j ¼ 0; . . . ;P � 1 ð4Þ

Backward calculate the probability function:

bn
k ð jÞ ¼ Prffynþk ; . . . ; ynþL�1gjsk ¼ jg

¼
P

i

bn
kþ1ðiÞg

n
kþ1ð j; iÞ k ¼ L� 1; . . . ; 0 i; j ¼ 0; . . . ;P � 1

ð5Þ

Finally compute the a posteriori probabilities:

ln
k ðiÞ ¼ Prfsk ¼ i; fyn; . . . ; ynþL�1gg

¼ an
k ðiÞb

n
k ðiÞ k ¼ 1; . . . ;L i ¼ 1; . . . ;P ð6Þ

To decode the bit at time n, we take the state imax that maximises

the probability l1
n(i), and decode according to b̂n¼bCimax

þ (1=2)c.

Both a0
n( j) and bL

n( j) are usually initialised with 1=P, j¼ 0, . . . , P� 1.

When using this scheme in a sliding-window fashion, in superposing

blocks of L symbols, we take as initial values for a0
n( j) the resulting

a posteriori values l from the preceding decoding block l1
n�1( j), and

for bL
n( j) the a values of the forward algorithm aL

n( j), reserving 1=P only

for a0
1( j). This ensures that the evidence of the received sequence is

propagated to all the decoding blocks. The sliding-window proceeds

forward just by taking the following block {ynþ1, . . . , ynþL}. In this way

it is not necessary to store and process N�P values for the entire

sequence. The overhead in calculations is compensated by the saving in

memory and by the flexibility of the scheme (i.e. we can decode

continuously).

Simulation results: In Fig. 1 we can see the results in terms of BER.

Eb=N0¼ sx
2=2s2 and sx

2
¼ 1=12 is the power of the signal (ideally for

D!1). These results have been obtained with the sliding-window

ML Viterbi algorithm [4] and the sliding-window MAP BCJR algo-

rithm. The encoding discretisations are D¼ 5 and D¼ 20 bits per

symbol. Note that the mismatch between the encoding and decoding

discretisation (D¼ 20 and P¼ 16, 32), does not seem to affect the

BER, compared with the matched case (D¼ 5 and P¼ 32).
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Fig. 1 BER performance for different sets of parameters

The sliding-window size is taken as L¼ 5 and L¼ 10. The results for

the MLViterbi and BCJR MAP decoding for the entire block (no sliding-

window) are shown for comparison. In each case the MAP sliding-

window algorithm yields better results than the ML sliding-window

algorithm, while not differing much in complexity (which grows in

both cases as O(LP)). The BCJR algorithm keeps closest to the limit

calculated in [8] specially the case L¼ 10, P¼ 32, D¼ 20, compared

with cases with lower L or lower P, which hints that both increasing L or

P lead to better performance and shows that the maximum attainable

performance can be reached with limited complexity (keeping L fixed

and increasing P or vice versa). The reason for the good behaviour of the

BCJR algorithm as presented here is that it propagates efficiently the

evidence throughout the sequence. Note also the relatively low effect of

increasing L or P over ML results.

Conclusions: We have adapted the MAP BCJR decoding algorithm

for a whole class of chaos-channel encoded signals under assumption

of symbolic dynamics at the decoder side. We have shown that the

BER performance attained by our MAP framework is generally better

than the performance achieved with other popular and previously

tested algorithms. The principles shown are readily extended to any

other kind of encoding with symbolic dynamics.

It has to be noted that with the BCJR algorithm we get probabilistic

soft estimates of the data, and this is most useful in some applications,

such as the ones applying the iterative decoding philosophy of the

so-called turbo codes. We expect that concatenating chaotic encoding

systems we could make this kind of system comparable to the practical

ones used in communications.
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L. López (Laboratorio de Algoritmia Distribuida y Redes, Departa-
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