PHYSICAL REVIEW E 74, 056112 (2006)

Sparse repulsive coupling enhances synchronization in complex networks
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Through the last years, different strategies to enhance synchronization in complex networks have been
proposed. In this work, we show that synchronization of nonidentical dynamical units that are attractively
coupled in a small-world network is strongly improved by just making phase-repulsive a tiny fraction of the
couplings. By a purely topological analysis that does not depend on the dynamical model, we link the emerging
dynamical behavior with the structural properties of the sparsely coupled repulsive network.
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I. INTRODUCTION

After the seminal papers by Watts and Strogatz [1] and by
Barabdsi and Albert [2], complex systems started to be de-
scribed within the framework of complex networks. First,
attention was focused on the structural and functional prop-
erties of such networks, being the most studied the small-
world [3] (SW) and scale-free [4,5] ones as many natural
(neural, genetic, chemical) and man-made (power grids, In-
ternet, social networks) systems have been characterized
with a similar underlying connectivity structure. Next, the
interest was shifted to the implications on the global dynami-
cal behavior of ensembles of nonlinear active units when
they are coupled through a nontrivial scheme [6] instead of
being organized in a lattice. Among the dynamical processes
occurring on a network (see [7] for a review), such as pattern
formation [8,9], spreading processes, or synchronization, the
latter has captured more pages in the literature. Synchronous
behavior is considered one of the mechanisms to transmit
and code information in complex systems, ranging from neu-
ronal assemblies [10] to networks of chemical oscillators of
the Belousov-Zhabotinsky reaction [11,12] or social commu-
nities [13]. The interplay between the network structure and
the dynamics of each interacting subsystem can provide
stronger synchronizability or faster propagation of informa-
tion [6].

Theoretically, the network propensity for synchronization
was first tackled in [14]. Since then, several strategies have
been developed with the aim of finding the best way to
achieve synchronization in complex networks. These ap-
proaches have mainly focused on the role that weighted links
play in networks with a heterogeneous degree distribution
[15-17], on the importance of shortest paths and clustering
in SW networks [10], and on the effect of the input degree
regardless of the global structure [18]. Another recent ap-
proach, a kind of reverse engineering, consists in defining a
recursive algorithm to build up a network with N nodes and
a mean degree k which minimizes some synchronizability
parameter [19].

Most of this research has been devoted to attractively
coupled dynamical elements. However, it is known that bio-
logical networks combine different types of connections to
improve synchronization and transmission performance, as
in the case of the coexistence of excitatory and inhibitory
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synapses in the brain [20]. In [21] it was studied pattern
formation in a two-dimensional (2D) array of oscillators with
phase-shifted coupling, in particular for phase shift 7, which
corresponds to a repulsive coupling, while in [22] a chain of
negatively coupled chaotic oscillators is compared to an ex-
perimental laser system with negative feedback and delay.
Obviously, two attractively coupled oscillators tend to oscil-
late in phase whereas they do it in antiphase if repulsively
coupled. Nevertheless, in complex networks, little attention
has been paid to the effect of repulsive coupling or to the
interaction between different types of coupling. The scarce
literature addressing synchronization in repulsively coupled
oscillators deals mainly with phase oscillators and considers
either a lattice [23] or a fully connected topology [24], but
the influence of the network structure is still an open ques-
tion. In addition, almost all the published work on synchro-
nization in complex networks is basically related to arrays of
identical dynamical units. However, heterogeneity of ele-
ments is an inherent feature present in natural systems which
can be especially relevant in the dynamics of biological net-
works.

In the present work, we explore the influence of the net-
work topology on the dynamics of nonidentical coupled
units, when a small fraction of the links is phase repulsive. In
the following section, we first consider a chain of excitable
and oscillatory units and show that sparse repulsive links in a
SW structure can induce a coherent oscillatory state when
the equivalent SW composed of only attractive connections
is not able to synchronize or even to activate the heteroge-
neous ensemble. The effect of sparse repulsive couplings is
also demonstrated in a simpler network of spinlike dynami-
cal units in Sec. III. Then, just by means of an analysis
focused on the eigenvalues of the connectivity matrix, we
link the emerging dynamical behavior with the structural
properties of the sparsely coupled repulsive network in Sec.
Iv.

II. NETWORK OF EXCITABLE AND OSCILLATORY
ELEMENTS

In our study, we consider an ensemble of nonidentical
Hodgkin-Huxley (HH) units [25] as the dynamical elements
to be placed on each of the N nodes of our network. Al-
though this model is an accurate biophysical description of a

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.74.056112

LEYVA et al.

neuron, it is chosen for this work as long as it is able to
exhibit both excitable and oscillatory behavior. The cell
model reads

CV;= gnamh(Vig = V) + gxni (Vi = V) + g/(V, = V)
N

d
+;2 cij(vj_vi)+1i’ (la)

ij=1

x;= (1 =x;) = Bx;, (1b)

where V; is the voltage variable of cell i and x; € {m;,n;,h;}
are conductances. Parameter values and functions «, and B,
are the standards in the literature [25,26]. I; controls the dy-
namics of an isolated unit and is chosen as the control pa-
rameter to introduce heterogeneity in the population. We set
[; uniformly distributed within an interval I,= A/ to obtain an
ensemble of excitable and oscillatory units. The value 7,=9
is fixed close to the point where an inverse Hopf bifurcation
occurs. This way, for the chosen AI=0.2, we observe that
about 70% of the elements stay around the silent state, while
the rest oscillate with a frequency that depends on /;, which
is close to 70 Hz for the chosen parameter range.

The dynamical units are diffusively connected. The cou-
pling structure in Eq. (1a) is given by the connectivity matrix
C=(c;), defined by c;;=0, ¢;;==1 if nodes i and j are con-
nected and c¢;;=0 otherwise. k; normalizes the connection
strength by the number of incoming links to node i, and the
coefficient d stands for the global coupling strength. The
positive sign in C stands for an attractive coupling whereas
the negative sign does for a repulsive one. The coupling term
in Eq. (1a) can be written as

N N

EE cij(vj -V)= dE eijvj’ (2)
J

ki j=1

in which L=(¢;)) is the Laplacian of the graph, being

N
1 C::

(. =—— =L 3

i leEl Clj i k,‘ ( )

A. Local coupling

Initially we consider the dynamics of an ensemble of N
elements on a one-dimensional array locally coupled for both
fully phase-attractive and phase-repulsive coupling. The re-
sulting connectivity matrix becomes c; ;.;=+1 for the locally
attractive coupling scheme, c; ;.;=—1 in case of purely repul-
sive coupling, and c;;=0 otherwise. The system given by Eq.
(1) is numerically integrated using a fourth-order Runge-
Kutta method with time step Ar=0.05 and free-boundary
conditions.

To study the frequency synchronization process of the
heterogeneous chain of active elements with the coupling
strength, we calculate the global mean frequency of oscilla-
tion (MF) and its standard deviation oy MF is the average
of the frequencies of the N elements in the array. The fre-
quency of an element is determined by counting the number
of spike events that occur in a unit time. A small o;r means
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FIG. 1. Mean frequency of oscillation (MF) (left) and its stan-
dard deviation oy (right) for an array of N=400 locally coupled
HH units as a function of the coupling strength d, each point aver-
aged over 100 realizations. The negative sign of d corresponds to
the phase-repulsive scheme.

that all elements are oscillating at the same rate, which is
given by MF, and a large oy reflects that many elements are
silent, resulting in a MF much lower than the frequency of an
oscillating element.

In Fig. 1 we plot MF and oy as a function of d ranging
from negative to positive values. Note that we can treat si-
multaneously both attractive and repulsive coupling schemes
because the difference between the connectivity matrices is
just a minus sign which is introduced into d. When d>0 is
large enough, the system is frequency entrained (i.e., oy
~0) and synchronized with a linear phase distribution (not
shown). Equivalently, for a sufficient d<<0, the system is
also frequency synchronized and reaches an antiphase syn-
chronization state. It can be noted from Fig. 1 that the en-
trainment with negative couplings is achieved for smaller
absolute values of d compared to the case with positive ones.
This indicates that a phase-repulsive coupling is more effec-
tive in activating and entraining the whole network. Many
biological systems exhibit this kind of repulsive coupling
when their dynamical units are in competition with each
other. Known examples are the inhibitory coupling present in
neuronal circuits associated with a synchronized behavior in
central pattern generators [27] or calcium oscillations in epi-
leptic human astrocyte cultures [28].

B. Nonlocal random coupling

Our main interest is to explore the influence of a SW-like
connection topology in the activation and synchronization of
the network as the repulsive couplings are varied. From the
results obtained in the previous section, we know that a small
positive coupling strength is less efficient than a negative one
to activate and synchronize the whole array when the units
are locally coupled. Taking this into account, we consider
now the possibility of both attractive and repulsive nonlocal
links. The global coupling strength is fixed to d=0.1—i.e.,
within the unsynchronized regime for local positive coupling
as shown in Fig. 1. The coupling matrix C is modeled now
by keeping the local connections positive, ¢; ;.;=+1, and by
randomly adding (rather than rewiring [29]) a fraction p of
the (N—1)(N—-2)/2 possible long-range links, being negative
with probability g. That is, since p € [0,1] is the probability
of having a long-range connection, ¢;;# 0 with [i—j| > 1, we
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ability p(1-g).

Figure 2 shows space-time plots of the voltage variable
through the whole array for different values of p and g. As
expected, in the absence of long-range connections (p=0),
few more than the initial 30% of the units are oscillating for
the chosen coupling strength d; i.e., the array is not even
activated as shown in Fig. 2(a). When long-range links are
included, the first observation is that for any p, a minimum
fraction of the new added links need to be repulsive (g #0)
in order to increase the activity of the network. This becomes
evident when comparing Fig. 2(b) with Figs. 2(c)-2(e). In
Fig. 2(b) the activity generated by the initially oscillating
units is reduced, or even annihilated, when all long-range
connections are attractive (¢g=0). However, the scenario
completely changes when some of the shortcuts are repulsive
(g>0) as in Figs. 2(c)-2(e), where self-sustained activity
emerges for nonzero ¢. In addition, we observe that for cer-
tain probabilities p and ¢ the collective oscillation becomes
highly coherent [see Fig. 2(c)]. If we keep p fixed but ¢ is
increased the coherence is spoiled [Fig. 2(d)]. Likewise, co-
herence also worsens if g is the same as in Fig. 2(c) but p is
different [Fig. 2(e)]. This is shown by comparing Fig. 2(c)
with Fig. 2(d), in which p is the same as in Fig. 2(c) but ¢ is
higher.
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FIG. 2. Space-time plots of the
voltage variable for a N=800 HH
units network, with A7=0.2,
d=0.1, and different coupling
schemes. (a) Attractive local cou-
pling, p=0. (b)—(e) Network with
long-range couplings: (b) purely
attractive p=0.0055, ¢=0, and
(c)—(e) partially repulsive: (c)
p=0.0055, ¢=0.3, (d) p=0.0055,
¢=0.45, and (e) p=0.015, ¢=0.3.
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To study quantitatively how the dynamics is affected by p
and ¢, we measure the MF of the network and the standard
deviation of the average activity, V(¢)=(1/N)=Y,V(t), ob-
tained as

oy= NV = V2, V=(V(), V=(VX0), (4

where (---), denotes temporal average. While the MF gives
us an estimation of how much the network is activated, the
oy defines how coherent the activity of the entire network is.
If the network is fully activated, the MF approaches a rate of
around 70 Hz, whereas o, is maximal if this activity is syn-
chronized; that is, if all the units are oscillating at the same
time, the average activity V(z) is also oscillating and the de-
viation of this signal with respect to the mean value is higher
than for an incoherent activity.

The effect of the topology in the dynamics can be seen in
Fig. 3 as a function of the link probability p and the prob-
ability ¢ of being repulsive, using contour plots and cross-
section graphs. We first observe that there is a change in the
behavior of both the activity and coherence as a function of
p. The effect in the activity is shown in panels (a) and (c)
through the MF and in the coherence of this activity in pan-
els (b) and (d) through oy. While for the MF there is a
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FIG. 3. (Color online) Mean frequency (MF)
and network coherence oy, as a function of p and
q in a N=800 network. While panels (a) and (b)
are cross sections of the 3D representation of MF

and oy for several values of ¢, respectively, pan-
els (c) and (d) are contour plots in the p-g plane.

It becomes evident from panel (d) that there exist
values for p and ¢ for which the coherence is
maximum. Each point is averaged over 100 simu-
lations, 1 s long (transients avoided), for different
network and initial conditions realizations. Leg-
end in panel (b) applies also to panel (a).
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FIG. 4. Dependence of p,. on N, indicating that the emergence of
coherent oscillations coincides with the birth of the GCC of a ran-
dom network—i.e., p.In(N)/N. Here ¢=0.25.

transition towards a fully activated system at certain p, the
oy reaches a maximum at this point.

When we explore the dependence of this special probabil-
ity with the ensemble size, we find that it fits to In(N)/N (see
Fig. 4), which is the probability at which the giant connected
component (GCC) of a Poisson random graph emerges, a
well-known result in graph theory [7]. Precisely, the prob-
ability at which the global dynamics is more coherent coin-
cides with the birth of the GCC of our network when only
the randomly added long-range connections are considered
(i.e., when the local couplings are neglected). Then, to reflect
this “critical” transition, in what follows we refer to this
special probability as p..

From Fig. 3 we can also observe the importance of ¢ in
the behavior of the MF and o. First, it is clear that a value
of ¢ # 0 is needed to activate the network, since MF close to
zero means that there are few dynamical units oscillating
[panels (a) and (c)]. Second, the maximal activity is reached
within an interval of p that depends on g. Note that this
activity is not always coherent as panels (b) and (d) show.
And finally, the signature of a network resonance, in both p
and g, becomes manifest since coherence—i.e., o,—is maxi-
mally enhanced for the optimal values p=p.=0.0055 and ¢
=0.3. The probability p. depends slightly on ¢, shifting to
higher p as g increases, but remaining close to 0.0055.

II1. ISING NETWORK

To analyze if the previous SW connectivity structure with
long-range sparse repulsive links affects other dynamics im-
posed on it, we consider a discrete spinlike dynamics in
which each node 7 has only two possible states s;==+1. This
could model a social system with N agents choosing from
two different opinions or in a biological context it could
represent the firing state of a neuron. We prepare the system
by setting rN of the spins at the state —1 and the rest at the
opposite, r being the initial probability of finding a spin at
—1. Consequently, with the same Laplacian matrix L
introduced in Sec. IIB, node i receives an input
hi=2€;;s;€[-2,2]. Hence, as other authors have pointed
out [3,30], these spinlike networks can be regarded as a pat-
tern of the internal states and their evolution represent the
global dynamics. Notice that the neighbor vertices linked
repulsively contribute to the input with the opposite state.
Then, in this model it is implicit that nodes linked with an
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FIG. 5. Probability distribution of the input received by a node
in the Ising model. Several node degrees k are shown for parameters
¢=0.3 and r=0.25.

attractive connection tend to follow the same evolution,
whereas repulsive connection leads them to evolve differ-
ently.

We can prove analytically that the distribution of
h; presents two peaks: m;=-2ryl1-4q(1-¢) and pu,
=2(1-r)\1-4¢g(1-q) (see Fig. 5). Note that the position of
these two peaks does not depend on the node degree k, thus
neither does on the link probability p. Then, we choose to
evolve the network according to the following local majority
rule: the new state of node i is updated to s;(n+1)=+1 if
hi(n)> wy, s;(n+1)==1if h;(n) <w,, and s,(n+1)=s,(n) oth-
erwise (i.e., the vertex keeps its state).

Using the same quantity defined by Eq. (4) to estimate the
coherence of the output, we find that the system changes its
behavior at p=p,. This time o,, measures the deviation of
the global average state of the spin network after a transient.
It can be seen in Fig. 6 that the maximum of o, is reached
again when the GCC associated with the long-range links
spans the whole network with a minimal number of links.
Interestingly, a similar resonant trend with g is observed.
This shows how p and ¢ contribute to improve the synchro-
nization even for this discrete dynamics.

IV. SPECTRAL ANALYSIS

Recently [14-17,31,32], the method of the master stabil-
ity function [33] has been successfully used to analyze
whether the network structure has some bearing on the dy-
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FIG. 6. Deviation g, of the global average state vs p for differ-
ent ¢ probabilities in a log-linear scale for N=800 spin network.
Each point averages 1000 runs after a transient of 100 iterations and
fixed r=0.1.
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FIG. 7. Dependence of the structure parameter g with the adding
link probability p, in a log-linear scale, for different probabilities g.
Each point is an average over 100 different realizations of a
N=800 network.

namics evolving on it. However, this approach requires the
dynamical units to be identical, which is not our case, and
the use of the master stability function is not straightforward
[17]. Hence, in order to understand the influence of a com-
plex connectivity, we use a purely structural analysis based
on the properties of L. This is done by considering the im-
pact of the spectra of L in the evolution of the term associ-
ated with the structure in Eq. (1). Notice that this impact can
only be meaningful and relevant to the global dynamics if it
occurs within the intrinsic dynamical time scale (7= 15 ms,
since the MF=70 Hz).

When we just consider V=dLV, where V=(V,,...,Vy),
there is a basis in which V,;ocexp(d\;f), where \; are the
eigenvalues of L. It is well known that all the eigenvalues of
the Laplacian associated with a network with only attractive
couplings are negative. However, when we add some repul-
sive connections, L. has positive and negative eigenvalues
[34]. We find that any set of initial states rapidly evolves into
the subspace S* associated to the positive eigenvalues within
a time smaller than the characteristic temporal scale of the
system dynamics.

To quantify the effect of S*, we note that, for a given
positive A7, ¢\ is a measure of how much the system
spreads into the subspace defined by the corresponding ei-
genvector. Then, the ratio N1/ gfMmaxt = g4\ Mma)” measures
how different the evolution is in that subspace with respect to
the one where the system develops faster. By defining the
geometric average g(t):HZ]ed(”?‘Amﬂx)”N =)l e
can estimate the homogeneity of the evolution in S* with a
number in (0,1]. A value close to 1 means the system evolves
similarly in all dimensions of S*, whereas a low g implies
that its behavior is affected by those vectors with the largest
associated eigenvalues.

We are interested in the behavior of g(z) as a function of p
and g. As the shape of g(7) is not very sensitive to time, we
fix t=d~' ~ 7 to focus our study within the time scale of our
dynamical unit. In Fig. 7 we observe that g(7), in short g,
presents a minimum at p,. which is lower for higher values of
g and whose position shifts to higher p as g increases, as
observed both in the numerical simulations [Fig. 3(b)] of the
network with excitable and oscillatory elements and in the
Ising network (Fig. 6). This means that, for values of p far
from p.—i.e., where g=1 [35]—the global dynamics is ba-
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FIG. 8. Relationship between the mean frequency and the struc-
ture parameter g. MF comes from the numerical simulations and g
is the parameter defined in the spectral analysis. Each point is the
MF and g values corresponding to a pair (p,q).

sically affected by only one positive eigenvalue. On the con-
trary, for values of p close to p,., the global dynamics is
affected not just by one, but several eigenvalues (the largest
ones). Precisely, the contribution of the structure to the dy-
namical evolution can be described as

V() =X ™MV, (5)

2

where Vy={W}, V9, -,V?\,} is the vector of initial states and
M, are matrices independent of time. Thus, when g=1,
V(1) = e™N"1U,, with Uy=3,M,V, a linear combination of the
initial states, indicating that the temporal evolution due to the
structure is basically determined by one parameter, the eigen-
value \*. On the other hand, around p, where g is smaller,
more eigenvalues are needed to describe the effect of the
structure, and as expressed by the Eq. (5), the system be-
comes more heterogeneous due to the connectivity.

Therefore, the intrinsic dynamics of the system is mini-
mally constrained by the structure that arises around p,. due
to the repulsive shortcuts.

V. DISCUSSION AND CONCLUSIONS

The results obtained above reflect the fact that at p,. there
is a transition from a lattice with degree k;=2 (p=0) to a
lattice with degree k;=N—-1 (p=1). At p. we have a SW
whose degree distribution is of exponential type, indicating
the presence of hubs, which is related to the existence of
large eigenvalues in [36]. We also find that when hubs
appear—i.e., when the dispersion of eigenvalues is large—
the activity is enhanced. Since the MF corresponding to nu-
merical simulations and the structure parameter g from spec-
tral analysis are functions of p and ¢, it is possible to plot
one versus the other as is done in Fig. 8. We observe that
there is high activity for small values of g and low activity
for larger g.

We can shed some light onto this discussion by regarding
Fig. 9 in which the number N* of positive eigenvalues as a
function of p and ¢ is plotted. When p =~ 0, which essentially
corresponds to a lattice, the initial oscillating units are unable
to spread the activity throughout due to the fact that there are
few positive eigenvalues. As p— 1, shifting to a fully con-
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FIG. 9. Dependence of the number of 7\?, N*, with the link
probability p for different g values.

nected network, two different scenarios of low dispersion are
possible. For values of g below 0.5, the number of A} de-
creases and, as in the previous case, the modes associated
with these few eigenvalues are not sufficient with activate
the network. Alternatively, for ¢>0.5 there are many \ but
they are little dispersed. Since all dimensions in S§* contribute
similarly to the dynamics, nodes are indistinguishable from
the view point of the topology (i.e., hubs disappear as p
increases) and the dynamical units are constrained to evolve
alike when they have different intrinsic dynamics.

PHYSICAL REVIEW E 74, 056112 (2006)

On the contrary, if the dispersion is large, there is a bal-
ance between the intrinsic dynamics and the structure of the
network. The topology close to p., due to the presence of
phase-repulsive links, is such that the connectivity of the
network is compatible with the diversity of the system.

In summary, we have shown numerically how a small
fraction of phase-repulsive links can enhance activity and
synchronization in a complex network of dynamical units. A
spectral analysis allows us to obtain information about how
the topology influences the dynamics. Around p,, which is
related to the topology, the presence of hubs with negative
links makes it easier to spread the activity through the net-
work. We have found that this activity is more coherent for
the particular value of ¢=~0.3, indicating the existence of
resonance.

ACKNOWLEDGMENTS

We thank J. R. Peldez for fruitful discussions. This work
has been financially supported by the Spanish Ministry of
Science and Technology under Project No. BFM2003-03081
and the URJC Project No. PPR2004-04. All numerical com-
putations were performed at the Centro de Apoyo Tec-
nolégico of the Universidad Rey Juan Carlos.

[1]D. J. Watts and S. H. Strogatz, Nature (London) 393, 440
(1998).

[2] A.-L. Barabdsi and R. Albert, Science 286, 509 (1999).

[3] D. J. Watts, Small Worlds: The dynamics of networks between
order and randomness (Princeton University Press, Princeton,
1999).

[4] R. Albert and A.-L. Barabdsi, Rev. Mod. Phys. 74, 47 (2002).

[5] S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079
(2002).

[6] S. Strogatz, Nature (London) 410, 268 (2001).

[7] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.
Hwang, Phys. Rep. 424, 175 (2006).

[8] D. He, G. Hu, M. Zhan, W. Ren, and Z. Gao, Phys. Rev. E 65,
055204(R) (2002).

[9] X. Wang, Y. Lu, M. Jiang, and Q. Ouyang, Phys. Rev. E 69,
056223 (2004).

[10] L. F. Lago-Fernandez, R. Huerta, F. Corbacho, and J. A.
Sigiienza, Phys. Rev. Lett. 84, 2758 (2000).

[11] M. Tinsley, J. Cui, F. V. Chirila, A. Taylor, S. Zhong, and K.
Showalter, Phys. Rev. Lett. 95, 038306 (2005).

[12] A. J. Steele, M. Tinsley, and K. Showalter, Chaos 16, 015110
(2006).

[13] M. Kuperman and G. Abramson, Phys. Rev. Lett. 86, 2909
(2001).

[14] M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101
(2002).

[15] T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt,
Phys. Rev. Lett. 91, 014101 (2003).

[16] A. E. Motter, C. Zhou, and J. Kurths, Phys. Rev. E 71, 016116
(2005).

[17] M. Chavez, C.-U. Hwang, A. Amann, H. G. E. Hentschel, and

S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005).

[18] I. Belykh, E. de Lange, and M. Hasler, Phys. Rev. Lett. 94,
188101 (2005).

[19] L. Donetti, P. I. Hurtado, and M. A. Mufioz, Phys. Rev. Lett.
95, 188701 (2005).

[20] M. 1. Rabinovich, P. Varona, A. 1. Selverston, and H. D. L.
Abarbanel, Rev. Mod. Phys. 78, 1213 (2006).

[21] P-J. Kim, T.-W. Ko, H. Jeong, and H.-T. Moon, Phys. Rev. E
70, 065201(R) (2004).

[22] I. Leyva, E. Allaria, S. Boccaletti, and F. T. Arecchi, Chaos 14,
118 (2004).

[23] G. Balézsi, A. Cornell-Bell, A. B. Neiman, and F. Moss, Phys.
Rev. E 64, 041912 (2001).

[24] L. S. Tsimring, N. F. Rulkov, M. L. Larsen, and M. Gabbay,
Phys. Rev. Lett. 95, 014101 (2005).

[25] A. L. Hodgkin and A. F. Huxley, J. Physiol. (London) 117,
500 (1952).

[26] Parameters: C=1 uF/cm?, gne=120 mS/cm?, 8K
=36 mS/cm?, g;=0.3 mS/cm?, Vy,=50 mV, Vx=-77 mV,
V,;==54.4 mV. Functions «, and B, with xe{m,h,n}: a,
=0.1(V+40) /{1 —exp[-(V+40)/10]}, B,=4 exp[-(V
+65)/18], @,=0.07 exp[-(V+65)/20], B,=1/{1+exp[-(V
+35)/10]},  a,=0.01(V+55) /{1 —exp[-(V+55)/10]},  f,
=0.125 exp[—(V+65)/80].

[27] G. Ermentrout and N. Kopell, SIAM J. Appl. Math. 54, 478
(1994).

[28] G. Balazsi, A. Cornell-Bell, and F. Moss, Chaos 13, 515
(2003).

[29] Although we use a SW network of Newman-Watts type (add-
ing probability in a lattice) instead of a Watts-Strogatz network
(rewiring probability), our results also apply to this latter case.

056112-6



SPARSE REPULSIVE COUPLING ENHANCES...

This is not only for theoretical reasons that prove that both SW
networks are topologically equivalent for p small and N large
[4], but because we have actually checked numerically that our
findings on activity and synchronization are similar in both
coupling schemes.

[30] H. Zhou and R. Lipowsky, Proc. Natl. Acad. Sci. U.S.A. 102,
10052 (2005).

[31] T. Nishikawa and A. E. Motter, Phys. Rev. E 73, 065106(R)
(2006).

[32] G. Tanaka, B. Ibarz, M. A. F. Sanjudn, and K. Aihara, Chaos
16, 013113 (2006).

[33] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109

PHYSICAL REVIEW E 74, 056112 (2006)

(1998).

[34] Curiously, although the Laplacian matrix is not symmetric and,
in general, the resulting eigenvalues are expected to be com-
plex, we have numerical evidence that they are always positive
and negative real numbers for the range of p and ¢ values
explored.

[35] A value of g close to 1 is also possible for a set of a very
dispersed positive eigenvalues, if all of them are very small.
However, we have not found this case for the whole range of p
and ¢ considered.

[36] A. Arenas, A. Diaz-Guilera, and C. J. Pérez-Vicente, Phys.
Rev. Lett. 96, 114102 (2006).

056112-7



