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Low-dimensional dynamo modelling and symmetry-breaking bifurcations
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Abstract

Motivated by the successful Karlsruhe dynamo experiment, a relatively low-dimensional dynamo model is proposed. It is based on a strong
truncation of the magnetohydrodynamic (MHD) equations with an external forcing of the Roberts type and the requirement that the model system
satisfies the symmetries of the full MHD system, so that the first symmetry-breaking bifurcations can be captured. The backbone of the Roberts
dynamo is formed by the Roberts flow, a helical mean magnetic field and another part of the magnetic field coupled to these two by triadic mode
interactions. A minimum truncation model (MTM) containing only these energetically dominating primary mode triads is fully equivalent to the
widely used first-order smoothing approximation. However, it is shown that this approach works only in the limit of small wave numbers of the
excited magnetic field or small magnetic Reynolds numbers (Rm � 1). To obtain dynamo action under more general conditions, secondary mode
triads must be taken into account. Altogether a set of six primary and secondary mode types is found to be necessary for an optimum truncation
model (OTM), corresponding to a system of 152 ordinary differential equations. In a second step, the OTM is used to study symmetry-breaking
bifurcations on its route to chaos, with the Reynolds number or strength of the driving force as the control parameter. A decisive role in this
scenario is played by a symmetry of the form of Z2 × S1 resulting from the Z2 reflection symmetry of the magnetic field in the MHD equations
in conjunction with a circle symmetry S1 of the Roberts flow. Under its influence, in a secondary Hopf bifurcation from a circle of steady
reflection-symmetric states a time-periodic solution branch of oscillating waves (OW) is generated retaining the reflection symmetry, however in
a spatio-temporal manner. Finally, the subsequent bifurcations on the route to chaos are examined.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The generation of magnetic fields due to the motion of
electrically conducting fluids is a well studied phenomenon.
Introducing an arbitrary weak seed field, one can observe
either a weakening, a conservation or even an amplification
of this initial field. In the latter two cases one speaks of
a dynamo effect [1–7]. Since the pioneering suggestion of
Larmor [8] it is believed to be the physical reason for the
occurrence of magnetism in planetary and astrophysical objects
found in observations. In the past few years homogeneous
dynamos as expected to be working in cosmic bodies were
realised in laboratory experiments carried out in Riga (Latvia)
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[9–15] and Karlsruhe (Germany) [16–21]. Overviews on
dynamo experiments in the laboratory can be found in [22–25].

The mathematical framework of dynamo theory is given
in terms of a system of coupled nonlinear partial differential
equations. In the case of an incompressible non-relativistic
fluid, this set can be reduced to four equations, the
resistive magnetohydrodynamic (MHD) equations, containing
the Navier–Stokes equation (NSE) and the induction equation
as coupled evolutionary equations for the fluid velocity Eu(Ex, t)
and the magnetic field EB(Ex, t) and two additional constraints.
In dimensionless form, these equations read:

∂t Eu + (Eu · ∇) Eu = Re−1
∇

2
Eu − ∇ P +

(
EB · ∇

)
EB + Ef (1)

∂t EB + (Eu · ∇) EB = Rm−1
∇

2 EB +

(
EB · ∇

)
Eu (2)
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∇ · Eu = 0, ∇ · EB = 0. (3)

Here, P = p + EB2/2 includes hydrodynamic (p) and magnetic
( EB2/2) pressure contributions and Ef is the sum of the body
forces acting on the fluid. Eqs. (3) impose the incompressibility
condition on the fluid and ensure the source-free property
of the magnetic field. Re ∼ 1/ν and Rm ∼ 1/η are the
standard kinetic and magnetic Reynolds numbers of a flow with
kinematic viscosity ν and magnetic diffusivity η. For simplicity,
we consider Ef as externally applied and given and do not
include processes generating the forces.

Traditional dynamo theory has been mainly kinematic,
considering the linear problem whether a prescribed fluid
motion can amplify, or at least prevent from decaying, some
weak seed magnetic field, disregarding the equation of motion,
Eq. (1). The initial point of this paper is a kinematically
dynamo-active flow,

Eu R(x, y) = (sin x cos y, − cos x sin y, 2 sin x sin y), (4)

which was first studied by Roberts [26,27] and which will be
referred to as the Roberts flow in the following. Here it is used
to set up a nonlinear dynamo model in which the back reaction
of the magnetic on the velocity field is taken into account in the
frame of the full nonlinear MHD equations, Eqs. (1)–(3). For
this purpose the external body force in Eq. (1) is specified as

Ef = −∇
2
Eu R = 2Eu R (5)

in order to compensate viscous losses and to generate the
Roberts flow as a stationary solution of the NSE. Together
with a vanishing magnetic field it also forms a solution of
Eqs. (1)–(3), which is, in addition, stable for small Reynolds
numbers.

It should be noted that in most experimental realisations, as
e.g. in the Karlsruhe experiment, the dynamo works with fluid
sodium. This gives a magnetic Prandtl number of Pm = 0.88×

10−5 and leads to the same ratio between the magnetic and
viscous diffusion time scales. In performing the accompanying
computations one is faced with intrinsic numerical difficulties
which cannot be solved hitherto. The work presented here will
focus on the case ν = η (Re = Rm), i.e., the magnetic
Prandtl number is kept fixed at a value of Pm = ν/η = 1.
This approach may be legitimized by the assumption that the
small scales of the velocity field have only little influence on
the magnetic field generation in the Roberts dynamo. We wish
to note, however, that for the small magnetic Prandtl numbers
as typical of liquid metals, the fluid will be in a turbulent
state at the onset of dynamo action, implying, e.g., a quadratic
dependence of the flow resistance on the mean flow velocity
(which is important for experimental devices where the fluid
is pumped through ducts), while the dependence is linear for
Pm = 1. With this choice, there remains Re as the only
fundamental control parameter. It represents the bifurcation
parameter and governs the onset of the dynamo — though
generally, if Rm and Re are different, the magnetic Reynolds
number Rm is the natural control parameter for dynamo action,
no matter how large Re.
Fig. 1. Projection of the Roberts flow on the x–y plane with arrows indicating
the horizontal flow direction. The grey scale measures the modulus of the total
velocity where bright areas correspond to high values.

The Roberts flow consists of an array of rolls where the fluid
spirals up and down in neighbouring rolls. A projection of the
velocity vectors on the x–y plane is plotted in Fig. 1. Since
the flow is periodic in the x and y directions, only four rolls
are shown. Additionally, it is independent of the z coordinate
and thus represents a two-dimensional flow with three non-
vanishing components. The roll pattern resembles columnar
convection structures in rotating spherical shells [28,29] as have
been observed by spacecraft missions in the upper atmospheres
of the giant gaseous planets of the solar system [30]. It is
believed that roughly similar structures occur as well in the
liquid core of the Earth [17]. In this case, these patterns
are likely to have a certain relevance for the geodynamo,
which is believed to result from convection processes in the
planetary interior [5]. This idea motivated the suggestion of a
corresponding flow configuration for the design of a dynamo
experiment and its subsequent approximate realisation in the
Karlsruhe device [16,31–33]. In the meantime, the theory of the
dynamo effect in this device has been worked out considerably
by using mean-field models and direct numerical simulations
of the induction equation, Eq. (2), taking also into account
deviations of the actual flow in the experimental device from
the Roberts flow [34–45].

The present study continues preceding investigations of
the Roberts dynamo where the full nonlinear MHD equations
were used [46–48]. In this paper relatively low-dimensional
truncation models of the Roberts dynamo are studied. These
reduced models allow a clearer identification and better
understanding of the basic mode interaction mechanisms. The
idea is that essential properties and internal interactions of
dynamical systems are often describable by only a few patterns
or modes [49–51]. Most of the mean-field studies of the
Roberts dynamo mentioned above belong to this category of
theoretical description. We show that the minimum truncation
model (MTM) we consider here is equivalent to these mean-
field models.

However, the main goal of the paper is the derivation of an
optimum truncation model (OTM) which, unlike the MTM, is
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not restricted to small magnetic Reynolds numbers and works
under more general conditions. For this purpose, the modes
to be taken into account are chosen on the basis of their en-
ergy contributions as computed using the full model. More-
over, it seems advantageous to capture all symmetry properties
of the original problem in such a reduced model, so that the
symmetry-breaking properties of the bifurcations can be repro-
duced in a correct manner. The OTM is introduced in Section 2.
It is used to study the excitation mechanism of the dynamo with
a special regard to the energy transfer from certain basic modes
(primary triads) to the other modes. The symmetry-breaking
bifurcation that leads from the non-magnetic Roberts flow to
a steady-state dynamo solution is described in Section 3. The
following bifurcations on the route to chaos are considered in
Section 4. Special attention is paid here to the influence of the
symmetry breakings on the features of the time-dependent dy-
namo solutions, as, e.g., oscillating waves (OW). In Section 5,
the steady-state Roberts dynamo is discussed by means of an
analytical mean-field approach. It is observed that the MTM,
containing only the primary mode triads, corresponds to the
first-order smoothing approximation of mean-field theory. The
critical magnetic Reynolds number for the onset of dynamo ac-
tion in the MTM is determined in dependence on the vertical
wave number of the generated magnetic field, showing that dy-
namo action in the MTM is restricted to small wave numbers,
which is confirmed by our numerical results. In Section 6, fi-
nally, the results obtained are briefly discussed.

2. Model setup

The Roberts flow, given by Eq. (4), is invariant in the vertical
z direction and periodic in the two horizontal directions x
and y. We impose periodic boundary conditions in all three
spatial directions, with period lengths Lx = L y = 2π in
the horizontal directions and a variable period length L z in
the vertical direction. Compared with the flow patterns in the
Karlsruhe dynamo experiment or in planetary interiors, the
periodicity assumption for the vertical direction is certainly
a crude approximation, and even in the horizontal directions
these patterns are, due to their finite extent, only quasi-periodic.
Hence the chosen model is the simplest one.

According to the periodicity assumption, Fourier series
expansions in the form of

a(Ex, t) =

∑
Ek 6=E0

aEkeiEk·Ex , (6)

are used, where a(Ex, t) stands for any of the dynamical
variables and the wave vectors Ek are connected with the mode
number vectors Em = (mx , m y, mz), with mx , m y, mz ∈ Z, by
kx = 2πmx/Lx , ky = 2πm y/L y , kz = 2πmz/L z . In general,
we shall identify the modes by their mode number vectors Em.
In contrast to the preceding studies [46,47], where pseudo-
spectral methods were used in the numerics, we now apply a
pure spectral method, i.e., all calculations are carried out in
Fourier space, so that aliasing errors are completely avoided
and actually just the modes selected (see below) are involved
in the dynamics of the model system. In accordance with
Eqs. (3), which take the forms EuEk · Ek = 0 and EBEk · Ek =

0 in Fourier space, EuEk and EBEk are projected onto the plane
perpendicular to Ek, resulting in an infinite-dimensional system
of ordinary differential equations for the transverse parts of
EuEk and EBEk , with the pressure eliminated. For details see
Appendix A.

Several details of the bifurcation scenario of the dynamical
system defined by Eqs. (1)–(5) were explored in [46,47]. The
consequent use of a Fourier representation with a truncation
at |mx | ,

∣∣m y
∣∣ , |mz | = 8 leads to a system of 16 384 coupled

ordinary differential equations of first order for the real and
imaginary parts of the complex Fourier coefficients of the
velocity and magnetic field. Calculations using such a high
number of variables are impractical in detailed bifurcation and
mode interaction studies if the dynamics of the physical system
is essentially controlled by only a few dominating modes.

To check out whether the latter is the case for the Roberts
dynamo, the kinetic and magnetic energy distributions

Ekin(Ek) =

∣∣EuEk

∣∣2
2

, Emag(Ek) =

∣∣∣ EBEk

∣∣∣2
2

(7)

over the different Fourier modes have been examined. Besides
the general decrease of the amount of energy per mode with
increasing |Ek|, it turns out that for the steady-state Roberts
dynamo, i.e., for the primary dynamo solution bifurcating from
the nonmagnetic Roberts flow, there is indeed a distinctive
energy hierarchy of the Fourier modes where only a small
number of modes is significantly excited kinetically or
magnetically and the energy per mode drops strongly towards
the rest of the (non-vanishing) modes.

For deriving a model system by truncating the full system,
the symmetries of the problem are most important and have
thus to be retained. The symmetries of the Roberts flow were
analysed in Ref. [47] and are briefly summarised here. With
our periodic boundary conditions, the invariance of the Roberts
flow and, thus, the invariance of the MHD equations with
Roberts forcing, Eqs. (1)–(5), with respect to translations in the
z direction is described by the circle group S1. Furthermore,
the system of Eqs. (1)–(5) possesses a discrete symmetry group
including a subgroup G = Z4 ×S D2, the semidirect product
of the cyclic and dihedral groups, representing the geometric
structure of the Roberts flow, and the Z2 invariance Eu → Eu,
EB → − EB as an intrinsic property of the MHD equations. As
found in Ref. [47] for the full system, the discrete symmetry
subgroup survives the dynamo bifurcation (though the actions
of the corresponding transformations are modified), while the
continuous S1 invariance is broken.

Thus, the reduced model system should exhibit a bifurcation
from the original Roberts flow to a dynamo solution that
remains invariant with respect to the discrete symmetry group
G of the problem. The latter implies that with a given Fourier
mode included in the model, also all those modes have to be
included which can be obtained from the given mode by one
of the discrete symmetry transformations. In this way a whole
hierarchy of models, with an increasing number of modes
included, can be constructed.
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Table 1
Kinetic and magnetic energy per mode type in the stationary dynamo regime of
the OTM at the Reynolds number Re = 3.0 for the case of periodicity lengths
of 2π in all three spatial directions

Ek Ekin Emag

(±1, ±1, 0) 5.6005 –
(0, 0, ±1) – 0.0482
(±1, ±1, ±1) – 0.1419
(0, ±2, ±1) – 0.0204
(±2, 0, ±1) – 0.0204
(±1, ±3, ±1) – 0.0176
(±3, ±1, ±1) – 0.0176

Total 5.6005 0.2660

Dashes denote vanishing contributions.

Table 1 gives the modes of two models in this hierarchy
which are considered in the following. From the kinetic and
magnetic energy distributions after the onset of the dynamo
listed in the table for the case of period lengths of 2π in all
three directions, it is seen that, firstly, in the velocity field
only the Fourier modes with mode number vectors Em(1)

=

(±1, ±1, 0), corresponding to the primary Roberts flow, are
excited. Actually the flow is still the Roberts flow, only
weakly disturbed in its strength. Secondly, the most energetic
bifurcating magnetic modes are those with mode number
vectors Em(2)

= (0, 0, ±1). These magnetic modes correspond
to a horizontally averaged or mean field, cf. Section 3. Along
with Em(1) and Em(2), the modes with Em(3)

= (±1, ±1, ±1)

have not to be truncated because their mode number vectors
Em3 are coupled to Em(1) and Em(2) by triadic interactions ( Em(3)

=

Em(1)
+ Em(2)). The essential role of these three mode types in

the Roberts flow driven dynamo has already been recognised
by Busse as described in Refs. [32,35,52] where he used a
mean-field approach to the corresponding kinematic problem.
These couple of modes, which we call the primary mode
triads, form an MTM admitting dynamo solutions. However, as
shown in Section 5, it works only in the limit of small vertical
wave numbers and the critical magnetic Reynolds number
for dynamo action tends to infinity as kz → 1. Hence, we
looked for a more general model. As a result of systematic
investigations, an OTM has been set up which overcomes
these limitations. It contains, additionally, the magnetic modes
with Em = (±2, 0, ±1), (0, ±2, ±1) and Em = (±3, ±1, ±1),
(±1, ±3, ±1). Together with the velocity modes with Em =

(±1, ±1, 0) they form sets of interacting triads that do not
contain the primary magnetic modes with Em = (0, 0, ±1)

and which, therefore, are called secondary mode triads in the
following. In Fig. 2 the interactions of the selected modes are
depicted schematically. The modes of the MTM are placed in
the central panel of the figure. The arrows denote the way the
MTM modes interact with the other modes to form a set of
secondary modes triads, the construct of the OTM.

In summary, with this selection of Fourier modes an
OTM is obtained which admits dynamo solutions for a wide
range of vertical wave numbers. Moreover, it fulfills all
symmetry requirements of the steady-state dynamo solution
of the full system. Consequently, the Roberts dynamo can be
Fig. 2. Schematic representation of the interacting mode triads.

approximately described by an OTM consisting of a system of
19 independent Fourier modes (here the reality condition a

−Ek =

a∗

Ek
, where an asterisk denotes the complex conjugate, is taken

into account). In order to be not too restrictive, in particular
to leave enough freedom for the subsequent bifurcations, both
the magnetic and the velocity mode coefficients for the Fourier
modes with the selected wave numbers are taken into account,
which amounts to eight real variables per Fourier mode, cf.
Appendix A. This finally gives a system of 152 real differential
equations, which will be studied in the following sections.

3. Dynamo excitation

The onset of dynamo action at a critical value of the
Reynolds number is caused by the instability of a purely
magnetic eigenmode with kz = ±2π/L z , i.e. with the largest
possible wavelength in the z direction [43,44,46,47,53]. Among
the contributions to this eigenmode, the Fourier modes with
Em = (0, 0, ±1), corresponding to a horizontally averaged
or mean field that rotates without changing its modulus in a
spiral-staircase-like fashion about the z axis (cf. Section 5),
are most important for the physical mechanism of the Roberts
dynamo [27,54–56]. Because of ∇ · EB = 0 this mean field
is purely horizontal. Actually there is no dynamo effect up
to high values of Rm if the modes with Em = (0, 0, ±1) are
explicitly excluded. The horizontal mean field is both decisive
for the mechanism of the Roberts dynamo and energetically
dominating. Its energetic dominance has been confirmed in the
Karlsruhe dynamo experiment [17,18].

In the following a bifurcation analysis of the OTM to Eqs.
(1)–(3) is performed for the special case of equal periodicity
lengths Lx = L y = L z = 2π , with the Reynolds
number Re = Rm as the relevant control parameter. In a
linear stability analysis of the nonmagnetic Roberts flow, it
is found that at Re = 2.61 two real eigenvalues of the
Jacobian matrix pass through zero simultaneously, indicating
a degenerate pitchfork bifurcation. This observation correctly
reproduces the results of the high-dimensional investigations
in [46] where the instability was found at Re ≈ 2.8 (in
the normalisation used in the present paper; the value given
in [46] corresponds to a different definition of the Reynolds
number). The small shift in the critical parameter value can
be explained by a reduced energy dissipation rate due to the
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Fig. 3. Bifurcation diagram in the form of the temporal averages of kinetic
and magnetic energy as functions of Re. Thin dashed vertical lines indicate
transition points between different solution branches. The Hopf bifurcation at
Re = 3.24 creates oscillating waves (OW). The thick dashed vertical line
corresponds to a finite solution branch (see text) and the asterisk denotes the
chaotic regime.

missing contributions of the higher modes. The degeneracy
(multiplicity two of the eigenvalue) is directly related to the
continuous S1 symmetry of the original Roberts flow in the
z direction, which is broken by this bifurcation. The two-
dimensional unstable linear eigenspace consists of a continuum
of modes where one can be transformed into the other by a
z translation. Correspondingly, the bifurcating dynamo branch
consists of a continuum of equivalent solutions describing a
group orbit. Although the translation symmetry is broken by
the generated magnetic field, the flow remains independent of
the z coordinate. The magnetic field brakes the Roberts flow
by the Lorentz force without changing its functional form,
which is indicated in Table 1 by the fact that only the velocity
modes with Em = (±1, ±1, ±0) are excited. This illustrates the
feasibility of a three-dimensional dynamo that is maintained
by a two-dimensional velocity field, a situation which is not in
conflict with the Cowling theorem [1]. It should be mentioned,
however, that in the OTM considered here this phenomenon is a
consequence of the strong truncation and that the flow becomes
three-dimensional as well when further modes are taken into
account.

In Table 1 the contributions to kinetic and magnetic energy
of the different mode types, calculated using Eq. (7), are given
for the steady-state dynamo at Re = 3.0. The modes belonging
to the primary triads contain more than 98% of the total energy
and more than 70% of the magnetic energy. The forced modes
with Em = (±1, ±1, ±0), containing all kinetic energy, do not
contribute to the magnetic field.

The computed bifurcation diagram is depicted in Fig. 3,
presenting the kinetic energy (upper panel) as well as the
magnetic energy (lower panel) as functions of the Reynolds
number. The vertical lines mark the bifurcation points (note that
the horizontal coordinate axes have different scales in the two
panels of the figure, but the critical values of course coincide).
The first transition line gives the onset of the stationary dynamo.
For the nonmagnetic Roberts flow (NRF), the kinetic energy
increases exactly with the square of Re, or to be more precise,
Eu = Re Eu R holds. Due to the magnetic field generation, this
increase becomes remarkably weaker after the onset of the
dynamo.

The steady-state dynamo preserves the above mentioned Z2
symmetry of the MHD equations. It has changed its action such
that now the reflection Eu → Eu, EB → − EB of the fields has to be
combined with an additional shift of the solution by π in the z
direction. This, however, is a consequence of the idealisations
in our model, namely, the infinite extent of the system and
the periodic boundary conditions. Therefore, a comparison
with the Karlsruhe dynamo experiment seems in order. In the
experiment, dynamo states are observed that are steady on time
average, with turbulent fluctuations superposed. There are two
steady states with oppositely directed magnetic fields. Their
coexistence obviously corresponds to the Z2 invariance Eu → Eu,
EB → − EB of the MHD equations. The two dynamo branches
found in the experiment are not fully identical in their stability
properties and do not seem to be directly connected. The
asymmetry between the two branches can be explained by the
presence of the geomagnetic field. Correspondingly, the onset
of dynamo action in the experiment has been characterised as
an imperfect (pitchfork) bifurcation [21,37,42].

4. Time-dependent dynamo

In addition to the single real zero eigenvalue, representing
the group orbit of the steady-state solutions, a pair of complex-
conjugate eigenvalues crosses the imaginary axis at Re ≈ 3.24,
indicating a secondary bifurcation (cf. Fig. 3). This bifurcation,
after which all modes of the OTM are excited both kinetically
and magnetically, corresponds to a symmetry-breaking Hopf
bifurcation from a circle of stationary dynamo solutions. The
imaginary part of the critical eigenvalues, ω ≈ 2.2, is in
good agreement with the frequency of the mode coefficients
which are newly excited by this bifurcation. They oscillate
nearly harmonically with a zero mean value. By contrast, the
mode coefficients which were non-vanishing already before the
bifurcation start to oscillate with twice the Hopf frequency
about their mean values. To demonstrate this feature, Fig. 4
shows, as an example, the time dependence of two selected

mode coefficients, Re
(

u (1)
(1,1,1)

)
and Re

(
B (1)

(0,0,1)

)
(for the

definition of the coefficients see Appendix A; Re and Im
denote real and imaginary parts).

Obviously this bifurcation is not a simple Hopf bifurcation
but it is governed by the symmetry of the equations. Together
with the rotational symmetry due to the z independence of
the flow, the Z2 invariance, introduced in Section 2 and also
discussed in the preceding section, plays an essential role.
Since both groups commute in their action, the direct product
S1

× Z2 is the relevant group which controls the bifurcation.
The situation is very similar, though not identical, to the
O(2) symmetry-breaking bifurcations extensively studied in
Refs. [57–59]. In both cases the Hopf bifurcation generates
wave solutions from a circle of steady states. Landsberg
and Knobloch [57] called them direction-reversing travelling
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Fig. 4. Oscillations of the mode coefficients Re
(

u (1)
(1,1,1)

)
(upper panel) and

Re
(

B (1)
(0,0,1)

)
(lower panel) for the solution on the branch OW at Re = 3.25

(the mode coefficients are defined by Eqs. (A.1) and (A.2) in Appendix A).

waves. Amdjadi and Gomatam [58] introduced canonical
coordinates for the Z2 symmetric steady-state solutions and
showed that the bifurcating periodic orbit preserves a special
spatio-temporal symmetry. They called this solution branch
oscillating waves (OW) and we follow their terminology. The
corresponding solutions are still Z2 symmetric, however with
respect to a spatio-temporal action given by the combination
of the reflection Eu → Eu, EB → − EB with a translation by π

in the z direction and a phase shift by half a period, T/2. As
a consequence, the modes are either symmetric under a time
shift by T/2 or they are antisymmetric. The modes already
excited in the stationary state before the Hopf bifurcation are
symmetric to the spatial part of the transformation without the
time shift, while the newly excited ones are lacking this purely
spatial symmetry. Thus, two oscillation frequencies appear in
the system and the modes which belong to the symmetric
subspace oscillate with twice the Hopf frequency. Albeit in
the situation under consideration the S1

× Z2 group instead of
the O(2) group is the relevant symmetry group, the bifurcating
wave solutions have the same properties and we identify them
with OW.

The OW represent a special kind of standing oscillation that
differs from a standard standing wave. For the latter one, in a
plane spanned by any two of the real or imaginary parts of the
Fourier coefficients, the system moves periodically on a straight
line. In particular, the projections of the system trajectory on
the planes spanned by the real and imaginary parts of a given
Fourier coefficient are straight lines. For our OW branch, the
coefficients of the mean magnetic field, with m = (0, 0, ±1),
indeed behave in this way, as is seen in upper left panel of
Fig. 5, where the projection of the magnetic field on the real
and imaginary parts of the mean-field mode coefficient B (1)

(0,0,1)

is depicted. For all Fourier coefficients not belonging to the
mean magnetic field, however, the corresponding projections
are ellipses.

The Hopf bifurcation is followed by a tertiary bifurcation at
Re ≈ 3.37, where, as is seen in the bifurcation diagram (Fig. 3),
the magnetic energy becomes a decreasing function of the
Reynolds number. Interestingly, this bifurcation does not break
the above explained spatio-temporal Z2 symmetry and leaves
the system strictly time periodic. The new solution branch,
OW*, resembles the branch OW. There is, however, a difference
between the two branches in the behaviour of the modes making
up the mean magnetic field, with Em = (0, 0, ±1). The mean
field 〈 EB〉 generated in the (primary) dynamo bifurcation is
a Beltrami or force-free field, i.e., the mean electric current
density, 〈 Ej〉 = ∇ × 〈 EB〉, is parallel to 〈 EB〉 (cf. Section 5).
The Beltrami property implies that the modulus of the mean
Fig. 5. Projection of the phase space trajectory on the plane spanned by the real and imaginary parts of the mode coefficient B (1)
(0,0,1)

(defined by Eq. (A.2) in
Appendix A) for Re = 3.3 (upper left), Re = 3.4 (upper right), Re = 3.8 (lower left) and Re = 4.0 (lower right).
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magnetic field is independent of z (the field direction varying
as a function of z in a spiral-staircase-like fashion). In the time-
periodic regime between the Hopf bifurcation and the tertiary
bifurcation at Re ≈ 3.37, 〈 EB〉 has still the Beltrami property,
oscillating with spatially constant modulus. At Re ≈ 3.37, the
temporal behaviour of the mean-field modes becomes similar
to that of the other modes, namely, the projection of the system
trajectory on the plane spanned by the real and imaginary parts
of B(i)

(0,0,1) (i = 1, 2) changes from a straight line to an ellipse,
as shown in the upper right panel of Fig. 5. In configuration
space, the mean magnetic field gets a more inhomogeneous
structure. In particular, its modulus now oscillates in both time
and space and 〈 EB〉 is no longer a Beltrami field. Obviously the
mean magnetic field changes to a form where it is less easily
excited by the Roberts flow (to which the flow is still very
close). This can explain the decrease of the magnetic energy
starting at Re ≈ 3.37.

Oscillations were also found in numerical simulations
related to the Karlsruhe dynamo experiment by Sarkar and
Tilgner [60]. These authors also assumed a periodic geometry
and applied an explicit forcing to drive a Roberts type flow.
To come closer to the situation in the real experiment, the
forcing was only applied inside circular cylinders (four in the
periodic horizontal box) and set equal to zero in the rest of the
volume. The oscillations already occur in the kinematic regime,
which indicates that the primary dynamo bifurcation is a Hopf
bifurcation (unlike the steady-state bifurcation that we observe,
cf. Section 3), and are characterised by rotations of the magnetic
field patterns in each of the cylinders, while the oscillations that
we observe (originating in secondary or tertiary bifurcations)
are better characterised as pulsations, as described above. A
deeper understanding of these differences will require further
studies.

In summary, the OW and OW* branches show spatio-
temporal features in their dynamics that are essentially
determined by the symmetry-breaking properties of the Hopf
bifurcation at Re ≈ 3.24. The original Roberts flow is only
slightly modified for these time-periodic branches. Fig. 6 shows
snapshots of the vertical velocity component uz in the plane
x = 0. In this plane, where uz = 0 for the Roberts flow, the
oscillation of the velocity field becomes clearly visible. For
instance, uz has completely reversed its direction after half a
period. The changes observed mainly result from deformations
of the boundaries between neighbouring rolls where the vertical
velocity component changes its sign.

The branch OW* ends up in a further Hopf bifurcation at
Re ≈ 3.7, resulting in a quasiperiodic motion on a torus (lower
left panel in Fig. 5). The torus solution remains stable up to
Re ≈ 3.90. At this point the torus loses its asymptotic stability
and an additional marginally stable direction appears in the
phase space of the system. Computing the largest Lyapunov
exponents, one observes that one of the negative Lyapunov
exponents becomes zero and remains zero over a small, but
finite interval of the Reynolds number, 3.90 ≤ Re ≤ 3.923,
indicating the additional neutral direction. This solution branch
is, thus, characterised by the special feature that four Lyapunov
exponents are equal to zero (on the torus branch between
Fig. 6. Snapshots over one period T of the OW at Re = 3.3. The arrows show
direction and strength of the vertical velocity component uz in the plane x = 0
at times t = 0.25 T (upper left), t = 0.5 T (upper right), t = 0.75 T (lower
left) and t = T (lower right). The y and z axes point to the right and upward,
respectively.

Fig. 7. The five largest Lyapunov exponents versus simulation time after the
onset of chaos at Re = 3.930. The inlet shows the Lyapunov exponents
versus Re, demonstrating the existence of the finite transition interval with four
vanishing Lyapunov exponents preceding the chaos onset.

Re ≈ 3.7 and Re ≈ 3.90, there were three vanishing Lyapunov
exponents, two resulting from the torus character of the solution
and one from the continuous S1 invariance of the system). In the
bifurcation diagram, Fig. 3, the location of the finite interval
where this solution branch is stable is indicated by a thick
dashed line. For higher Reynolds numbers then chaos sets in.
We suppose that this extraordinary route to chaos is likewise
induced by the S1

× Z2 symmetry. An example of a chaotic
trajectory for Re = 4.0, where chaos is already fully developed,
is depicted in the lower right panel of Fig. 5. The chaotic nature
of the bifurcating branch is proven by computing the six largest
Lyapunov exponents, of which one becomes clearly positive.
In order to demonstrate the good convergence of the used
numerical method, in Fig. 7 the five largest Lyapunov exponents
over simulation time are shown for Re = 3.930, a value
slightly above the chaos onset. The differences between these
five Lyapunov exponents are remarkably small in comparison
to the sixth calculated exponent, which deviates by more than
ten orders of magnitude from them and is, therefore, not shown
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in this figure. Nevertheless, one of the Lyapunov exponents
is obviously positive while three of them are zero (i.e., three
of the finite-time exponents shown in Fig. 7 tend to zero
asymptotically in time). In order to make sure the existence
of the intermediate branch where four Lyapunov exponents are
zero, the inlet in Fig. 7 gives the five Lyapunov exponents as
functions of Re for this region.

In a summary of this section, we conclude that the S1
× Z2

subsymmetry of the system essentially governs the features of
the time-dependent dynamo states and leads to a special route
to chaos.

5. Mean-field considerations

For the description of dynamo action in a turbulent flow
mean-field dynamo theory is often applied [1–4,61]. The central
mechanism in this theory is the generation of a mean, or
large-scale, electromotive force (emf)

EE =

〈
Eu′

× EB ′

〉
= EE‖ + EE⊥ = α

〈
EB
〉
+ EE⊥ (8)

by turbulently fluctuating, or small-scale, parts of the velocity
and magnetic field. Here for a fluctuating quantity Ea, we write
Ea = 〈Ea〉 + Ea′, where 〈·〉 is a suitably defined average. The
presence of a non-vanishing component EE‖ = α〈 EB〉 of EE
parallel to the mean magnetic field 〈 EB〉 is known as the α-effect
(slightly different from this definition, which we use here, EE
is very often expanded as Ei = ai j 〈B j 〉 + bi jk

∂〈B j 〉

∂xk
+ · · ·,

which takes the form EE = α̃〈 EB〉 − β∇ × 〈 EB〉 + · · · in the
case of isotropic fluctuations, and the notion of α-effect refers
then only to the first term of the expansion, though the second
term, which is interpreted as a turbulent diffusivity, may have
a component parallel to 〈 EB〉 as well). The splitting up of the
velocity and magnetic fields into mean and fluctuating parts
leads to a separation of Eq. (2) into two coupled equations for
the temporal evolutions of 〈 EB〉 and EB ′, namely

∂t

〈
EB
〉
= ∇ ×

(
〈Eu〉 ×

〈
EB
〉)

+ Rm−1
∇

2
〈
EB
〉
+ ∇ × EE, (9)

∂t EB ′
= ∇ ×

(
Eu′

×

〈
EB
〉)

+ ∇ ×

(
〈Eu〉 × EB ′

)
+ Rm−1

∇
2 EB ′

+ ∇ × EG, (10)

where

EG = Eu′
× EB ′

−

〈
Eu′

× EB ′

〉
. (11)

Let the mean fields be defined as horizontal averages,

〈Ea〉 (z) =
1

Lx L y

∫ 2π

0

∫ 2π

0
Ea(x, y, z) dx dy, (12)

that is, as the sum of the respective Fourier modes with wave
vectors Ek = (0, 0, kz). For both the high-dimensional and low-
dimensional calculations the mean velocity vanishes, while the
mean magnetic field is given by (modulo a vertical shift)〈

EB
〉
(z) = B0 [cos(k0z), sin(k0z), 0] , (13)
where B0 = |〈 EB〉| is independent of the spatial position, i.e., of
the z coordinate, but may depend on time. This spiral-staircase-
like structure of the mean field is well-known for the kinematic
Roberts dynamo and was recently found for the nonlinear case
as well [47,62]. Our numerical calculations in Sections 3 and 4
were restricted to the case of k0 = 1, but for the considerations
of this section we also admit vertical wave numbers k0 6= 1
for the magnetic field, corresponding to period lengths of L z =

2π/k0 in the z direction. The horizontal period lengths remain
Lx = L y = 2π .

From Eq. (13) we get

∇ ×

〈
EB
〉
= −k0

〈
EB
〉
, (14)

i.e.,
〈
EB
〉

is a Beltrami field. With

∇
2
〈
EB
〉
= −∇ × ∇ ×

〈
EB
〉
= −k2

0

〈
EB
〉
, (15)

as implied by Eq. (14), and 〈Eu〉 = E0, Eq. (9) takes the form

∂t

〈
EB
〉
= −Rm−1k2

0

〈
EB
〉
+ ∇ × EE, (16)

which, using Eq. (13), can be written as

∇ × EE =

(
k2

0

Rm
+

d(ln B0(t))

dt

) 〈
EB
〉
. (17)

All mean quantities, including EE , depend only on the z
coordinate (and time t). Employing once more the Beltrami
property of 〈 EB〉 expressed by Eq. (14), Eq. (17) can be
integrated with respect to z to give

EE = −
1
k0

(
k2

0

Rm
+

d(ln B0(t))

dt

) 〈
EB
〉
+ Ez(z) Eez, (18)

with Eez being the unit vector in the vertical direction. A
comparison of Eq. (18) with Eq. (8) shows that

α = −
1
k0

(
k2

0

Rm
+

d(ln B0(t))

dt

)
(19)

and (up to a spatially constant horizontal field)

EE⊥ = Ez(z) Eez . (20)

EE⊥ is a curl-free field and, thus, not capable of inductive effects.
That is, the Roberts dynamo is a pure α-effect dynamo. Eq. (19)
shows that

α k0 < 0 (21)

is a necessary condition for the growth or maintenance of the
mean magnetic field. For a stationary state, in particular, Eq.
(19) gives

α = −
k0

Rm
. (22)

In time-dependent final states, the α-effect is temporally
modulated by the logarithmic time derivative of the mean-
field amplitude. On time average this additional contribution
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vanishes. In a kinematic phase of exponential growth at a rate
γ , i.e., EB ∼ eγ t , one gets from Eq. (19)

α = −

(
k0

Rm
+ γ

)
. (23)

Using Eqs. (8), (17) and (19), Eq. (16) can also be written as

∂t

〈
EB
〉
= −Rm−1k2

0

〈
EB
〉
− k0 EE‖. (24)

We now prove analytically that, unless the vertical wave
number k0 is restricted to small values, magnetic modes in
addition to those belonging to the primary mode triads or,
equivalently, to the MTM, with wave vectors Ek = Ek(2)

=

(0, 0, ±k0) and Ek = Ek(3)
= (±1, ±1, ±k0), respectively,

must be included into the model in order to enable a dynamo
bifurcation from the non-magnetic Roberts flow (cf. Section 2).
Assume that only the magnetic modes with Ek = (0, 0, ±k0),
corresponding to the mean field 〈 EB〉, and Ek = (±1, ±1, ±k0),
corresponding to the fluctuations EB ′, are included. It is
sufficient here to consider the kinematic problem, i.e. the
magnetic induction equations (9) and (10) with the velocity
field Eu = Eu′

= Eu R (the primary Roberts flow) prescribed. Eq.
(10) then becomes

∂t EB ′
= ∇ ×

(
Eu R ×

〈
EB
〉)

+ Rm−1
∇

2 EB ′ (25)

since 〈Eu〉 = E0 and since no contributions to EG with the wave
vectors Ek = (±1, ±1, ±k0) admitted for EB ′ are obtained from
the product of Eu′

= Eu R , which corresponds to wave vectors Ek =

(±1, ±1, 0), with EB ′. The neglect of the term ∇ × EG in Eq. (10)
is known as first-order smoothing or second-order correlation
approximation [3] and is widely employed in dynamo studies.
We note that, vice versa, also first-order smoothing just amounts
to a restriction to the primary mode triads. Namely,

∂t EB ′

Ek
= Rm−1

∇
2 EB ′

Ek
for Ek 6= (±1, ±1, ±k0) (26)

according to Eq. (25). That is, Fourier components of EB ′ not
belonging to the primary mode triads, if they should be present
initially, are bound to decay under first-order smoothing.
Thus, first-order smoothing and the MTM are equivalent
approximations.

The time derivative of the turbulent emf, defined by Eq. (8),
is given by

∂t EE =

〈
Eu R × ∂t EB ′

〉
=

〈
Eu R ×

[
∇ ×

(
Eu R ×

〈
EB
〉)]〉

+ Rm−1
〈
Eu R × ∇

2 EB ′

〉
, (27)

which after some algebra (see Appendix B) and by using

∇
2 EB ′

= −(±1, ±1, ±k0)
2 EB ′

= −(k2
0 + 2) EB ′ (28)

becomes

∂t EE = (k0 − 1)
〈
EB
〉
− Rm−1(k2

0 + 2) EE, (29)

the projection of which on the direction of 〈 EB〉 is

∂t EE‖ = (k0 − 1)
〈
EB
〉
− Rm−1(k2

0 + 2) EE‖ (30)
(note that according to Eq. (13), the spatial direction of 〈 EB〉 is
constant in time).

The solutions to the system of Eqs. (24) and (30) are of the
form〈

EB
〉
=

〈
EB
〉
0

eγ t , EE‖ =

(
EE‖

)
0

eγ t , (31)

with γ determined by the eigenvalue equation∣∣∣∣∣−Rm−1k2
0 − γ −k0

k0 − 1 −Rm−1
(

k2
0 + 2

)
− γ

∣∣∣∣∣ = 0, (32)

giving

γ = −
k2

0 + 1

Rm
±

1
Rm

√
1 + Rm2k0(1 − k0). (33)

Eq. (33) shows that growing magnetic modes are non-
oscillatory. Non-decaying magnetic modes exist if and only if

1 + Rm2k0(1 − k0) ≥ (k2
0 + 1)2

= k4
0 + 2k2

0 + 1, (34)

which implies, in particular,

0 ≤ k0 < 1 (35)

and is equivalent to

Rm2
≥ R2

c =
k0(k2

0 + 2)

1 − k0
. (36)

Thus, condition (36) is necessary and sufficient for the existence
of a dynamo solution within the frame of the MTM or if,
equivalently, first-order smoothing is applied. This analytic
condition does not seem to have been found in the kinematic
dynamo studies preceding or accompanying the Karlsruhe
experiment, which were mostly done within the MTM, as the
work of Busse and his coworkers (see, e.g., Refs. [32,35,52]),
or by using the equivalent first-order smoothing approximation,
as in the investigations of Rädler and his coworkers (see,
e.g., Refs. [39,41,45]). In these studies, analytical expressions
for the critical magnetic Reynolds number were derived for the
limiting case k2

0 � 1. Asymptotically in this limit, Eq. (36)
gives R2

c ≈ 2k0, which is in agreement, for instance, with
the condition given by Busse in Ref. [52] (Eq. (2.22) in this
reference; the choice α = 1, A = 1, C = 2 for the parameters
therein corresponds to our model; cf. also Eqs. (18a,b) in
Ref. [35]).

From condition (36) it is seen that the dynamo solution
ceases to exist as the vertical wave number k0 approaches the
value of 1 from below. By contrast, our numerical calculations
for the OTM, i.e. with secondary mode triads (cf. Section 2)
taken into account show that there exists a dynamo solution
for 0 ≤ k0 < 1 as well as for k0 ≥ 1 and that its properties
change continuously as k0 passes through 1. The special mode
interactions that lead to dynamo action for k0 ≥ 1 are thus at
work also for k0 < 1 and the MTM can be expected to be valid
only for sufficiently small values of |k0|.

Then, a look at the actual parameters of the Karlsruhe
experiment seems in order. The parameters relevant here are
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(i) the diameter of a single spin generator in the array of spin
generators (the spin generators correspond to the rolls where
the fluid spirals up or down), a = 0.21 m, and (ii) the height of
the spin generators, d = 0.703 m (numbers from Ref. [18]; d
is the height of the homogeneous part of the dynamo module,
without the connections between different spin generators).
Identifying 2a with our horizontal period length Lx = L y (a
natural assumption in view of the experimental configuration)
and d with the vertical period length L z (though the actual
vertical boundary conditions in the experiment are certainly
more complicated than our periodic ones), we get the estimate
k0 ≈ 2a/d = 0.6 for the experiment. This wave number is not
yet very small compared with 1 so that corrections to first-order
smoothing or the MTM could also be of practical interest.

6. Conclusions

In this paper, it has been shown that the essential dynamics of
a Roberts-type flow configuration in an electrically conducting
fluid can be described by truncation models containing only
relatively few Fourier modes. The requirement that they
have to satisfy all the symmetries of the original problem
furnishes them as feasible models for studying symmetry-
breaking bifurcations and magnetic field generation. Including
successively more interacting mode triads while observing the
symmetry requirements, a hierarchy of models is obtained.
Also, in each single model there is a hierarchy of mode triads,
starting with the primary triads formed by the Roberts flow,
a horizontally averaged mean magnetic field and another part
of the magnetic field coupled to these two by triadic mode
interactions. Two models out of the hierarchy, the MTM and
the OTM, were chosen for a detailed consideration.

In Section 5, it has been shown that the MTM, containing
only the modes of the primary triads, is fully equivalent to
the first-order smoothing approximation of mean-field theory.
The Roberts dynamo is a pure α-effect dynamo with a purely
horizontal α-effect. This can be treated largely analytically,
leading, e.g., to a simple dependence of the α-effect parameter
α on the magnetic Reynolds number for stationary dynamo
solutions. For the MTM, a simple analytic condition could
be derived giving the critical magnetic Reynolds number for
the onset of dynamo action as a function of the vertical wave
number k0 of the magnetic field (with the wave numbers of
the flow in the horizontal directions x and y fixed to the value
of 1). The condition shows, e.g., that the MTM is invalid for
vertical wave numbers k0 close to or larger than 1. This could
be of practical interest for the Karlsruhe dynamo experiment
since the wave number k0 there, though smaller than 1, is not
small compared with 1. In order to overcome the restriction to
small vertical wave numbers, we have chosen the more general
OTM as a representative model by means of which we then
have investigated the dynamo solutions in more detail from
the viewpoint of nonlinear dynamics. Especially, the symmetry
breaking bifurcations on the route to chaos have been studied
and classified.

The dominating role of the S1
× Z2 subsymmetry,

corresponding to the translational symmetry of the Roberts
flow combined with the reflection symmetry, Ev → Ev and
EB → − EB, of the induction equation, has been elucidated.
It is responsible for the generation of OW in the transition
to the time-periodic regime. The OW branch is characterised
by a surviving spatio-temporal Z2 invariance of the periodic
orbit. A further bifurcation within the time-periodic regime has
been detected, with the bifurcating branch denoted as OW*.
The solutions of this branch still possess the spatio-temporal
Z2 symmetry. However, they can be clearly distinguished from
the OW by the form and temporal behaviour of the mean
magnetic field leading, in particular, to a reduced dynamo
activity. Last but not least, the occurrence of a finite interval of
Re appears remarkable where, compared to a preceding normal
torus solution, there exists an additional marginal direction in
phase space and, thus, four Lyapunov exponents are equal to
zero, before chaos then sets in. We suppose that this special
torus-chaos transition is also generically caused by the S1

× Z2
symmetry.
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Appendix A. Derivation of the OTM

In order to derive a truncation model from the MHD
equations, Eqs. (1)–(3), we use Fourier ansatzes for Ev, EB and
p. Periodic boundary conditions are imposed on the domain
Ω =

[
Lx × L y × L z

]
, where the mean values of the variables

in Ω are assumed to vanish. As in [63,64], the solutions are
expanded into the complete set of orthogonal eigenfunctions of
the Stokes operator, i.e.

Eu(Ex) =

∑
Ek 6=E0

(
u(1)

Ek
Ee(1)

Ek
+ u(2)

Ek
Ee(2)

Ek

)
exp

(
iEk · Ex

)
, (A.1)

EB(Ex) =

∑
Ek 6=E0

(
B(1)

Ek
Ee(1)

Ek
+ B(2)

Ek
Ee(2)

Ek

)
exp

(
iEk · Ex

)
, (A.2)

p(Ex) =

∑
Ek 6=E0

pEk exp
(

iEk · Ex
)

, (A.3)

where we have used real polarization vectors Ee(1)

Ek
, Ee(2)

Ek
perpendicular to Ek, satisfying

Ee(i)
Ek

· Ek = 0, Ee(1)

Ek
· Ee(2)

Ek
= 0, Ee(i)

Ek
· Ee(i)

Ek
= 1, Ee(i)

−Ek
= Ee(i)

Ek

for i = 1, 2, (A.4)

such that Eqs. (3) are satisfied automatically. Because of the last
condition in Eq. (A.4) we have

u(i)
−Ek

=

(
u(i)

Ek

)∗

, B(i)
−Ek

=

(
B(i)

Ek

)∗

(A.5)

(an asterisk indicates the complex conjugate). By means of the
above Fourier expansions, Eqs. (A.1)–(A.3), we get rid of the
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pressure term in Eq. (1) and arrive at the following system of
ordinary differential equations (ODEs):

du( j)
Ek

dt
= −i

∑
Eq 6={E0,±Ek}

2∑
m,n=1

(
Ee(n)

Eq · Ee( j)
Ek

) (
Ee(m)

Ek−Eq
· Ek
)

×

(
u(n)

Eq u(m)

Ek−Eq
− B(n)

Eq B(m)

Ek−Eq

)
−

Ek2

Re
u( j)

Ek
+ f ( j)

Ek
(A.6)

dB( j)
Ek

dt
= −i

∑
Eq 6={E0,±Ek}

2∑
m,n=1

(
Ee(n)

Eq · Ee( j)
Ek

) (
Ee(m)

Ek−Eq
· Ek
)

×

(
B(n)

Eq u(m)

Ek−Eq
− u(n)

Eq B(m)

Ek−Eq

)
−

Ek2

Rm
B( j)

Ek
. (A.7)

Now all modes that do not belong to the primary or secondary
mode triads depicted in Fig. 2 are neglected. Taking into
account the conditions in Eq. (A.5), this leads to 152 (=19 · 8)
ODEs for the real and imaginary parts of the complex mode
coefficients u( j)

Ek
and B( j)

Ek
making up the model (OTM) studied

in the present paper.

Appendix B. Algebraic relations for Section 5

The time derivative of the turbulent emf, defined by Eq. (8),
is given by

∂t EE =

〈
Eu R × ∂t EB ′

〉
=

〈
Eu R ×

[
∇ ×

(
Eu R ×

〈
EB
〉)]〉

+ Rm−1
〈
Eu R × ∇

2 EB ′

〉
. (B.1)

Using Eqs. (4) and (13), one finds for the first term on the right-
hand side of Eq. (B.1)

∇ ×

(
Eu R ×

〈
EB
〉)

= B0

×

 (2k0 − 1) sin x sin y sin(k0z) + cos x cos y cos(k0z)
−(2k0 − 1) sin x sin y cos(k0z) − cos x cos y sin(k0z)

2 cos x sin y cos(k0z) + 2 sin x cos y sin(k0z)


(B.2)

and further

Eu R ×

[
∇ ×

(
Eu R ×

〈
EB
〉)]

= B0

×


2(2k0 sin2 x − 1) sin2 y cos(k0z)
2 sin2 x(2k0 sin2 y − 1) sin(k0z)

1
2

[
(1 − 2k0 sin2 x) sin(2y) cos(k0z) − sin(2x)(1 − 2k0 sin2 y) sin(k0z)

]


(B.3)

which on horizontal averaging gives

〈
Eu R ×

[
∇ ×

(
Eu R ×

〈
EB
〉)]〉

= B0

(k0 − 1) cos(k0z)
(k0 − 1) sin(k0z)

0


= (k0 − 1)

〈
EB
〉
. (B.4)
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