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The present paper studies regular and complex spatiotemporal behaviors in networks of coupled
map-based bursting oscillators. In-phase and antiphase synchronization of bursts are studied, ex-
plaining their underlying mechanisms in order to determine how network parameters separate them.
Conditions for emergent bursting in the coupled system are derived from our analysis. In the region
of emergence, patterns of chaotic transitions between synchronization and propagation of bursts are
found. We show that they consist of transient standing and rotating waves induced by symmetry-
breaking bifurcations, and can be viewed as a manifestation of the phenomenon of chaotic
itinerancy. © 2006 American Institute of Physics. �DOI: 10.1063/1.2148387�
Some kinds of neurons are known to exhibit irregular
bursting oscillations in response to a constant input cur-
rent. Network behavior of such bursting neurons has
been exhaustively studied, because it may reflect aspects
of functional roles in neural assemblies. While these stud-
ies usually rely on ordinary differential equation (ODE)
neuron models, map-based neurons have been considered
as an advantageous alternative for the simulation of large
neuronal systems. We use map-based models to study
bursting patterns in neural networks. Although regular
behaviors such as in-phase and antiphase synchroniza-
tion of bursts have been replicated in many studies, few
have discussed the dynamic mechanism differentiating
the two types of burst synchronization in map-based
models. Thus, we clarify how the difference between the
two synchronous modes lies in local stability of an invari-
ant subspace. The analysis is carried out in such a way
that it is valid for a wide variety of network topologies. It
also shows that there exist parameter regions where com-
plex spatiotemporal patterns arise in regular, homoge-
neous networks. Such patterns have received less atten-
tion than regular ones, because they are hard to
characterize mathematically. Recently, chaotic itinerancy,
a concept to deal with complex transient patterns, has
been proposed and developed in several case studies. We
demonstrate that the complex spatiotemporal patterns
found in our model can be characterized as chaotic
itinerancy.

I. INTRODUCTION

Synchronization of neuronal burst firings has been inten-
sively studied as a collective behavior possibly related to
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information transmission and processing in biological neu-
rons. Bursts of spikes, as opposed to single spikes, are con-
sidered to enhance the reliability of communications between
neurons by facilitating transmitter release.1 Bursting oscilla-
tions are commonly observed in a wide variety of neurons
such as hippocampal pyramidal neurons,2 thalamic neurons,3

pyloric dilator neurons,4 in addition to other living cells such
as pancreatic beta cells.5 A useful approach for gaining in-
sight into biological rhythms, such as those produced by cen-
tral pattern generators,6 is to elucidate dominant dynamical
factors for rhythmic bursting in simple phenomenological
models.

In studies on synchronous bursting activities, ordinary
differential equation �ODE� neuron models with fast-slow
dynamics are most commonly used. Nevertheless, map-
based neuron models7–9 have recently received much atten-
tion as reasonable units for simulating collective behaviors in
large-scale neural networks.10 This is because map-based
models have been found to be comparable to ODE models in
reproducing characteristic behaviors of biological neurons.
For instance, synchronization of chaotic bursts has been re-
produced by a network of map-based neurons.7 Two recipro-
cally coupled map-based neurons8,11 are able to produce an-
tiphase synchronization of bursts in a similar way to
biological neurons12,13 and ODE models.14–16 Moreover,
transient synchronization encoding temporal activation in
coupled inhibitory ODE-based neurons17 has been repro-
duced by a similar network of map-based neurons.18

In order to further explore the potentials of map-based
models, we investigate rhythmic bursting in some networks
of 2D map neurons exhibiting chaotic bursts.7 These net-
works include rings19 and lattices,20 which are amenable to
analytic treatment and are used as simple models of neural

systems such as the thalamic reticular nucleus and the visual
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cortex.10,21 Since phenomena of interest in these systems in-
volve generation and propagation of bursting patterns
through in-phase and antiphase entrainment and synchroni-
zation, we aim in the first place at specifying the dynamic
difference between these two synchronization modes. Linear
stability analysis reveals how coupling parameters control
which synchronous pattern appears. The analysis also shows
a parameter region where bursting is emergent, meaning that
coupling produces bursting in neurons that would remain
silent if isolated.22,23 In this parameter region, complex spa-
tiotemporal patterns including synchronization and propaga-
tion of bursts are observed. We demonstrate that they can be
regarded as transitions between chaotic standing and rotating
waves24 induced by destabilization of a fixed point on the
invariant subspace of complete synchronization. The tran-
sient firing activities are analogous to the chaotic alternations
between synchronization and desynchronization found in a
network of reduced Hindmarsh-Rose neuron models,25 and
we characterize them as chaotic itinerancy.

Accordingly, the paper is organized as follows. In Sec.
II, we introduce the map-based neuron model, and the cou-
pling scheme with chemical and electrical synaptic connec-
tions. In Sec. III, we investigate in-phase and antiphase syn-
chronization of bursts in the coupled system and discuss the
essential dynamical difference between them. In Sec. IV, we
demonstrate how complex transient patterns providing some
characteristics of chaotic itinerancy26 arise in the regular and
homogeneous networks. In Sec. V, this study is summarized
and related future works are proposed.

II. MODEL

We consider first the following single neuron model pro-
posed by Rulkov:7,8

x�t + 1� = f�x�t�� + y�t� , y�t + 1� = y�t� − ��x�t� − �� ,

�1�

where x�t� is the fast variable representing the neuronal
membrane potential and y�t� is the slow variable. The differ-
ence of the time scales between the two subsystems is deter-
mined by a sufficiently small value of the parameter �, i.e.,
0���1. The system of Eqs. �1� can reproduce a variety of
neural spiking-bursting activities with a proper nonlinear
function f .7,8 In this study we set f�x�=� / �1+x2�,7 with a
value of � producing chaotic bursts. The parameter � acts as
an external excitation and controls whether the regime of the
complete system is silence, bursting, or tonic spiking.

To understand the behavior of the model, we consider
the dynamics of the 1D fast subsystem given as follows:

x�t + 1� = f�x�t�� + y , �2�

where y works now as a parameter. As y is varied, the return
map of Eq. �2� shifts vertically. For this variation, the fast
subsystem shows hysteresis between a steady state and an
oscillatory state, giving rise to bursting behaviors. A typical
orbit showing irregular bursting is depicted by bold curves in
Fig. 1�a�. The gray branches indicate the stable and unstable
fixed points, which coalesce via the saddle-node �fold� bifur-

cation at y=ysn with increasing y. The gray region in Fig.
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1�a� indicates the chaotic attractors, which disappear through
the �homoclinic type� boundary crisis at y=ycr with decreas-
ing y. Hence, the 2D map is classified as a “fold/
homoclinic”-type bursting model according to the bifurca-
tions of the 1D fast submap.9 Three different regimes can be
reproduced depending on the value of the control parameter
�. When the line x=� intersects the branch of the stable
fixed points, the intersection point �unless it is very near the
fold� is a stable fixed point corresponding to the silence re-
gime in the complete system. When the line x=� is set be-
tween the ranges of the two quasiattracting states, y�t� in-
creases if x�t��� and decreases otherwise. As a result, an
orbit in the complete system exhibits repetitive transitions
between the silence and bursting phases as shown in Fig.
1�a�. The corresponding time series of the fast and slow vari-
ables are shown in Fig. 1�b�. When � is sufficiently large, a
typical orbit sustains a chaotic oscillation corresponding to
the regime of tonic spiking.

In the complete 2D system of Eqs. �1�, the transition
from a steady state to a bursting state corresponds to a sub-
critical Neimark-Sacker bifurcation of a stable fixed point,
which is closely related to a saddle-node bifurcation in the
fast subsystem. Figure 2�a� shows the phase diagram of the
model in the �� ,�� parameter plane. The boundary separat-
ing the silence and bursting regimes is given by the

FIG. 1. �a� Phase portrait of a typical bursting behavior �black� in the
Rulkov model �Ref. 7� computed with �=4.3, �=−1.5, and �=0.001. The
discrete orbit points are connected in the order of time steps. It is superim-
posed on the bifurcation diagram �gray� of the fast subsystem, where the
gray branches indicate the stable and unstable fixed points merging at the
saddle-node bifurcation point �ysn� and the gray region represents the cha-
otic attractors vanishing at the boundary crisis point �ycr�. The bursting
motion in the total system is due to hysteresis between the two states in the
fast subsystem. �b� Time series of the fast and slow variables in a bursting
regime.
Neimark-Sacker bifurcation curve, which lies in the vicinity
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of the set of saddle-node bifurcation points in the fast sub-
system as shown in Fig. 2�b�. On the other hand, the bound-
ary separating the regimes of bursting and tonic spiking in
Fig. 2�a� is roughly drawn, because it is not characterized by
a local bifurcation.

Next we introduce the network model of N identical neu-
rons represented by the following equations:

xn�t + 1� = f�xn�t�� + yn�t� − gchn
c�t� + gehn

e�t� ,

�3�
yn�t + 1� = yn�t� − ��xn�t� − ��, n = 1, . . . N ,

where chemical and electrical synapses are simply modeled
as follows:

hn
c�t� = �

1

N

�nm
c �xm�t� − �� , �4�

hn
e�t� = �

1

N

�nm
e �xm�t� − xn�t�� . �5�

In these equations, the fast and slow variables of the nth
neuron are represented by xn and yn, respectively. We con-
sider chemical synapses to be inhibitory with gc�0, and
electrical coupling to be diffusive with ge�0, obtaining a
minimal configuration based on previous studies.8,11,18 Coef-
ficients �nm

c and �nm
e take values of 1 or 0 depending on

FIG. 2. �a� Phase diagram of the Rulkov model �Ref. 7� including the
silence, bursting, and tonic spiking regimes. The boundary separating the
silence and bursting regimes is given by the Neimark-Sacker �NS� bifurca-
tion curve. The other Neimark-Sacker bifurcation and the period-doubling
�PD� bifurcation curves are also depicted by the dashed lines. �b� The sets of
points specified by �x ,�� at the saddle-node �SN� and period-doubling �PD�
bifurcation points as y is varied in the fast subsystem of the Rulkov model.
The dashed curves indicate the branches of fixed points at fixed values of y.
whether or not there exists chemical and electrical coupling,
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respectively, between neurons n and m. We study networks
where chemical and electric couplings are combined, mean-
ing that electrical synapses are accompanied by chemical
synapses; therefore, all chemical synapses are assumed to be
formed with neighbors like electrical synapses. This assump-
tion greatly simplifies the analytic treatment of the problem.

With this configuration, burst firing of a neuron induces
a current which reduces the potentials of the postsynaptic
neurons through the inhibitory chemical coupling. It should
be noted that the chemical coupling term is negligible during
a resting phase because the threshold value � is assumed to
be close to the level of the resting potential. The difference
of potentials between connected neurons also generates a
current flow injected from a neuron with a high voltage into
a neuron with a low voltage through the diffusive electrical
coupling. This modeling of coupling is analogous to that
usually found in ODE-based systems and enables the map-
based model to reproduce similar network behaviors. This is
because the map-based model is derived from an ODE-based
model by a difference scheme such as the Euler method,
rather than a reduction method with Poincaré sections.

In the rest of the paper, the Rulkov model and the cou-
pling scheme we have presented are used with the following
parameter values: �=4.3, �=−2.5, and �=0.001.

III. LINEAR ANALYSIS OF BURSTING

In this section we investigate the mechanism that gives
rise to in-phase and antiphase bursting patterns in networks
of map-based neurons, and how network parameters separate
these two regimes. The analysis performed also specifies the
parameter region where bursting appears as an emergent
property of the network.23 In this region we observe com-
plex, aperiodic activity patterns similar to those found in real
networks, even though our models are perfectly regular and
homogeneous. Such patterns will be investigated in the next
section.

Figures 3 and 4 illustrate the two fundamental modes of
synchronization that lie in the basis of more complex pat-
terns. Figure 3 shows the in-phase synchronization of bursts
in a ring of 32 map neurons coupled with gc=0 and ge	0.
Synchronization arises due to entrainment by the diffusive
coupling term in Eqs. �3�: if the nth neuron is at rest and one
of its two neighbors begins bursting, the additive term of the
fast subsystem of the nth neuron increases largely and its
orbit may cross over the branch of unstable fixed points.
Hence, a neuron which fires a burst triggers the onset of
bursting of its neighbor neurons. The avalanche of synchro-
nous switching yields the synchronized chaotic bursts.7 Burst
synchronization indicates a coincidence of the beginning and
the end of each burst,12 while spikes inside each burst need
not be synchronized.

If coupling parameters are gc	0 and ge=0 instead, the
antiphase synchronization shown in Fig. 4 results. In this
case, the fast subsystem of the nth neuron is subtractively
affected by its two neighbors through the inhibitory coupling
in Eqs. �3�. If any of the neighbors of the nth neuron begins
bursting, the nth neuron is pushed to its resting state, because
a significantly negative value of the coupling term forces its

orbit to cross the branch of the stable fixed points in the fast
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subsystem. When the neighbors switch to a resting state, the
nth neuron is driven to a bursting state due to a large increase
in the coupling term. Hence, any two neighbor neurons al-
ways take different phases and fire bursts alternately.

The difference of orbital motions between these two syn-
chronous patterns can be confirmed in the projections of the
orbits illustrated in Fig. 5. The vertical and horizontal dashed
lines, indicating xi=� and xj =�, roughly separate the projec-
tion plane into four regions according to whether each neu-
ron is resting or bursting. In the regime of in-phase synchro-

FIG. 3. In-phase synchronization of bursts computed in a ring with N=32,
�=−1.5, gc=0, and ge=0.05. �a� Spatiotemporal patterns in a raster plot.
The bursting and resting phases are indicated by black and white, respec-
tively. �b� Time series of the fast variables of 8 neurons in the network.

FIG. 4. Alternating rhythmic bursting computed in a ring with N=32,
�=−1.5, gc=0.05, and ge=0. �a� Spatiotemporal patterns in a raster plot.
The bursting and resting phases are indicated by black and white, respec-

tively. �b� Time series of the fast variables of 8 neurons in the network.
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nization, the fast variables of any two neurons are almost
identical when at rest, while they seem to be uncorrelated
during a bursting phase as shown in Fig. 5�a�. A typical orbit
moves during a resting phase along the two-dimensional
invariant subspace 
 where x1=x2= ¯ =xN and y1=y2

= ¯ =yN, corresponding to the diagonal in the projection
picture. It should be noted that 2N states are potentially qua-
siattracting because of the bistability of each fast subsystem.
Conversely, in the regime of antiphase synchronization a
neuron is bursting while its neighbors are resting and vice
versa, as shown in Fig. 5�b�. In this regime, orbits near 
 are
repelled transversely, exhibiting transitions between the two
states away from the invariant subspace. Therefore, it is the
local stability of 
, influenced by the coupling parameters,
that decides which of the two different regimes will emerge.

We now formalize and extend the previous intuitive
analysis by investigating the stability of the invariant sub-
space 
 with the help of master stability functions.27 The
Jacobian matrix of Eqs. �3� at a point on 
 where xi=r for
1� i�N can be written in the following compact form:

J = IN � F + G � H , �6�

where IN is the N�N identity matrix,

H = �1 0

0 0
�, F = � f��r� 1

− � 1
� ,

and G=−gcc+gee, c and e being the adjacency matrices

FIG. 5. Projections of orbits of the synchronized bursts in the ring network.
�a� An orbit moves along the diagonal during a resting phase in the in-phase
case where gc=0 and ge=0.05. A similar picture is observed for any two fast
variables �xi ,xj� where i� j; �b� An orbit exhibits transitions between the
two out-of-diagonal states in the antiphase case where gc=0.05 and ge=0. A
similar picture is observed for fast variables of any two neighbor neurons
�xi ,xj� where �i− j�=1.
of the graphs of chemical and electric connections
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0 �12

c
¯ �1N

c

�21
c 0 ¯ �2N

c

] � ]

�N1
c �N2

c
¯ 0


 ,

e =	
− �

i�1
�1i

e
�12

e
¯ �1N

e

�21
e − �

i�2
�2i

e
¯ �2N

e

] � ]

�N1
e �N2

e
¯

− �
i�N

�Ni
e 
 .

Now, since all neurons are identical in 
, the matrix F is the
same for all of them, IN � F is block identical, and diagonal-
ization of the Jacobian J is achieved by simply diagonalizing
the connectivity matrix G. We obtain then a block diagonal
matrix, with each block �2�2� given as follows:

Mk = F + skH, k = 0, . . . ,N − 1, �7�

where sk are the eigenvalues of G. In this way the influence
of the network topology on stability is clearly separated from
that of the intrinsic neuron dynamics. In the case of a ring, G
is a circulant matrix; its eigenvalues are easily obtained as

sk = − 2�ge − � cos k�� , �8�

where �=2� /N and �=ge−gc. All eigenvalues are therefore
in the interval between −2�ge−�� and −2�ge+��. If the net-
work is a lattice with a 4-neighborhood as the product of two
rings, eigenvalues sk of G similarly spread in the interval
between −4�ge−�� and −4�ge+��. In any case, by restricting
ourselves to symmetric coupling, all sk are real.

The eigenvalues of the complete system are now ob-
tained from each block in Eq. �7� as follows:

�k±�r� =
f��r� + 1 + sk ± ��f��r� − 1 + sk�2 − 4�

2
. �9�

If ��k±�r���1 for all k, the invariant subspace 
 is stable
around xi=r, i=1, . . . ,N. Otherwise, the behavior near 
 is
dominated by the eigenvectors corresponding to the �k± with
the maximum absolute value.

A contour plot of the maximum absolute values of the
eigenvalues �k± as a function of r and sk in logarithmic scale
is useful to visualize these features. Such plot is universal in
the sense that it is completely determined by the neuron
model. For any network topology we only have to position
the points corresponding to the eigenvalues sk of G �e.g.,
those given in Eq. �8� in the case of a ring� and the value of
r under study, to see which modes are unstable to what de-
gree and how stability depends on coupling parameters.

Figure 6 shows this kind of plot for the particular case of
a ring of 6 neurons, in two different cases with �	0 and �
�0. The solid contour is the boundary of stability; points to
the right of this curve have eigenvalues of modulus greater
than 1 for the complete system. For any given r, the eigen-
values sk of G given by Eq. �8� are distributed along the

horizontal segment with endpoints at −2�ge±��. In other net-
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works with symmetric matrix G, eigenvalues would be simi-
larly distributed along a different segment. In all cases, the
rightmost point in the segment will have the largest eigen-
value and therefore will be the dominant mode near 
. Thus,
in Fig. 6�a� where �	0, the rightmost mode corresponds to
s0, whose eigenvector V0 is parallel to 
. Whenever this
mode lies in the unstable region as in the case of r=−1.6, a
typical orbit near the invariant subspace 
 is repelled in the
direction tangent to 
. Therefore, the presence of a reinjec-
tion mechanism into the vicinity of 
 forces orbits to iterate
transitions between the bottom-left region and the upper-
right region on the projection plane as shown in Fig. 5�a�. On
the other hand, in Fig. 6�b� where ��0, the rightmost domi-
nant mode corresponds to s3, whose eigenvector V3 is per-
pendicular to 
. Thus, whenever this mode lies in the un-
stable region as in the case r=−1.6, an orbit with a small
perturbation apart from 
 is repelled in the direction trans-
verse to 
. Therefore, the absence of a reinjection mecha-

FIG. 6. Contours of constant logarithm of the modulus of the maximum
eigenvalue of the complete system at the invariant subspace 
 as a function
of r and the eigenvalues of the connectivity matrix, sk. The solid line is the
boundary of stability. Circles represent eigenvalues of the connectivity ma-
trix for a ring of N=6 neurons; the eigenvector of mode s0 is parallel to 
,
while that of mode s3 is transverse to it and corresponds to a � phase shift
between neighbor neurons. �a� �	0 with gc=0 and ge=0.05. �b� ��0 with
gc=0.05 and ge=0.
nism into 
 leads to the rapid transitions between the
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bottom-right region and the upper-left region on the projec-
tion plane, as shown in Fig. 5�b�.

The previous discussion is valid for any ring or lattice,
or indeed for any regular network with combined electric and
chemical connections such that e=c−dIN, where d is the
degree of the network. Whenever �	0, the dominant eigen-
value corresponds to the unique eigenvector parallel to 

and produces in-phase synchronization, while with ��0
dominant eigenmodes are transverse to 
 and produce alter-
nating burst patterns whose complexity depends on the di-
mension of the corresponding eigenspace.

Whether these bursts develop into a homogeneous state
of the whole network or give rise to traveling patterns de-
pends on global characteristics of the system. Patterns are
particularly interesting in the emergence region,23 where
bursting appears for values of � where isolated neurons
would remain silent. The following analysis allows us to
determine the emergence region. For the whole network to
be silent, the unique fixed point of Eqs. �3�, satisfying

x1 = x2 = ¯ = xN = � , �10�

y1 = y2 = ¯ = yN = � − f��� + dgc�� − �� , �11�

must be stable, that is, in the master stability diagram all the
sk must lie to the left of the stability boundary when r=�. In
the case of isolated neurons, sk=0 for all k. Therefore, the
necessary and sufficient condition for emergent bursting is
that some sk	0, which is equivalent to ��0 in the networks
we study. The lower �, the broader the emergence region for
�. In the case of a ring, where we have simple analytic
expressions for the sk in Eq. �8�, the boundary of emergent
bursting that corresponds to the subcritical Neimark-Sacker
bifurcation of the stable fixed point turns out to be given for
��0 as follows:

� = − �1 − � − s�N/2���1 + �2�2/2� . �12�

The dependence of this boundary on coupling parameters
and the number of neurons in the ring is shown in Fig. 7. For
fixed ge and N, the emergence region becomes larger with
increase of gc as expected and shown in Fig. 7�a�. The num-
ber of neurons influences the size of the emergence region
because s�N/2�=2�gc−2ge� for even N while s�N/2�=2��gc

−ge�cos�� /2�−ge� for odd N. Thus, for fixed gc and ge, the
size of the emergence region is constant for even N, while
for odd N it approaches the constant value in the case of even
N with increasing N as shown in Fig. 7�b�.

IV. COMPLEX PATTERNS AS CHAOTIC ITINERANCY

Possible roles of chaos in the brain have been discussed
with the aid of some concepts of nonlinear dynamics to ob-
tain a picture of dynamical and adaptive information pro-
cessing by neuronal populations.28 Among these concepts,
chaotic itinerancy, which describes chaotic transitions of a
trajectory among nearly ordered motions around Milnor’s
attractors,26 has been proposed as a mechanism for memory
association, with each ordered motion corresponding to a
memory and the itinerant transitions representing their dy-

namical associations. This contrasts with the similar concept
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of winnerless competition, where information is retrieved not
from the attractors themselves but from the movement along
heteroclinic orbits dependent on input stimuli17 giving rise to
sequential switching among the different equilibria.

Characterization of chaotic itinerancy in a network of
coupled ODE-based neuron models has been done recently25

with the analysis of a collective pattern consisting of chaotic
alternations between synchronized and desynchronized
states. This transient motion can be responsible for dynamic
changes of functional roles in cell assemblies. It has been
suggested that the spatiotemporal activity of neural assem-
blies at the mesoscopic level may be responsible for higher-
level functions such as memory, perception, and cognition. A
similar analysis of transient activities is performed in this
section in the networks of map-based models represented by
Eqs. �3�, and, although no precise mathematical definition of
the concept has been agreed upon yet, we show that dynamic
properties such as convergence of Lyapunov exponents and
persistence of correlations point towards chaotic itinerancy.

We consider network dynamics in the parameter range of
emergent bursting already discussed. We concentrate on a

FIG. 7. �a� Effect of the coupling parameters on the size of the emergence
region in a ring. The solid line indicates the boundary for uncoupled neu-
rons. The dashed lines indicate the boundaries for different values of gc,
where ge=0 and N is even. �b� Effect of the number of neurons for the size
of the emergence region. The dashed lines indicate the boundaries for dif-
ferent values of N, where gc=0.05 and ge=0.
ring network, where propagation of bursts is most easily

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



013113-7 Synchronization and propagation of burst Chaos 16, 013113 �2006�

Do
characterized; similar phenomena appear in the emergence
region of lattices. We change the value of the parameter �,
fixing the coupling at gc=0.02 and ge=0 with ��0. Alter-
nating rhythmic bursting is observed at �=−1.6 as shown in
the previous section. As � is decreased, the alternating
rhythm is gradually lost and instead a complex pattern sets in
as shown in Fig. 8. Figure 8�a� shows that the resting phases
are predominant over the bursting phases; the average burst-
ing rate declines with decreasing �. The network behavior
appears rather irregular temporally, as can be appreciated by
the variety of interval lengths between two consecutive
bursts. Nevertheless, it seems to include local spatiotemporal
characteristics such as propagations of bursts as shown in
Fig. 8�b�. Further decrease of � results in a pattern consisting
of irregular transitions between nearly synchronous and
propagating bursts as shown in Fig. 9�a�. The synchronized
long plateaus stem from slow motion of an orbit in the vi-
cinity of the invariant subspace 
. Figure 9�b� clearly illus-
trates a transition from a regime of propagating bursts to a
regime of synchronous bursts. The interval length between
two consecutive synchronized bursts roughly grows as � ap-
proaches the bifurcation point beyond which the network
turns silent.

The symmetry of the ring plays a key role in understand-
ing the complex spatiotemporal patterns. According to the
studies on rings of coupled identical oscillators,29,30 standing
and rotating waves are typically induced by destabilization
of a steady state on the synchronization manifold. Several
branches of solutions are generated by a degenerated Hopf
bifurcation due to symmetry breaking. It should be noted that
this property originates from the network configuration re-
gardless of the dynamics of individual oscillators. Although
the instability of the steady state is induced by a Neimark-

FIG. 8. Complex patterns including propagations of bursts in a ring com-
puted with N=32, �=−1.65, gc=0.02, and ge=0. �a� Spatiotemporal patterns
in a raster plot. The bursting and resting phases are indicated by black and
white, respectively. �b� Time series of the fast variables of 8 neurons in the
network.
Sacker bifurcation of a fixed point in our case, several
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branches of solutions are still expected to emerge from the
singular point. Figure 10 illustrates transient behaviors cor-
responding to chaotic standing and rotating waves. Figure
10�a� shows a transversally unstable solution confined in the
four-dimensional invariant subspace where �x1 ,y1�= �x3 ,y3�
= ¯ = �xN−1 ,yN−1� and �x2 ,y2�= �x4 ,y4�= ¯ = �xN ,yN�. This
pattern suggests that chaotic standing waves as shown in Fig.
10�b� can be understood as iterations of escape from and
entry into nearly synchronized resting phases. Figures 10�c�
and 10�d� illustrate clockwise and anticlockwise propaga-
tions of bursts corresponding to chaotic rotating waves. Fur-
thermore, those corresponding to fast rotating waves can also
be found as shown in Figs. 10�e� and 10�f�. In this way, a
complex pattern as shown in Figs. 8 and 9 can be viewed as
switching over several modes of waves such as those exem-
plified above.

In order to characterize the change of the complex spa-
tiotemporal patterns with variation of �, we investigate the
degree of orbital instability by estimating the Lyapunov ex-
ponents. The Lyapunov exponents can be calculated by con-
sidering expanding and contracting rates in each direction of
orthonormal vectors along the time evolution of orbits. Fig-

FIG. 9. Complex pattern consisting of transitions between synchronous and
propagating bursts in a ring computed with N=32, �=−1.69, gc=0.02, and
ge=0. �a� Spatiotemporal patterns in a raster plot. The bursting and resting
phases are indicated by black and white, respectively. �b� Time series of fast
variables of 8 neurons in the network.
ure 11 shows the variation of the Lyapunov dimension DL
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indicating the effective dimension of an attractor and the
topological dimension DT. For a system with Lyapunov ex-
ponents �i�i=1,2 , . . . �, the Lyapunov dimension is defined as
DL= j+�i=1

j �i / �� j� where �i��i+1 for all i, and j is the inte-
ger such that �i=1

j �i�0 and �i=1
j+1�i�0.31 The topological di-

mension DT is given as the number of non-negative
Lyapunov exponents. Hence, the dimension gap between DL

and DT approximately represents the number of negative ex-
ponents with very small absolute values. The dimension gap
is large because the slow dynamics is neither expanding nor
contracting. The declining dimensions with decrease of �
imply that the average bursting rate falls with the promi-
nence of lower-dimensional states where the number of si-
multaneously bursting neurons is relatively small.

FIG. 10. Examples of transient ordered motions found in a ring where N=3
in a four-dimensional invariant subspace; �b� nearly synchronized bursts corr
clockwise and �d� counterclockwise rotating waves; �e� and �f� propagating b

FIG. 11. Variation of the Lyapunov dimension DL �filled box� and the topo-
logical dimension DT �open circle� with change of � where N=32, gc

=0.02, and ge=0. The large number of dimension gap given by DL−DT

implies that an attractor is distributed over a wide range in phase space.

Both dimensions are zero for the steady state.
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Figure 12 shows time evolutions of the computation of
the largest Lyapunov exponent for different values of �. The
slow convergence implies that an orbit exhibits transitions
among states with various dimensions. The network of
coupled bursting neurons has 2N quasiattracting states ac-
cording to whether each neuron is bursting or resting. In fact,
they include a wide variety of motions from a low-
dimensional ordered motion such as a synchronized resting
state to a highly developed chaotic motion such as a synchro-
nized bursting state. The convergence of the largest
Lyapunov exponent becomes slower as � approaches the
transition point to the silence regime. We also calculate the
autocorrelation and the cross correlation of the time evolu-
tion of the x components as shown in Figs. 13�a� and 13�b�.

=−1.69, gc=0.02, and ge=0: �a� a solution with synchronized resting states
ding to standing waves; �c� and �d� propagating bursts corresponding to �c�

corresponding to �e� clockwise and �f� counterclockwise fast rotating waves.

FIG. 12. Slow convergence of the largest Lyapunov exponent for orbits in
the parameter region where bursting is emergent. The parameters are set at
N=32, gc=0.02, and ge=0. The convergence becomes slower as � ap-
2, �
espon
ursts
proaches the bifurcation point.
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The correlations do not decline exponentially but keep fluc-
tuating over a long period of time. This characteristic implies
a spatially ordered but temporally irregular structure. There-
fore, an orbit exhibits history-dependent transitions in the
complex patterns.

Chaotic itinerancy in coupled identical chaotic systems
often corresponds to orbital motion near an invariant sub-
space including a Milnor attractor.26 Although we have not
proved that the ordered components of the complex itinerant
patterns studied in this section are localized attractors in Mil-
nor’s sense, we have seen that they possess some character-
istics of chaotic itinerancy such as the transitions among or-
dered global behaviors, relatively many near-zero Lyapunov
exponents, the long-term persistence of correlations, and the
slow convergence of the largest Lyapunov exponents.26,32

Therefore, the complex phenomena found in the ring of map-
based neurons can be considered as chaotic itinerancy analo-
gously to the chaotic alternations between synchronized and
desynchronized states and between metachronal waves in
networks of ODE-based neuron models.25

V. CONCLUSION

We have investigated regular and complex spatiotempo-

FIG. 13. Long-term sustainment of the correlations between neurons where
N=32, �=−1.69, gc=0.02, and ge=0: �a� autocorrelation of the first neuron;
�b� cross-correlation between the first neuron and the 17th neuron.
ral dynamics in networks of coupled map-based neurons
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with chaotic bursts. These networks are capable of reproduc-
ing two typical regular patterns, i.e., in-phase and antiphase
synchronization of bursts. We have shown through linear sta-
bility analysis how the coupling parameters corresponding to
chemical and electrical synapses determine the type of syn-
chronous pattern. The direction in which an orbit in the vi-
cinity of the invariant subspace is repelled and the presence
of reinjection mechanism towards it determines the global
dynamics. We have also focused on the complex dynamics of
the network in the parameter region where bursting is emer-
gent due to the coupling. We have demonstrated that these
complex patterns are made up of chaotic transitions between
nearly synchronous and propagating bursts. According to the
bifurcation theory in symmetrical dynamical systems,29 the
transient ordered motions may correspond to chaotic stand-
ing and rotating waves generated by symmetry-breaking
Neimark-Sacker bifurcations. Further, we have demonstrated
characteristics of the complex patterns, suggesting that they
can be considered as chaotic itinerancy.

The networks we have used may be seen as oversimpli-
fied due to the constraints imposed to make them amenable
to general analytic treatment. Some studies consider hetero-
geneous neural networks with more general coupling and
reproduce more realistic irregular behaviors. However, even
the homogeneous network with symmetrical combined cou-
pling studied in this paper can exhibit complex spatiotempo-
ral patterns due to the chaotic dynamics inherent in the indi-
vidual map-based neurons and thanks to symmetry-breaking
bifurcations. Therefore, it is still an important problem to
clarify whether the complexity of the spatiotemporal patterns
exhibited by neuronal populations is due to irregularity of the
individual neurons or heterogeneity and asymmetry of neural
networks. Another interesting problem is the development of
a theory on pattern formation through symmetry-breaking
Neimark-Sacker bifurcations with their normal forms.
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