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We propose a method for the design of electronic bursting neurons, based on a simple conduc-
tance neuron model. A burster is a particular class of neuron that displays fast spiking regimes
alternating with resting periods. Our method is based on the use of an electronic circuit that
implements the well-known Morris–Lecar neuron model. We use this circuit as a tool of analysis
to explore some regions of the parameter space and to contruct several bifurcation diagrams
displaying the basic dynamical features of that system. These bifurcation diagrams provide the
initial point for the design and implementation of electronic bursting neurons. By extending
the phase space with the introduction of a slow driving current, our method allows to exploit
the bistabilities which are present in the Morris–Lecar system to the building of different bursting
models.
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1. Introduction

Nowadays the interface between electronic circuits
and biological systems is attracting a great deal
of research due to the enormous variety of poten-
tial applications of electronic devices to the gen-
eral field of biomedical sciences. Even a connection
of an electronic circuit with biological neurons is
now possible [Lemasson et al., 1999; Szûcs et al.,
2000]. As a consequence of this fact, new disciplines

such as biomedical engineering or bionics are reviv-
ing. From a theoretical viewpoint, the modeling
of neurons is becoming more and more accurate,
and the electrical behavior of neurons is well repro-
duced at a quantitative level by the increasingly
complex mathematical models that are used in
Computational Neuroscience. In this context, the
modeling of neurons by means of electronic cir-
cuits is a steady growing field that presents rich
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potentialities for the design of specific hardware
that is able to display some useful characteristics
for the processing of information in real time.

Experimentation on real neurons is a hard and
expensive task, nevertheless part of these difficul-
ties can now be solved to some extent with the
help of artificial neurons. Computational neurosci-
entists can profit from the use of electronic devices
as a tool for the exploration in real time of the
behavior of neuron models [Horio & Aihara, 2002;
Kohno & Aihara, 2005]. As a consequence, a net-
work of artificial neurons can be emulated this way
and tested in a real time environment. The devices
connecting such circuits with biological neurons are
called hybrid networks [Zeck & Fromherz, 2001;
Simoni et al., 2004], and the achievements of these
tools in the biomedical sciences are immense. Artifi-
cial vision and audition [Vanschaik, 2001] or spinal
cord stimulation for hemiplegic patient are some
examples.

In this paper we propose an electronic imple-
mentation of a simple model of the giant barna-
cle muscle fiber developed by Morris and Lecar
[1981]. The Morris–Lecar model is a characteris-
tic example of a simple dynamical system present-
ing a rich and wide variety of dynamical behaviors
(see for instance [Morris & Lecar, 1981] and [Rinzel
& Ermentrout, 1989]). It uses only two dynamical
variables to describe the state of the neuron and
thus allows us a straightforward observation of the
phase plane. In fact, with the help of an oscillo-
scope it is possible to visualize the attractors in real
time. Moreover, depending on the parameters of the
model, it presents Hopf (subcritical and supercrit-
ical), saddle-node and tangent bifurcations which
can be easily observed. By examining these bifur-
cations, when two parameters are varied, we can
observe some interesting codimension-2 bifurcations
taking place in the system. A similar experimen-
tal work with electronic circuits has been achieved
by [Binczak et al., 2003] with a modified Fitzhugh–
Nagumo neuron model and in [Patel et al., 2000]
in which a bifurcation diagram varying only one
parameter for the Morris–Lecar neuron model is
carried out. The phase plane of the Morris–Lecar
model has been extensively explored in [Tsumoto
et al., 2006] with bifurcation analysis and numeri-
cal simulations. This paper investigates the bifurca-
tions in a five-dimensional space. Nevertheless the
method proposed here is experimental.

We have analyzed the Morris–Lecar phase
plane to develop a method to obtain bursting

behavior. Bursters are a class of neurons which
are present in many areas of the brain and whose
autonomous activity displays periods of fast spik-
ing alternated with resting or silent intervals. Fur-
thermore, an external current can modulate the
bursting response of those neurons and the coupling
between bursters can lead to very complex synchro-
nization patterns [Casado et al., 2004].

The rather complex behavior of a burster is
due to the coexistence of multiple attractors so that
the phase point passes through a succession of dif-
ferent pseudo-attractors as it traces a closed orbit
through the phase space [Chay et al., 1995]. By
finding out regions showing bistable behavior in the
Morris–Lecar model, we can construct a great vari-
ety of bursters [Izhikevich, 2000]. To do that, we
take advantage of the hysteretic behavior of the
system, leading to paths in the phase plane that
are different depending on the way the parameter is
varied. In our case the fundamental control param-
eter will be an external excitatory current delivered
to the neuron. By choosing an appropriate dynam-
ics for this current we can allow the system to hop
between coexisting states thus giving rise to burst-
ing activity patterns. In [Tsuji et al., 2004] a design
of a burster neuron based on the FitzHugh–Nagumo
model has been proposed, where an external forc-
ing current is applied so that the model exhibits
bursting activity. The parameters of the perturba-
tion are based on the analysis of a two-parameter
bifurcation diagram. In our work, since the excita-
tion current is an internal variable of the system, the
burster is autonomous. As examples of our method-
ology we present a square wave (or fold/homoclinic)
burster, an elliptic (sub-Hopf/fold cycle) burster
and a cycle/fold burster, all of them obtained from
the dynamics of the Morris–Lecar neuron model
[Izhikevich, 2000].

The organization of the paper is as follow. In
Sec. 2 we present the Morris–Lecar model and its
electronic implementation. The bifurcations of the
circuit are analyzed in Sec. 3. In Sec. 4 we present
a method for the design of electronic bursters and
finally we summarize our results in Sec. 5.

2. The Morris–Lecar Circuit

The Morris–Lecar model was originally developed
as a mathematical model of the giant barnacle mus-
cle fiber [Morris & Lecar, 1981]. It pertains to the
class of the so-called conductance models and uses
a calcium current, a potassium current and a leaky
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ohmic current to phenomenologically describe the
behavior of the muscle fiber. As the dynamics of
the calcium channels is much faster than that of
the potassium channels, we will consider the for-
mer always in the equilibrium state, thus reducing
the model to the following system of two first order
differential equations:

C
dVm

dt
= −g∗CaM∞(Vm)(Vm − VCa)

− g∗KN(Vm − VK)
− gL(Vm − VL) + I (1)

dN

dt
= λN (Vm)(−N + G(Vm)), (2)

where Vm is the membrane voltage, N is the activa-
tion variable of the slow potassium channels, and I
is an external tonic current delivered to the neuron.
Notice the voltage dependence on Vm of the time
constant λN in Eq. (2), where its expression takes
the following form:

λN (Vm) =
1
φ

cosh
(

Vm − V3

2V4

)
. (3)

On the other hand, g∗Ca and g∗K are the maxi-
mal conductances of the calcium and potassium
channels, respectively, and gL is a constant leak
conductance. The conductances of the potassium
and calcium channels vary in a sigmoidal way
with the membrane voltage Vm. This dependence
is introduced by the following functions M∞(V )
and G(V ):

M∞(V ) = 0.5(1 + tanh
(

V − V1

V2

)
, (4)

G(V ) = 0.5(1 + tanh
(

V − V3

V4

)
, (5)

where V1, V2, V3 and V4 will be considered as
adjustable parameters .

As many other mathematical systems describ-
ing the electrical activity of the nerve membrane,
a strategy based on the use of electronic circuits
is well suited to implement its dynamical behav-
ior. The above set of equations can be represented
in a block diagram as shown in Fig. 1(a). This fig-
ure represents the equations of the model schemati-
cally and it will be the basis of the electronic circuit
design that is presented in Fig. 1(b). In this figure
we can see the three ionic currents which are gener-
ated by using the feedback of the voltage membrane
Vm into the functional blocks. The calcium current
has only one element, the sigmoidal shaped function

G(V ), whereas the potassium channel includes an
integrator for the slow dynamics of this channel
and also the variable time constant which depends
on Vm. That means that the channel does not open
and close instantaneously as the calcium channel
does, but rather gradually, with a certain inertia.
From the viewpoint of the electronics, this means a
first order filter. These three currents are summed
up and fed into an integrator to generate the mem-
brane voltage.

In order to further reduce the complexity of the
model we can make a strong approximation. Equa-
tion (2) representing the dynamics of the potassium
channel includes a voltage-dependent time constant
λN (Vm). Implementing this parameter in the elec-
tronic circuit represents a difficulty. The hard point
is to construct a voltage controlled resistor in order
to modify the value of the time constant of a
RC filter (or the first order filter). These compo-
nents are mainly nonlinear and they introduce noise
and undesirable harmonic components. Further-
more, this time constant has a complex influence in
the equation. Nevertheless, when this function is set
to a constant, the Morris–Lecar system of equations
still exhibits interesting features like a Hopf bifur-
cation and spiking capabilities. Based on this obser-
vation we have reduced the original set of equations
to a new set given by

C
dVm

dt
= −g∗CaM∞(Vm)(Vm − VCa) − g∗KN(Vm

−VK) − gL(Vm − VL) + I, (6)

dN

dt
= τ−1(−N + G(Vm)), (7)

with the same functions G(Vm) and M∞(Vm) as in
Eqs. (4) and (5). Here the parameter τ has a con-
stant value, that is, it does not depend on voltage.
This parameter has a critical role in the stability
of the system because the Jacobian matrix of the
linearized system around an equilibrium point has
its eigenvalue depending on the parameter τ .

The proposed circuit is displayed in Fig. 1(b). It
uses mainly linear components except for the analog
multipliers and diodes. With this circuit we can now
describe the experiments. The main logical blocks
are delimited by dashed lines. The calcium block is
made of a sigmoidal function, implemented with pn
diodes, an operational amplifier, and an amplifier
to adjust the gain and the bias. The output sig-
nal is fed into an analog multiplier (AD633) and
multiplied with the tension Vm. The output of this
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Fig. 1. (a) Block representation of the Morris–Lecar model. We represent the differential equations in a schematic way; blocks
symbolize integrator, gains, transfer functions and multipliers. This logical representation is the basis of the implementation
of the circuit. The blocks representing the ionic currents are delimited by dashed-lines; Eqs. (8) and (9) correspond to the
currents ICa and IK . All the currents are summed and fed into an integrator; the sum of the currents is comparable to Eq. (11).
(b) Electronic scheme of the circuit simulating the Morris–Lecar model. The ionic currents are delimited by red dashed lines
and correspond to the equivalent blocks in Fig. 1(a). The ionic currents ICa, IK and IL are summed and fed into an integrator
so that the output is the membrane voltage Vm of the neuron model. The functions G(V ) and M∞(V ) are implemented with
1n4148 diodes and with UA741 OP-Amps.

block is the current ICa which expression is

ICa = M∞(Vm) × (Vm − VCa). (8)

The potassium current is quite similar, but now we
use an analog integrator (a simple RC circuit). The
expression of the ionic current can be described by
the following two equations:

IK = N(Vm − VK), (9)

dN

dt
= τ−1(−N + G(Vm)). (10)

The last block, the integrator, sums all the ionic
currents and integrate them into a capacitor. The
output of this circuit is the membrane voltage Vm.
Thus, this variable is the solution of the following
differential equation,

dVm

dt
= −IK − ICa − IL + I, (11)

where IL is a simple ohmic leak. In the follow-
ing section we will explore the properties of this
circuit.
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3. Experimental Bifurcation
Diagrams

In this section the equations used for the implemen-
tation of the circuit are slightly different. We have
scaled the voltage in Eqs. (6) and (7) so that the
observation of the voltage variable is made much
easier. The scaling factor is a nondimensional num-
ber α = 0.120. We can give the values of the fixed
parameters that will be used next, unlike other
parameters will be specified in each case: VCa = 1V ,
VK = −0.66V , VL = 0.5V , C = 20µF and
C1 = 1µF .

The experimental setup for the measurements
of the bifurcation diagram is a simple AD/DA con-
verter board. For a fixed set of parameters we con-
struct the bifurcation diagram as a function of a
varying external current. We slowly increase the
current and observe the changes of the membrane
voltage Vm.

In Fig. 2(a) we plot the maxima and minima
of the membrane voltage to visualize the oscillatory
behavior and stable states of the system. In this fig-
ure there appears a saddle-node bifurcation on an
invariant cycle (point SN), a subcritical Hopf bifur-
cation (point HP) and a limit cycle (the spiking
regime of the neuron), for clarity we schematically
draw the corresponding three-dimensional phase
space (N , Vm, I) in Fig. 2(b). By collecting a great

amount of these diagrams varying only one param-
eter and joining these one-dimensional diagrams
in a two-parameter plot we can visualize how the
bifurcations in the system evolve when a param-
eter is varied. Due to the complexity of the whole
high-dimensional bifurcation diagram, we have used
two-dimensional diagrams with one axis being I
and the other one being another parameter of the
model.

We have chosen three types of bifurcation dia-
grams which exhibit interesting features, (a) I − V3

plane, where V3 is the activation threshold of the
potassium channel, (b) I−V4 plane, where V4 is the
slope of the activation function for the potassium
channel and, (c) I − τ plane, where τ is the time
constant of the potassium channel. These parame-
ters have a big influence on the model behavior as
we describe below in each case.

3.1. I − V3 diagram

In Fig. 3(a) we have plotted the corresponding
bifurcations observed in the circuit when the param-
eters I and V3 are varied. The different attractors
and behaviors of the model are specified on the
graphics with oscillations and stable nodes. The
bifurcation diagram shows interesting global bifur-
cations, such as a Bogdanov–Takens bifurcation

(a) (b)

Fig. 2. (a) Experimental bifurcation diagram example in one dimension obtained by plotting the maxima and minima of the
membrane voltage Vm as a function of the excitation current I . There we can observe three different attractors: two branches
of stable fixed points, one of them starting from the left and another from the right of the panel, and a stable limit cycle
(spiking behavior) coexisting with them between 0.5 and 1mA. (b) This schematic diagram is the three-dimensional phase
space (N ,Vm,I) which corresponds to the experimental bifurcation diagram in (a). We can observe a saddle-node bifurcation
(SN), a subcritical Hopf bifurcation (HP) and a tangent bifurcation of a limit cycle. The stable branches appear in solid lines
while dashed lines represent unstable branches or unstable limit cycle.
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(BT point on the panel) and a cusp bifurcation close
to it. In fact, these two bifurcations are so close that
at the selected scale they cannot be clearly differen-
tiated. The first one represents the transition from a
saddle-node bifurcation to a subcritical Hopf bifur-
cation, where this last bifurcation always lies near
a cusp bifurcation. The cusp bifurcation appears
when three equilibrium points, a saddle point and
two nodes, collapse. In Fig. 3(b) we have plotted
the bifurcation diagram obtained with the software
XPP-AUTO; we have simulated Eqs. (6) and (7)
with the parameters obtained from the circuit. Both
diagrams are very similar albeit some little differ-
ences in the location of the bifurcations, for exam-
ple, the experimental diagram is shifted left from
0.5 mA in comparison with the numerical diagram.
There are several other differences due to the impre-
cisions and the noise in the circuit. The fine bifurca-
tion structure detailed in Fig. 3(b) is too narrow to
be observed in the circuit. The general aspect and
the bifurcations are conserved which manifest that
the circuit is robust.

In spiking neurons we have basically two types
of excitability. The excitability represents the way
the neurons begin to spike when an external cur-
rent is gradually increased. In the first type of

neurons, the class I neurons, the neuron begins to
spike with an almost zero frequency when the cur-
rent is increased. In the class II neurons, the spik-
ing begins at nonzero frequency. The change in the
excitability of the neuron can be explained con-
sidering these bifurcations. As is well known, the
Morris–Lecar model is able to support both class I
and class II excitabilities. The change from the class
I to class II excitability comes from a Bogdanov–
Takens bifurcation which set the transition from a
saddle-node bifurcation (class I excitability) to a
subcritical Hopf bifurcation (class II). In our cir-
cuit we can control this parameter easily and so we
can switch the type of excitability by only changing
the parameter V3.

3.2. I − V4 diagram

This bifurcation diagram which is shown in Fig. 4
is quite similar to the previous one in its struc-
ture. We observe the same characteristics and the
same Bogdanov–Takens and cusp bifurcations (the
BT bifurcation always lies near a cusp bifurcation).
Moreover, a new type of codimension-2 bifurcation
appears. This is a generalized Hopf bifurcation (also
called a Bautin bifurcation) that corresponds to a
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Fig. 3. (a) Experimental bifurcations in the I −V3 plane. We observe a Bogdanov–Takens bifurcation (BT point) and a cusp
bifurcation close to it. (b) The numerical results obtained from Eqs. (6) and (7) with the XPP-AUTO software. The color used
for the bifurcations are the same as in Fig. 3(a). Both diagrams look very similar despite some differences in the place of the
bifurcations due to the natural errors and distorsions introduced by the circuit. The general aspect is conserved and also does
the type of bifurcations, which manifests that the circuit is robust. We schematize the region of the circle which presents a
complex bifurcation structure. The system in this region displays two homoclinic bifurcations. The first one is the homoclinic
bifurcation of a stable limit cycle along the line H1 and the second is the bifurcation of an unstable limit-cycle along the line
H2. In the shaded region we have a stable limit cycle. The Hopf bifurcation starts with a Bogdanov–Takens bifurcation on
the saddle-node branch. In the inset of the figure we enlarge a part of the subcritical Hopf bifurcation so that the tangent
bifurcation appears. At the selected scale the tangent bifurcation is hard to notice. The numerical simulation and the analog
simulation correspond to the following parameters: τ = 2ms, V4 = 0.2 V, V2 = 0.15 V, V1 = 0 V, g∗K = 8mS, g∗Ca = 4mS and
gL = 2mS.
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Fig. 4. (a) Experimental bifurcations in the I −V4 plane. A Bogdanov–Takens lies in the plain and a cusp bifurcation is close
to it. We found also a generalized Hopf bifurcation which represents the transition from a subcritical to a supercritical Hopf
bifurcation. (b) This diagram represents the numerical simulation of Eqs. (6) and (7) for the same set of parameters. It is clear
that the experimental diagram and the simulated diagram are very similar. Some mismatches between the two diagrams are
due to the nonlinearities and to the experimental noise. The parameters are as follows: τ = 2ms, V3 = 0.06 V, V2 = 0.15 V,
V1 = 0V, g∗K = 8mS, g∗Ca = 4 mS and gL = 2mS.

transition from a subcritical to a supercritical Hopf
bifurcation [Kuznetsov, 1998]. Once again the BT
bifurcation changes the excitability of the neuron.
We have two parameters that permit the control
of the excitability of the model: V3 and V4. As in
Fig. 3 we also present the numerical result for the
same set of parameters in Fig. 4(b). The numerical
simulation obtained with XPP-AUTO agrees with
the experimental diagram in Fig. 4(a). Moreover,
the bifurcations are the same and their positions
in the phase plane are similar in both diagrams.
Some discrepancies appear between the two dia-
grams due to the approximations and the nonlin-
earities in the circuit as well as experimental noise.
Nonetheless the diagram obtained with the circuit
is satisfactory and illustrates well the model.

3.3. I − τ diagram

As it was mentioned before, the parameter τ is very
important for the stability of the system because the
dynamics of the potassium current is crucial to the
stability of the model. It represents the time of repo-
larization of the membrane, or in other words, the
time necessary for the membrane to return to the
resting state after firing of a spike. In fact, by vary-
ing this parameter we can change dramatically the
dynamics of the system. The position in the phase

space of the equilibrium points does not depend on
τ , but the stability of each point is affected by this
parameter. Figures 5(a) and 6(a) show experimen-
tal bifurcation diagrams where we observe bistable
regimes. In Fig. 5(a), we have a big zone of bista-
bility. On one side we have the bistability with a
stable node and a limit cycle, and on the other side
one with two stable nodes (along the line l1). This
particularity can be used for the design of a burster
neuron as we will see next. Figure 5(b) shows the
numerical simulation of Eqs. (6) and (7). This sim-
ulation validates the diagram obtained with the cir-
cuit, and the results are very close.

By modifying the parameter V4 we obtain the
new bifurcation diagram shown in Fig. 6(a). This
diagram displays similar characteristics as the pre-
vious one. The saddle-node bifurcation on the limit
cycle is independent of the parameter τ . In this fig-
ure we have an interesting bistable zone along the
line l2 where a limit cycle and a stable node coexist.
The transition from one to another occurs through a
subcritical Hopf bifurcation and a fold bifurcation.
By using this particularity an elliptic burster can be
constructed as it will be described in the next sec-
tion. Along the line l3 we have a bifurcation pattern
identical to the one shown in Fig. 5(a) along the line
l1. On one side we have a bistability between a limit
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Fig. 5. (a) Experimental bifurcations in the I − τ plane. We have a large bistable zone represented by the coexistence of a
stable node and a limit cycle (spiking behavior) due to a subcritical Hopf bifurcation. (b) This figure is the numerical result
of Eqs. (6) and (7) with the same parameter set. The figures are almost identical but there is a systematic difference in the
place of the bifurcations. The saddle-node bifurcation obtained with the circuit is shifted from 0.3 mA to the right. The black
line marked as H on the diagram is the homoclinic bifurcation of a stable limit cycle, which bifurcation is difficult to observe
in the circuit. This limit cycle region is too narrow. The parameters are as follows: V4 = 0.06 V, V3 = 0.12 V, V2 = 0.15 V,
V1 = 0V, g∗K = 8mS, g∗Ca = 4mS and gL = 2mS.
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Fig. 6. (a) Experimental bifurcations in the I−τ plane. This diagram is very close to Fig. 5(a). In this figure we have changed
slightly the parameters V4 of the model and plot a new bifurcation diagram. We have the bistable zone with a stable node
and a limit cycle, and a new zone appears where a single limit cycle (spiking behavior) is present. (b) The diagram plotted is
the numerical result of the model equations with the same parameters used in the circuit. The two diagrams are very similar,
while some differences appear in the diagram owing to the noise and the nonlinearities present in the circuit. The black line
marked as H on the diagram is the homoclinic bifurcation of a stable limit cycle. This limit cycle region is too narrow to be
observed with the circuit. The numerical values of the parameters are as follows: V4 = 0.1 V, V3 = 0.12 V, V2 = 0.15 V, V1 = 0,
g∗K = 8 mS, g∗Ca = 4mS and gL = 2mS.

cycle and a stable node and on the other between
two stable nodes, although the transition from one
to another in this case occurs through a saddle-node
bifurcation. We have verified also this diagram with

the numerical simulation presented in Fig. 6(b) and
both graphics correspond well.

The bifurcation diagram appearing in Fig. 7(a)
presents a small bistable zone (the small triangle)
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Fig. 7. (a) In this diagram we have a bistable zone with a limit cycle and a stable point. The transition from the limit cycle
to the resting state occurs through a homoclinic connection to an unstable point. We can observe in the insets the different
phase portrait and the attractors of the regions of the bifurcation diagram. The zone of bistability remains very small and is
difficult to find out experimentally. (b) The figure shows the numerical result of Eqs. (6) and (7) with the same parameter set.
The region of bistability in the triangle appears to be larger than in the experimental diagram, but in numerical simulations
the noise is not present. So the region appears greater. The numerical values of the parameters are as follows: V4 = 0.07 V,
V3 = 0.032 V, V2 = 0.15 V, V1 = −0.028 V, g∗K = 8mS, g∗Ca = 2.6 mS and gL = 2mS.

where a stable node and a limit cycle coexist. If
the system is on the stable branch, for example, at
the point 1 on the diagram, when we increase the
external current the attractor changes to a spiking
regime after a saddle-node bifurcation (see point 2).
On the other hand, when the current decreases the
stable limit cycle collapses with a saddle point. The
system describes a hysteresis loop as the trajectory
is different as we increase or decrease the external
current. Although this region of bistability always
remains in a narrow range of parameters it can
be a good candidate for the design of the square
wave burster. The numerical simulation displayed
in Fig. 7(b) with XPP-AUTO matches the result
obtained experimentally. The homoclinic bifurca-
tion seems longer than in the experimental dia-
grams and this region remains small but it is
sufficient for our purpose.

4. The Design of Bursters

The previous experiments are the basis for the
implementation of some models of bursting behav-
ior. Since a burster works by switching between two
(pseudo-)stable attractors (a limit cycle and a sta-
ble node, for example), we have to spot the bistable
zones of the parameter space. Here the previous
experimental work is essential, since we can visually
find out the bistable regimes of the neuron model.

So, the first step is the search for bistable states
where we can switch easily from one attractor to
another by simply varying the external current. In
the previous diagrams we had to look for a bistable
regime along a horizontal line. For example, follow-
ing the line l2 in Fig. 6(a) we have a bistable behav-
ior between a stable node and a stable limit cycle.
When the external current is moved a hysteresis
loop appears between the resting and the spiking
states (Fig. 8).

Fig. 8. Hysteresis loop of the burster. Observe that the sys-
tem switches from a resting state to a spiking regime and
back when the current I is changed. When the system is
in the spiking regime, the current changes so that the state
approaches the edge. As the system crosses the bifurcation on
the edge the system returns to a resting state. The current in
this state changes its direction and the state approaches the
lower edge. The burster oscillates between these two states.
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This hysteresis loop leads to transitions from the
resting state to the spiking regime and back. Once
we have chosen two coexisting states as good candi-
dates for the switching, we introduce a new differ-
ential equation in our system to allow this switching
to take place autonomously. This new equation gov-
erns the slow current I, and is given as follows:

dI

dt
=

1
RaRbC2

(Vm − Vth), RC � τ. (12)

The introduction of the new variable I(t) allows us
to switch the whole dynamics from one attracting
state to another one by a suitable election of val-
ues of Rb and Vth. Observe that now I is really
an “internal” variable of the extended dynamical
system. Equation (12) is implemented by using a
simple operational amplifier in integrator mode. In

order to develop our method, we start by marking
the interesting bistable zone on the bifurcation dia-
gram (horizontal line l1 on Fig. 5(a)) and extracting
the corresponding projection in one dimension (cur-
rent versus amplitude in Fig. 2). Setting the volt-
age threshold Vth in Eq. (12) is a rather difficult
task because the integrated current must decrease
when the burster is spiking and must increase when
the burster is in its resting state. The parameter
is tuned manually so that we obtain the desired
behavior. The resulting waveform of this current for
the square-wave burster is shown in Fig. 9. Notice
that the current I is increasing when 〈Vm〉 (where
〈·〉 holds for the mean value) is above the threshold
and decreasing when it is below Vth. The second
parameter Rb is important for the time constant of
the equation; it determines the speed of the slow

(a) (b)
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Fig. 9. (a) Dynamical behavior of the square-wave burster. The figure represents the bifurcation diagram of the Morris–Lecar
model as a function of I . The bursting regime appears through a fold bifurcation for the passage from the stable node to
the limit cycle and through a homoclinic connection when the cycle loses its stability and gets back to the resting state;
(b) 3D view of the orbit in the space (I,N, Vm). The parameter values are as follows: τ = 0.03 s, V4 = 0.07 V, V3 = 0.028 V,
V2 = 0.15 V, V1 = −0.032 V, g∗K = 8 mS, g∗Ca = 1.38 mS, gL = 2mS, C2 = 1µF , Ra = 4.3 kΩ and Rb = 13.7 kΩ. (c) Time
series of the membrane voltage corresponding to the output of the circuit.
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driving current. If this parameter is set too high,
the oscillations are weak. If the constant is too low
the system can switch to another attractor.

We present in the next sections three differ-
ent kind of bursters whose differences are due
to the bifurcations involved. Biological equivalence
exist for two of the three bursters. The square-
wave behaves like the pancreatic β-cells and the
Hindmarsh–Rose model. The elliptic bursting phe-
nomena have been observed in rodent trigeminal
interneurons.

4.1. Square wave burster
(“fold/homoclinic” burster)

First, we have built the well-known square-wave
(or fold/homoclinic) burster [Izhikevitch, 2000;
Hoppenstead & Izhikevitch, 1997]. This burster

displays oscillations between a stable limit cycle
and a stable node. In Fig. 7(a) we have found a
small region of bistability between an oscillatory
state with an homoclinic connection and a stable
node. If we sketch the behavior of Vm along the line
l4 drawn in Fig. 7(a), a graph similar to the one dis-
played in Fig. 9(a) is obtained. The bistable regime
can be seen on the bifurcation diagram appearing in
Fig. 9(a). Although this bistable regime only occurs
in a narrow range of I we can apply the technique
to this case. Here the transition between the two
states takes place through a fold bifurcation for the
passage from the resting point to spiking activity
and through a homoclinic connection of the saddle
point for the transition from firing to resting.

In Fig. 9(b) we have an example of a
bursting oscillation between two attractors in
the three-dimensional phase space. We also plot the

(a) (b)

(c) (d)

Fig. 10. (a) Bursting behavior of the elliptic burster. The bursting is produced through a subcritical Hopf bifurcation. The
gray shade represents the limit cycle and the solid line the stable state. (b) View of the phase space of the system, the variables
are (Vm, N, I), parameters are as follows: τ = 0.079 s, V4 = 0.07 V, V3 = 0.12 V, V2 = 0.15 V, V1 = 0, g∗K = 8 mS, g∗Ca = 4 mS,
gL = 2mS, Ra = 174, C2 = 1 µF , kΩ and Rb = 10kΩ. (c) Time series generated by an elliptic burster built from the
Morris–Lecar circuit. Observe the growing of the oscillation as the subcritical Hopf bifurcation is approached. (d) Time series
of the current I .
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corresponding time series of the voltage in Fig. 9(c),
where the temporal characteristics of the bursting
are clear.

4.2. Elliptic burster (“subHopf/fold
cycle” burster)

We have simulated also the elliptic burster. Once
again the bistability is the key point. But in this
case the nature of the bifurcation is totally different.
In Fig. 10(b) we have a representation of the oscilla-
tion in the full three-dimensional phase space. The
solid red line corresponds to the trajectory in phase
space. The transition from the resting to the spiking
regime takes place through a subcritical Hopf bifur-
cation and the reverse transition occurs through the
tangent bifurcation where the unstable limit cycle
collapses with the stable cycle. This bifurcation is

also called a “fold cycle”. This kind of behavior can
be seen along the line l2 in Fig. 6(a), where we can
see a bistable region due to the subcritical Hopf
bifurcation. We can configure this system to oscil-
late along the line l2.

In Fig. 10(b) we represent the experimental
phase space, which consists in a three-dimensional
space spanned by the membrane voltage, the cur-
rent and the potassium channel activation. In
Fig. 10(c) we have plotted the time series of the
voltage Vm. Figure 10(d) depicts the variation of
the excitation current.

4.3. “Circle/fold cycle” burster

This kind of bursters is slightly different from the
previous one. There are three different transitions.
We have drawn the line l3 in the bifurcation diagram

(a) (b)

(c) (d)

Fig. 11. (a) Dynamical behavior of the circle/fold burster. The transition from the resting to the oscillatory state is made
through a saddle-node bifurcation on a limit cycle. The cycle collapses by a fold bifurcation and the system remains in a stable
state until it returns to the resting state through a subcritical Hopf bifurcation. (b) Experimental measurement of the attractor
as viewed in the three-dimensional phase space (Vm, N, I). The parameter values are as follows: τ = 0.026 s, V4 = 0.07 V,
V3 = 0.12 V, V2 = 0.15 V, V1 = 0, g∗K = 8 mS, g∗Ca = 4mS, gL = 2mS, C2 = 1 µF , Ra = 4.3 kΩ and Rb = 10kΩ. (c) Time
series of Vm. (d) Time series of the current I .
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in Fig. 6(a). Along this line we have some differ-
ent bistable states. First, we observe the bistability
with two stable nodes and then with a stable node
and a stable limit cycle.

The bursting starts after a saddle-node bifur-
cation on a limit cycle. The electric current keeps
increasing until the tangent bifurcation (the fold-
cycle bifurcation) takes place and then the system
gets back to a new stable node. The current is
now decreasing and is reduced until the subcritical
Hopf bifurcation occurs. Once this bifurcation is
crossed the system returns to the first stable state
and the cycle starts over. We summarize this com-
plex behavior in Fig. 11 where we can clearly see
how the sequence of attractors is followed by the
dynamical system. In panel (a) we have plotted a
schematic view of the phase space. In (b) a view of
the experimental attractor in the three-dimensional
phase space is depicted, panel (c) shows the tempo-
ral evolution of the membrane voltage as the system
carries out some cycles of bursting.

5. Conclusions

We have designed and built a circuit that approx-
imates the main dynamical regimes of the well-
known Morris–Lecar neuron model. By analyzing
the behavior of this system in the phase space in
terms of some parameters of the model we have been
able to obtain different bursting behaviors where
each one of them is characterized by the visiting of
a particular succession of attractors of the subsys-
tem by the evolving phase point. Thus, our strat-
egy provides a method to investigate the features
of relatively simple dynamical systems giving rise
to rather complex cycles in the phase space that
appear as the phase point transiently visits a given
set of stable attractors of the dynamical subsystem.

We have explored the bifurcation diagram
of the simplified ML model to point out and
extract the dynamical behaviors. We are looking
for bistable states and hysteretic phenomena in the
system. An appropriate selection of the attractors
and a slow drive current form a complex oscilla-
tor with the characteristics of a bursting neuron.
Such a circuit can be implemented in a VLSI cir-
cuit with some modifications, in such a way that a
large assembly of coupled bursting neurons can be
simulated.

The implementation of the method by means
of an electronic circuit introduces a great flexibil-
ity in the real time control of the characteristics of

the system. In particular, this method allow us to
carry out a continuous control of the behavior of the
system by allowing the continuous observation of
the system’s output as the parameters are changed.
The use of electronic circuits is an advantage in this
context because they are physical devices that oper-
ate in a real environment and thus they are subject
to a great deal of uncontrollable noise. This is in
fact the environment where real dynamical systems
evolve as neurons and so, our method could pro-
vide an approach to analyze the robustness of the
dynamics of neuronal models under real situations.
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Appendix
Parameters Used in the Experiment

Table 1. Equivalence between the parameters of
the model and the parameters of Eqs. (6) and (7).

Parameter Values Units

τ R21 × C1 s
V1 −Vcc × R1/(R1 + R2) V
V2 −R3/R4 V
V3 −Vcc × R11/(R11 + R12) V
V4 −R13/R14 V
g∗Ca 1/RCa S
g∗K 1/RK S
gL 1/RL S

OPAMP UA741 —
Vcc 10 V

Mutiplier AD633 —


