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Abstract. The standard Melnikov method for analyzing the onset of chaos
in the vicinity of a separatrix is used to explore the possibility of suppression
of chaos of a certain class of dynamical systems. For a given dynamical system
we apply an external perturbation, which we call the stabilizing perturbation,
with the goal that after its action the chaos present in the system is suppressed.
We apply this method to the nonlinear pendulum as a paradigm, and obtain
some analytical expressions for the corresponding external perturbations that
eliminate chaotic behavior. Numerical simulations in the pendulum show a
complete agreement with the analytical results.

1. Introduction. Most nonlinear dynamical systems may possess chaotic behavior
for a certain choice of parameters. Since there are situations for which this behavior
might be undesirable, different methods have been developed in the past years to
suppress or control chaos. The idea that chaos may be suppressed goes back to the
publications [1, 2] where it has been proposed to perturb periodically the system
parameters with the final effect of suppression of chaos. Later this idea has been
analytically verified [3]. The method of controlling chaos has been introduced in
the paper [4] (the history of this question see in review [5]).

There are some studies of this problem using mainly numerical simulations,
although analytical methods have also been used. One of them, the Melnikov
method [6], is a sufficiently effective tool for the analysis of chaotic systems. Even
though the method is only approximate, due to its perturbative nature, it provides
a way to obtain a general expression relating different parameters of the system and
reveals a threshold value for the onset of chaos.

Different other methods have been applied for the suppression of chaos (see,
e.g. [7–10] and refs. cited therein). In these papers, Jacobian Elliptic Functions
instead of the common trigonometric functions as the perturbations acting on the
dynamical system have been basically used.
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The main idea of this paper is to apply a general perturbation to the dynamical
system in such a way that after application of the Melnikov analysis, the dynamical
system finally shows no chaotic behavior. In other words, given a certain dynamical
system for which chaos exist for a given choice of parameters, the challenge is to
find an appropriate perturbation, that we call the function of stabilization, which
would convert the dynamical system into non-chaotic. Some preliminary results
concerning this idea has been partially described in [11].

This is done analytically for a general two-dimensional system, and then the
results are applied to the nonlinear pendulum for a choice of parameters for which
it shows chaotic behavior. Afterwards, we show by using numerical computations
that there is a complete agreement with the analytical results.

The physical meaning [12] of the stabilizing perturbation in the case of the pen-
dulum corresponds to a series of hits acting on the pendulum. Nevertheless, what
we show here is that we can find this stabilizing perturbation, which eventually will
depend on each dynamical system. The idea can be useful for a general class of
dynamical systems for which we can try to find the appropriate means of avoiding
the appearance of chaos. The same idea could be useful for dissipative systems and
for conservative systems as well.

2. Stabilization of chaotic motion. In this section we address the problem that
we have raised in the introduction, that is, we apply the Melnikov method, which
gives a criterion of the chaos appearance, to the analysis of the system behavior
under external perturbations. The idea is that such an approach can give us an
analytical expression of the perturbations which leads to the chaos suppression
phenomenon.

We explain the idea by using a general two-dimensional dynamical system sub-
jected to a time-periodic external perturbation, and consequently possessing a three
dimensional phase space, and our results are then applied to the nonlinear pendulum
system.

2.1. Melnikov function. It is well known, that in Hamiltonian systems separa-
trices can split. In this case stable and unstable manifolds of a hyperbolic point do
not coincide, but intersect each other in an infinite number of homoclinical points
(usually the motion in the (n + 1)–dimensional phase space (x1, · · · , xn, t) is con-
sidered in the projection onto a n–dimensional hypersurface t = const (Poincaré
section)). The presence of such points gives us a criterion for the observation of
chaos. This criterion can conveniently be obtained by the Melnikov function (MF),
which “measures” (in the first order of a small perturbation parameter) the distance
between stable and unstable manifolds.

Melnikov analysis is based on the paper [6]. First, we consider a two-dimensional
dynamical system under the action of a periodical perturbation with the property
of having a unique saddle point:

ẋ = f0(x) + εf1(x, t), (1)

Let furthermore x0 be the separatrix of the unperturbed system ẋ = f0(x). Then
the MF at any given time t0 is defined as follows:

D(t0) = −
∫ +∞

−∞
f0 ∧ f1

∣∣∣∣
x=x0(t−t0)

dt,
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a) b)
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Figure 1. Poincaré section t = const (mod T ) of the system
(Eq. 1) for ε = 0 (Fig. 1a) and ε 6= 0 (Figs. 1b,1c,1d).

where the integral is taken along the unperturbed separatrix x0(t − t0) and the
integrand is f0 ∧ f1 = f0xf1y − f0yf1x.

In general, in dissipative systems one can observe three possibilities for the MF:
either D(t0) < 0 (Fig. 1b), D(t0) > 0 (Fig. 1c) for any t0 or D(t0) changes its
sign for some t0 (Fig. 1d). Only in the last case chaotic dynamics arises. Thus,
the MF determines the character of the motion near the separatrix. Note that the
Melnikov method has a perturbative (to first order) character, thus, its applica-
tion is allowed only for trajectories which are sufficiently close to the unperturbed
separatrix. Moreover this method is valid only for systems with ε ¿ 1.

2.2. Function of stabilization. The Melnikov method has been applied in a lot
of typical physical situations (see Refs. [7,13–17]) in which homoclinic bifurcations
occur. Here we consider an application of the Melnikov method to the analysis
of the chaos suppression phenomenon in systems with separatrix loops. Such an
approach allows us to find an analytical expression of the perturbations for which
the Melnikov distance D(t0) does not change sign (see also [18]) suppressing the
chaotic behavior and stabilizing the orbits of the system.

We consider the problem of stabilization of chaotic behavior in systems with
separatrix contours that can be described by equation (1)

ẋ = f0(x) + εf1(x, t),

where f0(x) = (f01 (x), f02 (x)), f1(x, t) = (f11 (x, t), f21 (x, t)). For this equation

the Melnikov distance D(t0) is given by D(t0) = −
∞∫

−∞
f0 ∧ f1dt ≡ I[g(t0)]. Let
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us assume that D(t0) changes its sign. To suppress chaos we should get a func-
tion of stabilization f∗ (ω, t) that leads us to a situation when separatrices are not
intersected:

ẋ = f0(x) + ε [f1(x, t) + f∗(ω, t)] , (2)
where f∗(ω, t) = (f∗1 (ω, t), f∗2 (ω, t)). Suppose D(t0) ∈ [s1, s2] and s1 < 0 < s2.
After the stabilizing perturbation f∗(ω, t) is applied we have two cases: D∗(t0) > s2

or D∗(t0) < s1, where D∗(t0) — Melnikov distance for system (2). We consider the
first case (analysis for the second one is similar). Then

I[g(t0)] + I[g∗(ω, t0)] > s2, (3)

where I[g∗(ω, t0)] = −
+∞∫

−∞
f0 ∧ f∗dt. Expression (3) is true for all left hand side val-

ues of inequality that is greater than s2. It is derived that I[g(t0)] + I[g∗(ω, t0)] =
s2 + χ = const, where χ, s2 ∈ IR+. Therefore I[g∗(ω, t0)] = const − I[g(t0)].

On the other hand, I[g∗(ω, t0))] = −
∞∫

−∞
f0 ∧ f∗dt. We choose f∗ (ω, t) from the

class of functions that are absolutely integrable on an infinite interval such that
they can be represented in Fourier integral form. Then f∗ (ω, t) = Re{Â(t)e−iωt}.
Here we suppose that Â(t) = (A(t), A(t)) i.e., assume that the regularizing pertur-
bations applied to both components of the equation (2) are identical. Therefore

−
∞∫

−∞
f0 ∧

{
Â(t)e−iωt

}
dt = const − I[g(t0)]. The inverse Fourier transform yields:

f0 ∧ Â(t) =

∞∫

−∞
(I [g (t0)]− const) eiωtdω. Hence,

A(t) =
1

f01(x)− f02(x)

∞∫

−∞
(I [g (t0)]− const) eiωtdω. (4)

Here A(t) can be interpreted as the amplitude of the “stabilizing” perturbation.
Thus, for system (1) the external stabilizing perturbation has the form:

f∗ (ω, t) = Re


 e−iωt

f01(x)− f02(x)

∞∫

−∞
(I [g (t0)]− const) eiωtdω


 . (5)

Let us now consider the stabilization problem for systems of the next type

ẋ = P (x, y),
ẏ = Q(x, y) + ε[f(ω, t) + αF (x, y)], (6)

where f (ω, t) is a time periodic perturbation, P (x, y), Q(x, y), F (x, y) are some
smooth functions and α is the dissipation.

We investigate the case which is typical for applications with a single hyperbolic
point in the origin x = y = 0 when P (x, y) = y. Let x0(t) be solution on the
separatrix. In the presence of the perturbation the Melnikov distance D(t0) for the
system (6) may be written as
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D(t0) = −
∞∫

−∞
y0(t− t0) [f(ω, t) + αF (x0, y0)] dt ≡ I[g(ω, α)], (7)

where y0 (t) = ẋ0 (t). Let us suppose again that the Melnikov function (7) changes
sign, i.e., separatrices are intersected. We will find an external regularizing pertur-
bation f∗(ω, t) = Re{Â(t)e−iωt} that stabilizes the system dynamics:

ẋ = y,
ẏ = Q(x, y) + ε[f(ω, t) + αF (x, y) + f∗ (ω, t)]. (8)

It is significant to note that since the system (6) depends on parameter α then such
stabilization should be made at every fixed value of this parameter and further,
instead of I[g(ω, α)], we will write I[g(ω)]. For (8) we have f01 = y, f02 = Q(x, y)
and Â(t) = (0, A(t)). Consequently the value A (t) has a form

A (t) =
1

y0 (t− t0)

∞∫

−∞
(I [g (ω)]− const) eiωtdω. (9)

So, for (8) the stabilizing function can be represented as

f∗ (ω, t) = Re


 e−iωt

y0 (t− t0)

∞∫

−∞
(I [g (ω)]− const) eiωtdω


 . (10)

Now, let us find a regularizing perturbation in the case when the Melnikov func-
tion D(t, t0) admits an additive shift from its critical value.

Again, we analyze the case when D∗(t0) > s2 is satisfied. Suppose that αc

corresponds to the critical value of the Melnikov function, Ic = I[g(ω, α|α=αc
)].

Then, a subcritical Melnikov distance can be expressed as Iout = Ic − a, where
a ∈ IR+ is constant. Assuming that the system perturbed by f∗(ω, t) exhibits
regular behavior, we have

I ′ = Iout + I [g∗ (ω)] > s2. (11)

Here I [g∗ (ω)] = −
+∞∫

−∞
y0 (t− t0) f∗ (ω, t) dt. On the other hand, it is obvious that

we can take any I ′ a fortiori greater than Ic:

I ′ = Ic + a > s2. (12)
Now, equating the left-hand sides of (11) and (12), we obtain I [g∗ (ω)] = 2a.
Substituting f∗ (ω, t) = Re{A(t)eiωt} into the expression for I[g∗(ω)], we find

−
∞∫

−∞
eiωtA(t)y0(t− t0)dt = 2a. The inverse Fourier transform yields A (t) y0 (t− t0) =

−2a

∞∫

−∞
e−iωtdω. Hence,

A (t) = − 2a

y0(t− t0)

∞∫

−∞
e−iωtdω = − 4πaδ(t)

y0(t− t0)
. (13)
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Thus, the dynamics of the systems that admit an additive shift from the critical
value of the Melnikov function D(t0) are regularized by the perturbation:

f∗ (ω, t) = − 4πaδ(t)
y0(t− t0)

cos(ωt), (14)

where δ(t) is a Dirac delta–function defined as follows:

δ(t) =
{

0, t 6= 0,
∞, t = 0.

In the general case, if f0 = (f01(x), f02(x)), then we obviously obtain

f∗ (ω, t) = − 4πaδ(t)
f01(x)− f02(x)

cos(ωt). (15)

From the physical point of view, the obtained results mean that the dynamics of
the chaotic system are stabilized by a series of “kicks”.

3. Nonlinear pendulum. We apply the above analysis to the nonlinear pendulum
[19]. The equation of the pendulum with dissipation and an external periodic
perturbation is written as

ẍ + sin x = ε [γ cos ωt− αẋ] . (16)
The unperturbed Hamiltonian of this system has the form: H0 = ẋ2/2 − cos x.
Phase space of the pendulum is 2π–periodical via x with hyperbolic saddle points
in (±π, 0) and a center in (0, 0). The present system has three kind of solutions:
oscillations, rotations and the separatrix motion. Oscillations are bounded motions
and correspond to the case for which |x(t)| < π. Rotations are unbounded and
correspond to either y(t) < 0 or y(t) > 0, where y(t) = ẋ(t). And finally separatrix
motion corresponds to the motion between fixed points, forming a heteroclinic orbit
in phase space. We are interested in the last type of solutions which has the form:

x0(t) = 4 arctan exp(±t)− π,
y0(t) = ẋ(t) = ±2/ cosh t,

(17)

where the signs refer to the upper and lower half planes. The Melnikov distance
that corresponds to the equation (16) was computed in [17]

D±(t0, ω) = −α

+∞∫

−∞
(y0(t))2dt± γ cosωt0

+∞∫

−∞
sin(x0(t))y0(t) cos ωtdt. (18)

After computing the integrand we obtain [17]:

D±(t0, ω) = −4αB

(
1
2
, 1

)
± 2πγ

cosh
(πω

2

) cosωt0, (19)

where B(r, s) is the Euler β function.
It is easy to see that in this case the Melnikov function D±(t0, ω) obviously admits

an additive shift from its critical values. Therefore, for the case of a chaotic nonlinear
oscillator an external function of stabilization can be chosen in the following way

f∗(ω, t) = −4πaδ(t)
y0(t)

cosωt, (20)
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where y0(t) is the solution on the unperturbed separatrix. We apply this stabilizing
perturbation to the upper and lower branches of heteroclinical contour.

From the physical point of view, the obtained results mean that dynamics of the
pendulum are regularized by series of “kicks”.

4. Application to the pendulum. We have performed computer simulations
on the nonlinear pendulum equation (16) with the following parameters: α = 0.1,
γ = 6, ω = 0.5, where we took ε = 0.1 and we have used the value a = 0.082 in order
to compute the stabilization function. It is known that these values correspond to
the chaotic motion in the system. The phase portrait and relevant time evolution
are shown in Fig. 2.
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Figure 2. The figure shows a chaotic orbit in phase space and
the chaotic shape of the time evolution of x(t) for the pendulum
ẍ + sin x = ε [γ cos ωt− αẋ], where the parameters take the values
α = 0.1, γ = 6, ω = 0.5 and ε = 0.1.

After introduction of the stabilizing perturbation f∗(ω, t) (see Eq. 20), the cor-
responding phase portrait and the solution x(t) of the nonlinear oscillator equation
is shown in Fig. 3. Another method of detecting the chaos suppression phenomenon
is to consider the spectral properties of the solution x(t) of the nonlinear pendulum
equation. By the standard Fourier transform we can get the power spectrum. In
Fig. 4 power spectra of the solution x(t) for the pendulum equation (16) corre-
sponding to Fig. 2 and Fig. 3, are shown. One can clearly see that by means of the
stabilizing perturbation (see Eq. 20) it is possible to suppress chaos.

Thus, the obtained numerical analysis are in a good agreement with the analytical
results described in §2 and §3.
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Figure 3. Phase portrait and solution x(t) of the nonlinear pen-
dulum ẍ + sin x = ε [γ cosωt− αẋ] with stabilizing perturbation
f∗(ω, t) ≈ −δ(t). The parameter values are α = 0.1, γ = 6, ω = 0.5
and ε = 0.1.
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Figure 4. Power spectrum corresponding to the chaotic orbit of
ẍ + sin x + 0.01ẋ = 0.6 cos 0.5t and to the orbit obtained after the
stabilizing function acts for the pendulum.
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5. Conclusions. Separatrix splitting is a very convenient method for examining
dynamical systems, because it can be used to obtain non-integrability conditions
for many applied problems in analytical form. Currently, the problem of chaos sup-
pression considered in this study is mainly solved by numerical methods. However,
asymptotic behavior of trajectories can be examined analytically and the distance
between the invariant manifolds can be found in a general form by applying a per-
turbation method in the vicinity of a homoclinic trajectory.

In this study, separatrix splitting is applied to explore the possibility of chaos
suppression in dissipative systems. As a result, we have provided a new mechanism
of chaos suppression which allows us to find an analytical expressions for the external
perturbation (stabilization function) that finally leads to the suppression of chaos.
These results are sufficiently general to be applied to various dynamical systems
that admit separatrix splitting.
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