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Abstract – In this letter we discuss some properties of order patterns both in deterministic and
random orbit generation. As it turns out, the orbits of one-dimensional maps have always forbidden
patterns, i.e., order patterns that cannot occur, in contrast with random time series, in which any
order pattern appears with probability one. However, finite random sequences may exhibit “false”
forbidden patterns with non-vanishing probability. In this case, forbidden patterns decay with
the sequence length, thus unveiling the random nature of the sequence. Last but not least, true
forbidden patterns are robust against noise and disintegrate with a rate that depends on the
noise level. These properties can be embodied in a simple method to distinguish deterministic,
finite time series with very high levels of observational noise, from random ones. We present
numerical evidence for white noise.
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Introduction. – Symbolic dynamics is a useful
approach in the study of discrete-time dynamical
systems, that consists of deriving sequences of symbol
patterns via coarse-graining of the underlying state
space [1]. If the state space is linearly ordered, one can
derive sequences of order patterns as well [2–4], each
encapsulating the up-and-down in the orbits of their
elements (see below). It turns out that, under some mild
mathematical assumptions, not all order patterns can
be materialized by the orbits of a given one-dimensional
map, not even if its dynamic is chaotic —contrarily to
what happens with the symbol patterns. As a result,
the existence of “forbidden” (i.e., not occurring) order
patterns is always a persistent dynamical feature, in
opposition to properties such as proximity, correlation,
etc., which die out with time in a chaotic dynamics.
Moreover, if an order pattern is forbidden, its absence
pervades all longer patterns in form of more missing order
patterns, called outgrowth forbidden patterns.
Since random dynamics has no forbidden patterns with

probability one, we conclude that their existence can be
used as a fingerprint of deterministic orbit generation.
Here and henceforth, “random” means generated by an
unconstrained, stochastic process taking on real values
in, say, an interval. However, when it comes to exploit

this forbidden-pattern–based strategy to tell chaotic from
random time series, two important practical issues arise:
finiteness and noise contamination. Finiteness produces
false forbidden patterns (i.e., order patterns missing in
a random sequence without constraints), whereas noise
blurs the difference between deterministic and random
time series. It is therefore interesting that the forbidden
patterns themselves provide the remedy. First of all, the
number of false forbidden patterns of a fixed length
always decreases with the length of the time series,
making it possible in turn that their outgrowth patterns
become also visible. Secondly, order patterns are robust
against experimental and numerical noise because they
are defined by inequalities. We present numerical evidence
that forbidden patterns persist in noisy deterministic
data, even when the contamination is so high that other
more traditional methods fail to uncover the underlying
deterministic dynamics. This property can be capitalized
on in practice by comparing the number of forbidden
patterns in the sequence under scrutiny before and after
randomizing it. For other approaches to the detection
of determinism in time series, see, e.g., [5,6] and the
references therein.
What about higher dimensions? First of all, forbidden

patterns are trivially invariant under order-isomorphisms
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(i.e., isomorphisms which additionally preserve the
order relations). Thus, higher-dimensional maps that are
order-isomorphic to a map with forbidden patterns (say,
a one-sided or two-sided shift), will also exhibit forbidden
patterns; think, e.g., of the baker’s map and the two-sided
( 12 ,

1
2 )-Bernoulli shift [7]. Furthermore, in the analysis of

low dimensional chaotic flows it is well known that the
so-called Lorenz maps (representing each local maxima of
a continuous-time variable of a dynamical system against
the next one) do often present a shape that is clearly
reminiscent to unimodal maps [8]. Thus, the discrete time
series resulting from sampling the maxima of a variable
of this kind of systems will present forbidden patterns
that would not appear for a random signal. Finally, the
stretching and folding action of one-dimensional maps has
been found to be deeply related with chaotic dynamics
in higher-dimensional dynamical systems and flows [8].
Hence, we expect in general that higher-dimensional
chaotic dynamical systems will also exhibit forbidden
patterns.

Forbidden patterns. – Let I ⊂R be a closed interval
and f : I→ I a map. If x∈ I is not periodic or its period is
greater than L� 2, we associate with x an order pattern
of length L as follows. We say that x defines the order
pattern π= π(x) = [π0, π1, . . . , πL−1], if

fπ0(x)< fπ1(x)< . . . < fπL−1(x),

where f0(x)� x and fk(x)� f(fk−1(x)). We say also that
π is realized by x. Thus, π is just a permutation of
{0, 1, . . . , L− 1} written between brackets, that condenses
the order of the points xk = f

k(x), 0� k�L− 1. A
periodic point x∈ I of (minimal) period T � 2 can only
define order patterns of lengths L= 2, . . . , T .
The set of order patterns of length L will be denoted

by SL. According to Stirling’s formula, |SL|=L!∝
exp(L(lnL− 1)+ (1/2)ln 2πL), where | · | denotes cardi-
nality and ∝ means “asymptotically”. Yet, numerical
simulations support the conjecture that order patterns,
like symbol patterns generated by coarse-graining
partitions, grow only exponentially for “well-behaved”
functions. In fact, if f is piecewise monotone (i.e.,
there is a finite partition of I into intervals such that
f is continuous and strictly monotone on each of those
intervals), then one can prove [9] that

|{π ∈ SL : π is realized by x∈ I}| ∝ eLhtop(f),

where htop(f) is the topological entropy of f [1]. Since
we can safely assume (as we do henceforth) that all
scalar functions encountered in applications belong to
this category, we conclude that time series generated by
iteration of one-dimensional interval maps cannot realize
all possible order patterns, but rather only a “small” part
of them. Order patterns that do not appear in any orbit
of f are called forbidden patterns for f (otherwise, they
are allowable or “visible”).
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Fig. 1: The intervals of points defining the different order
patterns are graphically obtained by raising vertical lines
at the crossing points of the curves y= f0(x)≡ x, y=
f(x) = 4x(1−x) and y= f2(x) =−64x4+128x3− 80x2+16x
(namely, 1/4, (5∓√5)/2 and 3/4). The allowed order patterns
are written on the top, centered over the corresponding inter-
val. Note that [2, 1, 0] is a forbidden pattern.

Example 1. – As a simple illustration, consider the
logistic map f(x) = 4x(1−x), 0� x� 1. For L= 2 we have
{xdefining [1, 0]}= (0, 34 ), {xdefining [0, 1]}= (34 , 1).
But already for L= 3, the pattern [2, 1, 0] is not realized
(see fig. 1). The absence of [2, 1, 0] triggers, in turn, an
avalanche of longer forbidden patterns. To begin with,
the pattern [∗, 2, ∗, 1, ∗, 0, ∗] (where the wildcard ∗ stands
eventually for any other entries of the pattern) cannot be
realized by any 0� x� 1 since the inequality

f2(x)< f(x)<x (1)

cannot occur. By the same token, the patterns
[∗, 3, ∗, 2, ∗, 1, ∗], [∗, 4, ∗, 3, ∗, 2, ∗], and, more generally,
[∗, 2+n, ∗, 1+n, ∗, n, ∗] ∈ SN , 0� n�N − 3, cannot be
realized either for the same reason (substitute x by fn(x)
in (1)).

Outgrowth forbidden patterns. – As discussed
above, given a one-dimensional interval map f : I→ I,
there exist π ∈ SL, L� 2, which is forbidden for f . More-
over, similarly to Example 1, the absence of π pervades all
longer patterns in form of forbidden outgrowth patterns.
Indeed, if π= [π0, . . . , πL−1], then all the patterns

[∗, π0+n, ∗, π1+n, ∗, . . . , ∗, πL−1+n, ∗]∈ SN (2)

with n= 0, 1, . . . , N −L, where N −L� 1 is the number
of wildcards ∗ ∈ {0, 1, . . . , n− 1, L+n, . . . , N − 1} (with
∗ ∈ {L, . . . , N − 1} if n= 0 and ∗ ∈ {0, . . . , N −L− 1} if
n=N −L), are also forbidden for f for the same argu-
ments as in Example 1.
Denote now by SoutN (π) the family of length-N

outgrowth patterns of π ∈ SL. The fact that some of
the outgrowth patterns of a given length will be the
same (see, e.g., the pattern [3, 2, 1, 0] in (3) below) and
that this depends on π, makes the analytical calcula-
tion of |SoutN (π)| extremely complicated. Yet, it can be
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proven [10] that there exist constants 0< c, d < 1 such
that (1− dN )N !< |SoutN (π)|< (1− cN )N !. Hence, the
outgrowth forbidden patterns grow super-exponentially.

Example 2. – As a somewhat academic example,
suppose that a black box generates a random-looking
sequence 0� xk � 1 of length N � 1 according to the (for
the observer unknown) recipe: xk+1 = 4xk(1−xk). If we
go down the sequence with a sliding window of length
L= 3, we will find that the order pattern [2, 1, 0] is missing
(i.e., xk+2 <xk+1 <xk never happens). What is the prob-
ability that this order pattern does not occur in a sequence
of independent and uniformly distributed random vari-
ables? Due to stochastic dependences among overlapping
windows, the exact calculation is not straightforward (nor
specially illuminating), so we will content ourselves with
a rough upper bound. Consider instead those windows
of length L overlapping at a single point, so that their
outcomes are independent; their number is �N/(L− 1)�,
where �·� stands for integer part. Hence, the sought prob-
ability is upper bounded by p0 = (5/6)

�N/2�. Given the
“rejection threshold” 10−ε, then p0 � 10−ε if N � 25.26ε.
This probability can be lowered by considering the

forbidden patterns of lengths 4, 5, etc. The forbidden
pattern [2, 1, 0] generates 7 different outgrowth patterns
with L= 4, see (2),

(n= 0) [3, 2, 1, 0], [2, 3, 1, 0], [2, 1, 3, 0], [2, 1, 0, 3]

(n= 1) [0, 3, 2, 1], [3, 0, 2, 1], [3, 2, 0, 1], ([3, 2, 1, 0])
(3)

(the last is repeated) and 52 outgrowth patterns with
L= 5. A similar argument as before yields now the upper
bound p1 = (17/24)

�N/3� for the probability that none of
the patterns (3) occurs in a long sequence of independent
and uniformly distributed random variables and p1 � 10−ε
if N � 20.04ε.
Practical issues. – We already mentioned that real

time series may exhibit false forbidden patterns on account
of being finite and noisy. It is thus clear that we cannot
discriminate random from deterministic dynamics on the
basis of output observation with absolute certainty, but
only with a certain probability.
Before addressing these issues with more detail, note

that a time series of length N allows only one window of
length N , two (overlapping) windows of length N − 1 and,
in general, N −L+1 windows of length L, for 2�L�N .
Thus, in order to allow every possible order pattern of
length L to occur in a time series of length N , the
condition L!�N −L+1 must hold and, moreover,

N �L! +L− 1 (4)

to avoid undersampling. For this reason, given a window
of length L, we will choose N � (L+1)! in the numerical
simulations below.
Under this proviso, suppose now that the order pattern
π ∈ SL is missing in a time series of length N . Of course,
if we dispose of many time series output by the same

source or we can generate them at will, the chance that a
false forbidden pattern persists in a randomly generated
sequence will decrease with the number of the samples.
But even if we have at our disposal one sufficiently
long time series, the decay with N of the number of
outgrowth patterns can make the difference. Indeed, if
π= [π0, . . . , πL−1] is missing in a random sequence (thus,
π is a false forbidden pattern), then all longer order
patterns of the form (2) will be necessarily missing
too. But now, at variance with the case of true forbid-
den patterns, the overall number of outgrowth forbidden
patterns depends onN : ifN increases, the probability that
a false forbidden pattern becomes allowed increases. Once
a forbidden pattern of length L disappears for probability
reasons, their outgrowth patterns of length L+1 may also
disappear and this chain process affects patterns of higher
L as N increases.
Consider a fixed initial condition x and suppose

that πforb = [π0, . . . , πL−1] is a forbidden pattern for f .
Suppose, furthermore, that we switch on now a discrete-
time random perturbation ηk, |ηk|� ηmax, such that
πforb is still missing in the finite sequence (f

k(x)+ ηk)
N−1
k=0

(due to robustness). Observe that the noisy time series
zk = f

k(x)+ ηk can be viewed both as a perturbation of
an underlying deterministic dynamics and as a random
process correlated with the deterministic dynamics f . If
the orbit of x would be infinitely long, then the noisy
time series had no forbidden patterns and πforb would be
allowed with probability 1. In the finite-length case we are
considering, this is, in general, not the case; rather, there
is a threshold θ= θ(N) (the greater N , the smaller θ)
such that πforb will appear in (zk)

N−1
k=0 only if ηmax > θ.

Again, once the pattern πforb becomes visible, its
outgrowth patterns may, in turn, become also visible
with a higher θ or, alternatively, with a higher N . We
conclude that amplifying a random perturbation destroys
progressively the outgrowth patterns of the underlying
deterministic dynamics but, as long as πforb remains
forbidden (i.e., ηmax � θ), all its outgrowth patterns will
survive.

Numerical simulations. – Here we will numeri-
cally study only one of the properties discussed above,
namely, the robustness of true forbidden patterns and
their outgrowth patterns against observational random
perturbations. In order to estimate the average number
〈n(L,N)〉 of forbidden patterns of length L in the finite,
noisy sequence zk = xk + ηk, 0� k�N − 1, with xk+1 =
f(xk) and ηk a random process, we generate 100 samples
of length Nmax = 8000 and normalize the corresponding
count of missing patterns of lengths 3�L� 6, comply-
ing with (4) for N =Nmax. We highlight next a few
results obtained choosing f to be the logistic map and
ηk being white noise uniformly distributed in the interval
[−ηmax, ηmax], 0� ηmax � 1.
Figures 2(a), (b) and (c) show 〈n(L,N)〉 for (L+1)!�
N �Nmax, when i) ηmax = 0.25, ii) ηmax = 0.50 and
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Fig. 2: Average number of forbidden patterns of length L found
in a time series of length N , 〈n(L,N)〉, for noisy series of the
logistic map with ηmax = 0.25 (a), ηmax = 0.5 (b) and for a series
of uniformly distributed noise (c).

iii) ηmax = 1 and f
k(x)≡ 0 (only noise), respectively.

Note the different order of magnitude of the vertical
scales. Thus, for instance, we count on average some
2 or 3 forbidden patterns of length 6 in a 6000 point long
sequence in the very noisy case ii), whereas the same count
drops to 0 with high probability (or to be more specific, in
about 75% of the samples) in the only-white-noise case iii).
As a matter of fact, 〈n(L,N)〉 decays with increasing N
because the greater N , the more unlikely that a length-L
pattern is missing in a noisy or random sequence of length
N ; this is a statistical effect. The important features
for us are the magnitude of 〈n(L,N)〉 and its decay
rate with N , since these two properties are related to
the true forbidden patterns and outgrowth patterns of
the underlying deterministic dynamics via robustness:
the smaller ηmax, the closer we are to the deterministic
case and, therefore, the more missing order patterns and
the slower their decrease with N .
Figure 3 shows zn+1 vs. zn in the previous cases

i) (fig. 3(a)) and ii) (fig. 3(b)). The higher order of
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Fig. 3: Return map for noisy time series from the logistic map
with ηmax = 0.25 (a) and with ηmax = 0.5 (b). In the latter case,
the high noise level does not allow to recognize the underlying
deterministic dynamics. However, we have shown that in this
case the number of forbidden patterns is sensibly higher than
in the purely random case.
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Fig. 4: Number of forbidden patterns of length L found in a
noisy time series of the logistic map with length 6000 as a
function of the uniform noise amplitude ηmax.

magnitude of 〈n(6, N)〉 in fig. 2(b) as compared to
fig. 2(c) signalizes an underlying iteration law, in spite of
the fact that fig. 3(b) hardly gives any clue about this.
Finally, fig. 4 nicely illustrates the resistance of longer

forbidden patterns to disappear with increasing noise
levels due to their sheer number. In this figure, N = 6000,
L= 5, 6 and 0� ηmax � 0.5.
These numerical simulations suggest the following

simple-minded technique to discriminate noisy, determin-
istic, finite time series from the random ones, at least
when the noise is white. a) Compute the number of
forbidden patterns of adequate lengths (complying with
eq. (4)) of the sequence in question; it is convenient to
consider segments of variable lengths and to draw the
corresponding curves, as in fig. 2. b) Randomize the
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sequence, i.e., change the order of its elements in a
random way. c) Proceed as in step a) with the random-
ized sequence. If the results concerning forbidden patterns
are about the same, the sequence is very likely not
deterministic (or the observational noise is so high
that the deterministic component has been completely
masked); otherwise, the observed sequence stems from a
deterministic one. Needless to say, the method is more
reliable if a statistically significant sample of sequences
can be generated (for instance, by cutting a long sequence
into shorter pieces).

Conclusions. – Exponential growth of allowable order
patterns and, hence, the existence and super-exponential
growth of forbidden order patterns are hallmarks of deter-
ministic time series. But, in contrast to the former, the
latter (whether true or false) have a well-defined and
distinct structure (2) that allows, given a missing pattern
of sufficiently small length, to elucidate the deterministic
or random nature of a finite, noiseless time series, selec-
tively examining a short range of longer pattern lengths.
We have presented numerical evidence that forbidden
patterns can also distinguish chaos from randomness in
finite time series contaminated with observational white
noise. In doing so, we have exploited the robustness
of forbidden patterns against noise. Finally, what we
have learnt from these numerical simulations has been
used to implement a straightforward test to distinguish
noisy, deterministic, finite time series from random ones.
All this can be described as: count, randomize, count
again and compare. The case of colored noise is currently
under study.
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