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Instituto de F́ısica, Universidade de São Paulo,

C.P. 66318, 05315-970 São Paulo, Brazil

RICARDO L. VIANA
Departamento de F́ısica, Universidade Federal do Paraná,
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The creation of an outer layer of chaotic magnetic field lines in a tokamak is useful to control
plasma-wall interactions. Chaotic field lines (in the Lagrangian sense) in this region eventually
hit the tokamak wall and are considered lost. Due to the underlying dynamical structure of this
chaotic region, namely a chaotic saddle formed by intersections of invariant stable and unstable
manifolds, the exit patterns are far from being uniform, rather presenting an involved fractal
structure. If three or more exit basins are considered, the respective basins exhibit an even
stronger Wada property, for which a boundary point is arbitrarily close to points belonging to
all exit basins. We describe such a structure for a tokamak with an ergodic limiter by means of
an analytical Poincaré field line mapping.
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1. Introduction

One of the most important theoretical and exper-
imental problems in fusion plasma research is
the obtention of long-lasting plasma confinement
through the application of suitable magnetic fields.
The tokamak, one of the most promising candidates
for a future fusion reactor, is a toroidal scheme in
which the plasma current is confined by two main
magnetic fields, one generated by external coils
(toroidal field ) and the other created by the plasma
current itself (poloidal field ) [Wesson, 1987]. The
resulting magnetic field lines have helical shape,

and, as a consequence of magneto-hydrodynamical
equilibrium, lie over constant pressure surfaces, or
flux surfaces, which form nested tori [Meiss, 1992].
From the point of view of Hamiltonian dynamics,
this can be viewed as an integrable system, thanks
to the toroidal symmetry [Morrison, 2000]. How-
ever, the role of time here is to be played by the
toroidal coordinate, since the configurations we are
interested in are strictly magnetostatic.

This equilibrium can be substantially changed
due to perturbing magnetic fields arising from both
internal and/or external sources. There follows that,
if the perturbation is weak enough, the topology of
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the flux surfaces is significantly altered only at those
surfaces exhibiting resonances with the perturba-
tion. In these places there appear islands with the
same dynamical structure of nonlinear pendula, and
the corresponding Hamiltonian system has one and
a half degrees of freedom [Lichtenberg & Lieberman,
1992]. Moreover, as a consequence of the breakup
of integrability caused by the perturbation, we find
chaotic motion limited to a thin layer surrounding
the islands’ separatrices. This chaotic layer can be
enhanced by increasing the perturbation strength,
and thus a mostly chaotic dynamics eventually sets
in between adjacent resonances, according to the
well-studied global stochasticity scenario [Chirikov,
1979].

We stress that chaotic motion is to be intended
here in its Lagrangian sense: two magnetic field
lines, which may be very close to one another at
some point, diverge exponentially as they wind
around the toroidal direction, with a rate given
by the corresponding (positive) maximal Lyapunov
exponent [Ott, 1993]. Moreover, identifying the flux
surfaces as KAM tori of the corresponding Hamil-
tonian system, the existence of a chaotic region
implies the breakup of flux surfaces. Hence, the
chaotic magnetic field lines are volume-filling over
a presumably limited extent of the tokamak torus
[Meiss, 1992].

One can design the perturbing fields so as to
create a wide chaotic region (in terms of the radial
extent) near the plasma edge and the physical toka-
mak wall. There are sound reasons to do such a
thing, the most important one being the role of a
chaotic magnetic field as a divertor, in the sense that
escaping particles and energy fluxes are spread out
by the chaotic field, so reducing potentially harmful
plasma-wall interactions [Engelhardt, 1977; Engel-
hardt & Feneberg, 1978]. This is the main goal of
the so-called ergodic magnetic limiter, proposed in
the late seventies and built in many research toka-
maks [Karger & Lackner, 1977; Feneberg & Wolf,
1981].

Since the chaotic region is intended to extend
from the plasma edge to the tokamak wall, it turns
out that, once a plasma particle enters into this
region, it will be driven outwards in an erratic fash-
ion, and be eventually lost through collision with
the tokamak wall [da Silva et al., 2001]. Even though
the chaotic region seems to uniformize those parti-
cle fluxes, the dynamic structures underlying the
chaotic layer are complex enough to raise serious
doubts about this claim. In fact, many available

experimental results point out that the tokamak
wall is hit by plasma particles in a nonuniform way
[Ohyabu et al., 1984; Takamura et al., 1989; Shen
et al., 1989; Wootton et al., 1990; Araujo et al.,
1996].

The main point of this paper is that this
nonuniformity can be traced out to the invariant
manifold structure supporting the chaotic region,
which has escape channels through which plasma
particles are rapidly driven to the wall, forming
magnetic footprints on it [Abdullaev et al., 2002].
We call the set of initial conditions which eventu-
ally hit some portion of the wall the escape basin of
that exit. The magnetic footprints should reflect in
some sense the involved structure of the manifolds,
like fractal boundaries separating different escape
basins [Bleher et al., 1988]. The presence of such
escape boundaries has been observed in open Sinai
billiards [Bleher et al., 1988], advection of passive
scalars in open fluid flows through an obstacle [Pen-
tek et al., 1995], and the motion of charged particles
in Earth’s magnetosphere [Chen, 1990].

If more than two exit possibilities are present,
it follows that such escape basins can even exhibit
the stronger Wada property: any point which is on
the boundary of one escape basin is also simulta-
neously on the boundary of all the others [Nusse &
Yorke, 1996a, 1996b]. One of the first examples of a
set that possesses the Wada property was presented
by Yoneyama [1917], who attributed the example to
a certain Mr. Wada. In order to grasp the signifi-
cance of the Wada property we may think of bound-
aries between countries in a (geographical) map. For
example, there is a single point which is on the
boundary of Brazil, Argentina and Paraguay (the
Three-frontier Landmark). This is expected to occur
for a finite number of boundary points, in general.
However, if the Wada property would hold in such a
case, there would be an uncountably infinite num-
ber of three-frontier landmarks between the three
countries.

The Wada property has been extensively inves-
tigated in many open Hamiltonian systems, as the
three-disk billiard [Poon et al., 1996], particle scat-
tering by a Hénon–Heiles potential [Aguirre et al.,
2001], including the limit of small exits [Aguirre &
Sanjuán, 2003], light scattering by reflecting spheres
[Sweet et al., 1999], the advection of tracers in fluid
flows [Toroczkai et al., 1997], and it was also stud-
ied in some “open” Hamiltonians maps by [Sanjuán
et al., 2003]. Moreover it has been also analyzed in
dissipative systems such as in a quasi-periodically
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driven system [Feudel et al., 1999], the Duffing oscil-
lator [Aguirre & Sanjuán, 2002], and the pendulum
[Kennedy & Yorke, 1991; Nusse & Yorke, 1996b].
In the tokamak context, this problem has also been
studied under the point of view of a chaotic scatter-
ing process [Abdullaev et al., 2002; da Silva et al.,
2002]. This paper aims to describe the complex
structure underlying the chaotic field line region,
through identification of the Wada property in the
escape basins of both the tokamak wall and obsta-
cles, like divertor plates, placed in the chaotic region
[Abdullaev et al., 1998, 1999].

The rest of this paper is organized as follows:
in Sec. 2, we review the theoretical background nec-
essary to describe field line behavior in tokamaks,
both in its geometrical and dynamical aspects. In
particular, we show how an analytical map can
be used to follow field line trajectories for a large
number of revolutions around the tokamak torus.
Section 3 is devoted to a description of exit (or
escape) basins for field lines hitting both the toka-
mak wall and other obstacles. The fractal and Wada
properties are described in Sec. 4, whereas the last
section contains our conclusions.

2. Field Line Mapping in a Tokamak

The basic geometry of a tokamak is determined
by its major (R0) and minor (b) radii. When the
tokamak aspect ratio R0/b is large enough we can
neglect, in a zeroth approximation, the effects of
the toroidal curvature and treat it as a periodic
cylinder of length 2πR0, whose axis of symmetry is
parameterized by the coordinate z = R0φ in terms
of the toroidal angle φ (Fig. 1) [Wesson, 1987]. In
this case, the equilibrium toroidal field B0 is prac-
tically uniform. Accordingly, a point in the toka-
mak is located by its cylindrical coordinates (r, θ, z)
with respect to that axis. On the other hand, in
the study of the region nearby the tokamak wall,
it turns out that even the poloidal curvature does
not change results noticeably, so that a rectangular
system can be found by defining the following coor-
dinates: x′ = bθ and y′ = b − r [Martin & Taylor,
1984]. The tokamak wall is thus characterized by
the line segment y′ = 0 extending from x′ = 0 to
2πb. In the following, we will use normalized coor-
dinates x = x′/b and y = y′/b.

The structure of the magnetic field lines in a
tokamak can be more easily appreciated by taking
a Poincaré surface of section at the plane z = 0.
Let (rn, θn) be the polar coordinates of the nth
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Fig. 1. Schematic view of the tokamak in the periodic cylin-
der approximation, its Poincaré section, and the rectangular
coordinates (before normalization) used to describe magnetic
field lines.

piercing of a given field line with that surface.
Since the magnetic field line equations determine
uniquely the position of the next piercing, we have
a Poincaré map (rn+1, θn+1)

T = F[(rn, θn)T ]. Due
to the solenoidal character of the magnetic field,
this map is area-preserving in the surface of section
[Morrison, 2000].

In the absence of any perturbation, the inte-
grable configuration is described by a twist map
(r∗n, θ∗n)T = F1[(rn, θn)T ] [Ullmann & Caldas, 2000],
where

r∗n =
rn

1 − a1 sin θn
, (1)

θ∗n = θn + 2πι(r∗n) + a1 cos θn, (2)

where ι(r) is the rotational transform, or the mean
poloidal angle (over 2π) a field line sweeps after an
entire toroidal revolution along the torus. There is
a correction for the effect of the toroidal curvature
which strength is represented by the a1 parameter.
In the following, we use a1 = −0.04, according to
[Ullmann & Caldas, 2000].

The dependence of the rotational transform
with the radius is dictated by the details of the
equilibrium magnetic field. The following expression
describes in a satisfactory way plasma discharges in
typical tokamak experiments [Caldas et al., 2002]

ι(r) =
2πa2

qar2

{
1 +

[
1 −

(
1 − r2

a2

)γ+1
]

Θ(a − r)

}
,

(3)

where a is the plasma radius (slightly less than the
tokamak minor radius b), qa and γ are parameters
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Fig. 2. (a) Radial profile of the equilibrium rotational transform at x = 0, in which the locations of the relevant resonance
surfaces at the chaotic layer are indicated; (b) Phase portrait of a number of magnetic field lines in a Poincaré surface of
section with no perturbation; (c) Same as (b), but with a m = 7 perturbation for which the ratio between the equilibrium
plasma and limiter current is Ih/Ip = 0.06.

chosen to fit experimentally observed plasma pro-
files, and Θ(·) is the unit step function. In Fig. 2(a)
we plot the dependence of y with the rotational
transform ι, indicating the radial position of mag-
netic surfaces with given values of their rotational
transforms.

The ergodic limiter design we consider in this
paper is a ring-shaped coil of width �, with m
pairs of straight pieces along the toroidal direction,
with a current Ih flowing in opposite directions for
two adjacent segments (Fig. 1) [Martin & Taylor,
1984; Caldas et al., 1996; Portela et al., 2003]. The
effects of an ergodic limiter on such an equilibrium
configuration can be approximated by a sequence
of delta-function pulses at each piercing of a field
line at the surface of a section. Such a mapping
(rn+1, θn+1)

T = F2[(r∗n, θ∗n)T ], has been described
by Ullmann and Caldas [2000]:

r∗n = rn+1 +
mCb

m − 1

(rn+1

b

)m−1
sin(mθ∗n), (4)

θ∗n = θn − C
(rn+1

b

)m−2
cos(mθ∗n), (5)

where C = mIhµ0�/(πB0b
2) represents the pertur-

bation strength due to the magnetic ergodic limiter.
The entire field line mapping is the compo-

sition of the two mappings (F = F1 ◦ F2) and,
since the variable rn+1 appears on both sides of
the expression, we must solve it at each itera-
tion using a numerical scheme (Newton–Raphson
method). Nevertheless, the mapping F is strictly
area-preserving and can describe field line behavior
in tokamaks with ergodic limiters in a convenient

and fast way, since we do not need to numerically
integrate the field line equations over the whole
toroidal revolution, in order to get the coordinates
of a field line intersection with the Poincaré surface
of section.

The equilibrium flux surfaces for the rota-
tional transform profile of Fig. 2(a) are depicted
in Fig. 2(b), where we plot a Poincaré surface of
section of the magnetic field line flow without lim-
iter action (C = 0), using the rectangular coordi-
nates (x, y) defined at the beginning of this section.
The flux surfaces intercept the surface of section as
invariant (KAM) curves, with some shape distor-
tion caused by the toroidicity effect (a1 �= 0). The
effects of adding a nonintegrable perturbation such
as that caused by an ergodic limiter are exempli-
fied in Fig. 2(c), where we considered a ring-shaped
limiter with m = 7 pairs of straight wires, the
ratio between the limiter and plasma currents being
Ih/Ip = 0.06.

Comparing Figs. 2(b) and 2(c) one recognizes
the breaking of some flux surfaces, namely those
with a rational value for the rotational trans-
form (the winding number of the field lines), and
the appearance of pendular island chains at the
locations of the rational surfaces. Invariant curves
still survive, according to the KAM theorem, pro-
vided they come from irrational surfaces [Lichten-
berg & Lieberman, 1992]. A large chaotic region
is clearly seen at the bottom of the phase portrait
[Fig. 2(c)], indicating that many pendular islands
(each of them with their own chaotic layer) have
interacted forming a wide region of mainly chaotic
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behavior, interspersed with isolated islands. This
chaotic region was designed to be created near the
tokamak wall at y = 0 by taking into account the
fast decrease of the limiter field as we move towards
the tokamak axis, when increasing the value of the
y coordinate away from zero.

3. Exit Basins

In order to analyze the interaction between the
chaotic region and the tokamak wall, we focus our
attention on the escape pattern followed by field
lines in this region. In a lowest order approxima-
tion (neglecting particle drifts) electrons and posi-
tive ions in a plasma will tend to follow magnetic
field lines, and thus their structure gives us a first
approach to the particle behavior in that region.
Let us imagine that we select a bounded region
within the chaotic region which an ergodic limiter
generates near the tokamak wall. In this case, for
a field line originating in this chaotic region there
are two possibilities: (i) either the field line eventu-
ally escapes out of the tokamak by hitting its wall
at y = 0; or (ii) the field line hits the bounded
region first and is also considered as lost. These
two possibilities may be considered as two exits

for trajectories of this near-integrable system. To
be precise, there exists a Lebesgue measure zero
set of initial conditions for which the trajectories
never leave the chaotic region, but the probability
of a typical trajectory to belong to this set is null
[Grebogi et al., 1983].

The exit (or escape) basin of a given exit is
defined as the set of all initial conditions (in the
chaotic region) which eventually leave the region
through that exit [Bleher et al., 1988]. In the situ-
ation we are considering in this paper, we can thus
refer either to the exit basin of the tokamak wall,
since it is considered as an exit region, or to the
exit basin of a given region inside the chaotic layer.
Figure 3(a) shows a phase portrait, in the Poincaré
surface of section, where the perturbation param-
eters are the same as in Fig. 2(c), and there is a
wide chaotic layer in the vicinity of the tokamak
wall. The second exit (bounded region) is a small
rectangular box placed at x ≈ 5.5 and y ≈ 0.14,
with vertical and horizontal widths wy = 0.0045
and wx = 20wy, respectively, and which apparently
contains a large number of initial conditions in the
chaotic region. The exit basin for it is pictured in
green, whereas the exit basin for trajectories hitting
the tokamak wall is painted in red. These two exit

[scale=.97]

(a)

Fig. 3. Exit basins for orbits escaping through the tokamak wall (red) at y = 0, and through an exit (green) with width
(a) wy = 0.0045 and (b) wy = 0.0090, with wx = 20wy . White regions are for orbits which never escape through either exit
region. The limiter perturbation has m = 7 and Ih/Ip = 0.06.
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(b)

Fig. 3. (Continued )

basins have an extremely involved boundary, with
a fractal nature revealed by the incursive structure
present in finer scales.

The relative sizes of the two exit basins depend
on the exit area, as revealed by Fig. 3(b), where the

vertical width has increased to wy = 0.0090, the
horizontal width being enlarged in the same pro-
portion as before. The green basin has substantially
augmented its relative area, with respect to the red
basin.

Fig. 4. Backward iterates of the rectangular box for which exit basins of field lines are painted green. The exit basin of the
tokamak wall is painted red. Parameters are the same as in the previous figure.
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The incursive fingers which characterize the
exit basin of the small rectangular box in Fig. 4
are a consequence of the underlying dynamics of
the chaotic region, governed by its invariant man-
ifold structure. This can be observed by consid-
ering the inverse images, under the action of the
mapping F, of the small rectangular box in Fig. 4:
it expands in one direction (roughly the radial
one) and shrinks along the other direction. Such
directions are provided by the unstable and stable
manifolds, respectively, of unstable periodic orbits
embedded in the chaotic region [Pentek et al., 1995].
Chaotic trajectories are repelled along the unsta-
ble manifolds of such orbits. Since those manifolds
intercept, in general, the tokamak wall at y = 0,
almost all trajectories would eventually hit the wall,
with the exception of a Lebesgue measure zero set
of orbits.

However, if there is another obstacle, such as
the small rectangular box in Fig. 4, trajectories will
hit this exit before the wall, provided the unsta-
ble manifolds also intercept this rectangular box.
The wider the exit is, the more unstable manifold
segments will cross this exit, leading to trajectories
escaping by that exit. Hence, the size of the exit
influences the number of initial conditions which
escapes through that exit; in other words, the size
of its respective exit basin, as illustrated in Fig. 3.
A small rectangular box in the chaotic region has
a comparatively small exit basin [Fig. 3(a)], with
respect to a wider rectangular box [Fig. 3(b)]. The
influence of the exit size on the basin structure can
be quantified by the uncertainty exponent technique
to be discussed in the next section.

4. Fractal Exit Basin Boundaries

The exit basins depicted in Fig. 3 strongly suggest
that the boundary separating two exit basins of a
chaotic region has a fractal nature. The reason for
this claim lies on the underlying structure of the
chaotic region, or a chaotic saddle, formed by the
intersections of the stable and unstable manifolds
of an infinite number of unstable periodic orbits
embedded in the chaotic region, and which support
the ergodic measure of typical orbits [Grebogi et al.,
1988]. A chaotic saddle is a nonattracting invariant
set with a dense chaotic orbit [Grebogi et al., 1983].
Initial conditions belonging to this saddle are bound
to remain in the chaotic region, unless portions of
the saddle intercept the exit regions. In this case,
even points in the chaotic saddle would eventually

escape. Nevertheless the Lebesgue measure of those
exceptional initial conditions is zero. On the other
hand, orbits originating from randomly chosen ini-
tial conditions usually wander in the vicinity of the
chaotic saddle for a finite amount of time before
escaping the chaotic saddle [Lai & Winslow, 1995].

Figure 5 shows the invariant stable and unsta-
ble invariant manifolds stemming from an unstable
orbit (saddle point) embedded in the same chaotic
region as that considered in previous figures. These
manifolds were numerically obtained by considering
the first 80 forward (backward) images of a small
ball filled with a large number (5000× 5000) of ini-
tial conditions and centered at a numerical approxi-
mation for the location of an unstable periodic orbit
(saddle point) embedded in the chaotic orbit. There
is a similarity between the striations displayed by
the manifold branches and the incursive fingers
characterizing pieces of the exit basins and which
act as escape channels through which chaotic trajec-
tories are pushed towards either the tokamak wall or
another exit interposed in this region [da Silva et al.,
2002]. In Fig. 7 we show a numerical approximation
of the chaotic saddle resulting from the intersection
of the manifolds in Fig. 5.

The general mechanism responsible for the for-
mation of the incursive fingers identified with such
escape channels is illustrated in Fig. 6. Let P be
an unstable periodic point of the map F embed-
ded in the chaotic region, with its respective stable
(unstable) subspaces, denoted as Es(P ) (Eu(P )).
The eigenvalues corresponding to Es(P ) and Eu(P )
are real and have moduli greater than and less than
unity, respectively. These subspaces, on the other
hand, are tangent to the stable (W s(P )) and unsta-
ble (W u(P )) manifolds at P . Let also A be a part of
some exit basin, whose boundary is a partitioning
line crossing the stable manifold of P . We assume
also that the forward images of this region under
the mapping, Fm(A), m = 1, 2, 3, . . . , also cross the
stable manifold. These forward images approach
the saddle point P such that they produce fingers
which shrink along the direction of the stable mani-
fold W s(P ), with a rate equal to the corresponding
eigenvalue of the tangent map in P . On the other
hand, since the map F is symplectic, in order to
preserve areas these fingers will also elongate along
the direction of the unstable manifold W u(P ). As
time goes to infinity, the fingers tend to accumulate
in the unstable manifold itself, forming long and
winding spaghetti-like striations which accompany
W u(P ) [Pentek et al., 1995].
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Fig. 5. Stable (black) and unstable (red) manifolds of an unstable periodic orbit (green) embedded in the chaotic region.

The same reasoning holds, mutatis mutandis,
for the backward images of the F−m(A), m =
1, 2, 3, . . . . Segments of the partitioning line lying
between the filaments of the unstable manifold
will be transported due to the backward dynam-
ics and they will accumulate asymptotically on the

saddle fixed point

unstable manifold

stable manifold

partitioning
line

forward images

Fig. 6. Scheme showing the formation of the incursive fin-
gers of the exit basin.

filaments of the stable manifold W s(P ). Thus the
boundary of the exit basins contains the stable and
unstable manifolds of the chaotic saddle, or least
a part of them. It is necessary that the exit basin
boundary crosses the invariant manifolds forming
the chaotic saddle in order to have a fractal com-
ponent. Moreover, since the fingers approaching the
fixed point P extend smoothly along some manifold,
this means that the exit basin boundary has also a
smooth (nonfractal) component. Nevertheless, it is
the fractal component of the exit basin boundary
which is ultimately responsible for the formation of
the escape channels and the corresponding nonuni-
formity of the magnetic footprints.

Fractal basin boundaries, such as those sepa-
rating two exit basins, have final state sensitivity.
Any initial condition is known up to a given uncer-
tainty ε, such that we can think of a ball of radius ε
centered at that initial condition. If the initial con-
dition is so near the fractal boundary that the ε-ball
does intercept the exit basin boundary, we cannot
be sure if that initial condition will evolve to one
or another exit. The union of all ε-balls intercept-
ing the basin boundary gives the uncertain fraction
(after dividing by the area of the phase space region
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Fig. 7. Chaotic saddle formed by intersections of unstable and stable manifolds.

to be analyzed) f(ε). In fractal basin boundaries,
the uncertain fraction scales in a power-law fash-
ion with the uncertainty ball radius: f(ε) ∼ εα,
where α is the uncertainty exponent. If d is the
box-counting (fractal) dimension of the boundary,
it follows that α = 2−d, since the surface of section
is two-dimensional [McDonald et al., 1985].

The more involved the basin boundary is, the
higher is its box-counting dimension (i.e. closer to
the phase plane dimension 2). Hence, d can be used
as a quantitative characterization of the basin struc-
ture complexity. We can examine, for example, the
influence of the exit width on the corresponding
basin structure by computing the basin dimension
through the uncertainty exponent method. We have
selected a region comprising a representative por-
tion of the exit basin boundaries in Fig. 3 and cov-
ered it with a fine mesh of initial conditions. At each
initial condition A we choose at random three other
initial conditions B1, B2 and B3, inside an ε-ball
centered at A. If A and B1,2,3 lead to orbits escap-
ing through different exits, we call A a ε-uncertain
initial condition. The uncertain fraction was esti-
mated from the ratio between the number of all
uncertain conditions and the total number of them
(the number of mesh points).

The uncertainty exponent was obtained from a
least-squares fit in a log–log plot of f(ε) versus ε
for different values of the exit width wy (the other
width is taken as an integer multiple wx = 20wy).
Figure 8 shows our results for a series of differ-
ent values of wy. We can see a decrease in the

0 0.005 0.01 0.015
w

y

1.7

1.75

1.8

1.85

1.9

1.95

2

d

Fig. 8. Uncertainty dimension for the boundaries of the
exit basins as a function of the exit width. Orbits escape
either through the tokamak wall (y = 0) and a rectangu-
lar box centered at (x = 3.1, y = 0.22) and widths wy and
wx = 20wy.
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dimension of the basin boundary as the exit width
is increased. Comparing Figs. 3(a) and 3(b) we con-
clude that, as the area of the exit basin increases,
its boundary dimension decreases. Similar findings
were reported on previous studies, where the escape
rate was studied with respect to variations in the
exit area [Schneider et al., 2002; Sanjuan et al.,
2003].

5. Wada Exit Basin Boundaries

The Wada property has been also observed in the
exit basin structure of magnetic field lines in a toka-
mak with ergodic limiter, when there are three or
more exit basins. A point P is a boundary point
of an exit basin B if every open neighborhood of
P intersects the basin B and atleast another basin.
The basin boundary is the set of all boundary points
of that basin. Furthermore, the boundary point P
is also a Wada point if every open neighborhood of
P intersects at least three different basins. A basin
boundary is said to possess the Wada property if
every boundary point of B is a Wada point, such
that the boundary of such a basin is a Wada exit
basin boundary [Nusse & Yorke, 1996a, 1996b].

In the plasma physics context of this paper,
this is a striking phenomenon, since any boundary
point is arbitrarily close to points of all exit basins
[Kennedy & Yorke, 1991]. Since one initial condition
is always known within some small nonzero uncer-
tainty, this uncertainty ball will contain points of
all exit basins. Hence, one has no previous certainty
(however small the uncertainty ball may be) regard-
ing which exit basin will the trajectory asymptote
to. This means that no reliable forecasting can be
made from boundary points possessing the Wada
property, which limitates our knowledge of the
situation.

An example of Wada boundary in tokamaks
which has more than two exit basins is depicted
in Fig. 9, where we painted the exit basins of two
small rectangular boxes (in blue and green, respec-
tively) and the tokamak wall (in red). The Wada
property is strongly suggested by successive mag-
nification of a rectangle containing pieces of the
three exit basins [Fig. 9(b)]. Further magnifications
enhance this effect, since stripes of all basins coex-
ist in finer scales [Fig. 9(c) and 9(d)]. Similar results
appear when we divide the tokamak wall into dif-
ferent regions and consider them as the exits, so as
to assign a given exit basin to each region [da Silva
et al., 2002].

There is, however, a more precise identification
of the Wada property that can be used in this con-
text. A necessary, albeit not sufficient condition for
a given exit basin boundary to possess the Wada
property is that the unstable manifold W u(P ) of an
unstable periodic orbit P belonging to this bound-
ary must intersect every exit basin. We have verified
explicitly the necessary condition for the existence
of exit basin boundaries with the Wada property,
by considering in Fig. 9(b) (in yellow) a piece of
the unstable manifold stemming from a saddle point
belonging to an exit basin boundary. This manifold
piece clearly intercepts points of the red, green and
blue basins, hence the unstable manifold of a peri-
odic orbit P belonging to an exit basin boundary
has intersected all the exit basins.

In order that a basin boundary possesses the
Wada property, at least one of the complementary
conditions below has to be satisfied [Kennedy &
Yorke, 1991; Nusse & Yorke, 1996]: (i) the sta-
ble manifold of the point P must be dense in the
boundary of the three regions; (ii) the periodic
orbit P must be the only accessible orbit from the
exit basin B. Otherwise, every unstable manifold
of other periodic orbits that are accessible from B
must intersect all basins. We say that a bound-
ary point P is accessible from a particular basin
if there is another point in the interior of the basin
which can be connected to P by a finite length curve
that contains no boundary points except P [Poon
et al., 1996]; (iii) the periodic orbit P must gen-
erate a basin cell. A cell is a region with a piece-
wise smooth boundary, whose edges are alternately
pieces of stable and unstable manifolds of a periodic
orbit. A basin cell is a cell that is a trapping region
[Nusse & Yorke, 1996b].

The direct numerical verification of these com-
plementary conditions turns out to be rather diffi-
cult, so that we used another argument of checking
the Wada property for the exit basin boundaries in
this work; and which consists of verifying that every
open neighborhood of a boundary point intersects
all exit basins [Toroczkai et al., 1997]. The reason
for this claim is the following [Toroczkai et al.,
1997]: let us take a point P on the exit boundary,
which is actually the stable manifold of some peri-
odic orbit containing the point P . We take a small
ball D of initial conditions centered at P , and com-
pute its forward images under the mapping, Fm(D).
As m increases the image of D becomes a convoluted
and very thin ribbon extending along the unstable
manifold of P , as can be observed in Fig. 5.
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(a) (b)

(c) (d)

Fig. 9. (a) Exit basins for orbits escaping through the tokamak wall (red) and two small rectangular boxes (green and blue,
respectively) with orange borders. (b)–(d) successive magnifications of rectangular boxes with black borders. The yellow line
in (b) is a numerical approximation of the part of the unstable manifold of an unstable orbit embedded in the chaotic layer.

The ball D is a connected set, and so are
its images under the mapping F. Consider now
that there is a finite value of m = m0 such that
Fm0(D) intersects all the exit basins (as shown in
Fig. 9). Because Fm0(D) maps to D under m0 back-
ward iterations, all the basin structures present in
Fm0(D) are also mapped into D. Since we did not
make any particular assumption about the radius
of D, and since the point P can be anywhere on
the stable manifold, this statement is valid for all

radii (whenever small), such that the entire stable
manifold is a Wada exit basin boundary.

The reasoning we presented in the previ-
ous section leads to the conclusion that the exit
basins closely follow the invariant manifold struc-
ture underlying the dynamics in the chaotic region.
The exit basin boundaries are, thus, made of parts
of invariant manifolds stemming from unstable peri-
odic orbits (saddles in two dimensions) embedded
in the chaotic region. The fingerprint of the Wada
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property is the fact that the stable manifold of an
orbit belonging to the basin boundary intercepts
pieces of all exit basins.

6. Conclusions

We have described in this paper topological proper-
ties of exit basins which have potential applications
in the design of experiments aiming to make uni-
form the plasma-wall interactions in tokamaks. The
original belief was that a chaotic layer of magnetic
field lines could spread particle and energy fluxes
uniformly towards the tokamak wall. Further exper-
iments suggested that this would not be necessarily
so. Actually this nonuniformity may be a conse-
quence of the escape channels which appear due to
the extremely involved nature of stable and unsta-
ble manifolds embedded in the chaotic region.

The magnetic footprints on the tokamak wall
(or, in general, on any obstacle placed in the chaotic
region) are thus strongly affected by the fractal
nature of the chaotic saddle underlying the chaotic
region. Besides the fractal character, there are also
Wada boundaries, for which any boundary point is
arbitrarily close to points of all exit basins (when
there are at least three of them). This makes for
an extremely intertwined structure of basin pieces,
such that it may be virtually unfeasible to make any
kind of prediction regarding what exit basin a given
initial condition will asymptote to, since such initial
conditions are known only up to a finite precision.

For a practical application of this fact, let us
suppose that an experimentalist would like to inject
a particle beam in the plasma region dominated
by a chaotic magnetic field, such that the beam
is targeted at a given region of the tokamak wall
or another obstacle, like the rectangular boxes in
Fig. 9. Due to the extremely involved nature of the
basin structure when the Wada property is present,
it is very difficult to make reliable predictions about
the behavior of the beam, as long as the particles
which gyrate around magnetic field lines, thus dis-
regarding drifts caused by field nonhomogeneities
and curvatures [Chen, 1984].

The main purpose of this paper was to inves-
tigate topological properties related to the exit
basins. It would be also possible to study this situ-
ation through a metric approach, computing escape
rates and times, in order to quantify chaotic trans-
port of magnetic field lines in the edge region of the
tokamak, and for which there exists a number of
rigorous results [Meiss, 1992].
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