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We study the dynamics of networks of inhibitory map-based bursting neurons. Linear analysis allows us to
understand how the patterns of bursting are determined by network topology and how they depend on the
strength of synaptic connections, when inhibition is balanced. Two kinds of patterns are found depending on
the symmetry of the network: slow cyclic patterns riding on subthreshold oscillations where almost all neurons
contribute bursts in a sparse manner and fast patterns of bursts in which only one of two mutually exclusive
groups of neurons take part. We also discuss the properties of the neuron model that underlie the described
phenomena, comment on the limitations of the technique of analysis, and point to some possible ways to
overcome them.
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I. INTRODUCTION

The behavior of networks of coupled neurons is a central
topic in theoretical neuroscience �1�. In these complex sys-
tems, collective synchronous activity seems to be critical to
the efficient processing of information by the nervous sys-
tem. In the past decade a great deal of theoretical and experi-
mental work has been done to analyze synchronizing behav-
ior in a great variety of ensembles of neurons and other
excitable cells. Among these, some of the best studied are
those made up by bursters; they include thalamic neurons
during periods of sleep or drowsiness �2�, dopaminergic neu-
rons in the midbrain �3�, pancreatic � cells �4�, and central
pattern generator neurons. Reciprocal inhibition is a core fea-
ture in most of these, and has been intensively studied as a
pattern generating mechanism in rhythmic tasks such as
swimming, walking, heartbeat, and respiration �5,6�.

From the theoretical point of view, it is of great interest to
understand how the structure of these inhibitory networks
determines the observed patterns. Previous work by the au-
thors has investigated this topic in the context of winnerless
competition �7� and sensory encoding �8�. In the present con-
tribution we establish the validity of linear analysis to predict
complex patterns in networks of inhibitory bursting neurons,
provided that certain conditions hold. One of the conditions
is balance, which means that all neurons should receive the
same amount of inhibition. As opposed to excitatory or dif-
fusive connections, where the total number of signals re-
ceived by each neuron is the only parameter that matters for
synchronization �9�, we shall see that the patterns formed
due to balanced inhibitory synapses depend and may be pre-
dicted on the basis of higher order properties of the topology.

Network models supporting global or partial synchronized
states have been generally formulated by describing each
neuron by means of a set of differential equations linking the
rate of change of the membrane potential to the temporal
evolution of one or more gating variables that account for the
intrinsic dynamics of the neuronal membrane. Thus, in order
to simulate an ensemble of 103 neurons a few thousand
coupled differential equations have to be simultaneously

solved. For the purpose of simulating the behavior of large
networks of neurons it is convenient to choose simpler mod-
els that, while retaining the features relevant to the phenom-
ena under investigation, reduce the computational and ana-
lytical complexity of the problem as much as possible
�10,11�. In the past few years another class of neuron model
has been introduced in which the single neuron dynamics is
represented by means of a two-dimensional map �12�. Re-
cently, a model of this kind has been successfully used to
describe the global behavior of large cortical networks, thus
proving the feasibility of replicating prominent spike pattern
characteristics of complex systems by using this computa-
tionally efficient approach �10�. Although we will not be
dealing here with large networks, the model presents the ad-
ditional particularity of a neutrally stable slow variable,
which allows for easy tracking of its fixed point and en-
hances resonance properties �13�. Both features are conve-
nient for the present investigation.

We begin with a description of the map-based neuron
model of our choice and the connection scheme. We then
proceed to describe some typical examples of patterns in
small networks. The core of the paper lies in the section
devoted to the stability analysis of fixed points; here the
relationship between topology and patterns is clarified, the
sensitivity of patterns to the strength of inhibition is ex-
plained, and a classification of the networks regarding their
synchronization properties emerges. We then discuss some
limitations of our investigation and hint at remedies and ex-
tensions.

II. NEURON MODEL

We consider the neuron map model proposed by Rulkov
�14�, which responds to equations

xn+1 = f�xn,yn + �� ,

yn+1 = yn − ��xn − � + 1� , �1�

where
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f�x,y� = ���1 − x�−1 + y , x � 0

� + y , 0 � x � � + y ,

− 1, x � � + y .
� �2�

In this model, � is a small parameter, and therefore xn is
the fast variable, representing an appropriately scaled mem-
brane voltage, whereas yn is a slow gating variable. Param-
eter � defines the behavior of the neuron: �	4 allows burst-
ing while ��4 does not. Two types of external excitations
may enter this model: � directly pulls the fast variable to-
ward higher values, and therefore is comparable to injected
current, while � enters the slow variable equation and has a
modulatory effect. In the present work we will connect neu-
rons through the slow variable.

Phase plane analysis through nullclines gives us very
valuable insights about the behavior of the map �14�. Since
0��
1, the time course of yn is much slower than that of
xn. Thus we can study the dynamics of the fast variable by
treating yn as a parameter in the first of Eqs. �1�. In Fig. 1 the
fast variable nullclines form a concave curve with two
branches as a function of parameter y. The upper branch Su
corresponds to unstable fixed points of the fast subsystem
and the lower branch Ss to its stable fixed points. The slow
variable nullcline is a horizontal straight line �given by
x=−1+��; whenever the state is above �under� this line the
slow variable y moves toward the left �right�. If we now
include the dynamics of the slow variable, we can under-
stand the mechanism of bursting. When �=0, as in the fig-
ure, the slow nullcline coincides with the x=−1 line where
every trajectory that shoots above the unstable x nullcline
returns after a spike. If this line intersects the unstable branch
of the x nullcline �which happens only if �	4�, the system
is able to produce bursts. Dotted curves Sspikes represent av-
erage values of the fast variable x for each value of the
variable y when the neuron is spiking.

The Rulkov map has one and only one fixed point at the
intersection of the x and y nullclines. Changes in the stability
of this fixed point take place through changes in � and are
due to a subcritical Neimark-Sacker bifurcation. For �
1,
this happens when the slow nullcline crosses the vertex of
the fast nullcline, that is, when −1+��1−��.

An important feature of the model is the neutral, instead
of exponential, stability of the slow variable, i.e., the fact that

it has no tendency to grow or shrink when perturbed. This
translates into a horizontal slow nullcline in the phase plane.
As a consequence, fast currents, embodied in the � term,
have only transient effects on the dynamics, because they
merely shift the fast nullcline horizontally, and thus leave the
phase plane configuration intact �13�. It is for this reason that
we will use instead slow coupling to observe the formation
of patterns in our networks.

In order to form networks, we consider one of the sim-
plest models of synapses between the neurons: A linear,
thresholded injection of current �11�. This means that the
interaction term is directly proportional to the presynaptic
neuron voltage, as long as it is above a certain level. This
does not mean that the corresponding synapses are fast, be-
cause the interaction will enter the slow variable. We are
interested in the role of inhibition in pattern formation, so
synapses will be inhibitory. The complete model for our neu-
ral network is

xn+1
i = f�xn

i ,yn
i � ,

yn+1
i = yn

i − �i	xn
i + 1 − �i − 


j

gc
ij�xn

j − � j�H�xn
j − � j�� .

�3�

In these equations, index i runs from 1 to N, the total
number of neurons. The synaptic strength of connection be-
tween neuron i and neuron j is given by gc

ij �0. H�x� is the
Heaviside step function and � j is the threshold value for the
the variable x above which the presynaptic neuron j is sup-
posed to influence postsynaptic neurons. This value is taken
as �=−2 by default in our simulations; we will discuss the
importance of this low threshold. Finally, �i is the constant
external bias for each neuron. In what follows we will refer
to homogeneous networks where all neurons share the same
�, �, �, and � parameters. In Sec. V we will discuss briefly
the effect of inhomogeneity.

III. DYNAMICS IN NETWORKS WITH
BALANCED INHIBITION

Networks with a high degree of symmetry, such as rings
or lattices, are, because of their simplicity, usual choices for
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FIG. 1. Left: Bifurcation dia-
gram for the Rulkov single-neuron
fast subsystem. Ss and Su are the
stable and unstable branches of
the fast dynamics, while Sspikes

represent mean values of the fast
variable x in the spiking cycle of
each value of the slow variable y.
The horizontal dashed line is
the slow subsystem nullcline, at
x=−1+�. Right: Time evolution
of the two variables of the Rulkov
model. Parameters are �=6.0, �
=0.001, and �=0.
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studies of network dynamics. We begin our investigation
with a small 4�4 periodic two-dimensional lattice of
Rulkov neurons with �=6, �=0.001, and �=0. This makes
them, when isolated, periodic bursters. Each neuron will be
connected to its eight nearest neighbors with a coupling
strength gc that we will use as a parameter to explore differ-
ent behaviors of the network. The network is thus completely
regular and symmetric. The only asymmetry that will enter

the following simulations is the initial state of each neuron,
which will be chosen randomly to allow us to investigate the
different attractors for each value of synaptic strength gc.

Figure 2 represents the x variable of each neuron in our
4�4 lattice for different values of inhibitory strength �gc�.
When inhibition is weak, all neurons in the lattice fire, adopt-
ing different antiphase synchronization patterns �row or col-
umn for gc=−0.05; checkered for gc=−0.15�. This has been
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FIG. 2. Patterns of activity in a homogeneous 4�4 periodic two-dimensional lattice with eight nearest neighbors, for different values of
gc. Other parameters are �=6, �=0.001, �=0, and �=−2.
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partially explained in a previous paper �11�. It is apparent
that the duty cycle of each neuron decreases with increasing
�gc�, giving rise to the expected decrease in activity. Then
for gc=−0.20 all neurons become silent; seemingly, inhibi-
tion is so strong that no single neuron can be active. When
activity reappears beginning at gc=−0.25 �we show the case
gc=−0.40�, only half of the neurons are active. After a sec-
ond interval of silence �gc=−0.49�, activity reappears exclu-
sively in isolated neurons �gc=−0.55� with a very long duty
cycle because now they have no inhibiting neighbors.

All of the above is equally valid for any 2n�2m square
lattice with an eight-neighborhood: The same patterns appear
at the same values of inhibition. Other planar lattices �square
with 4-neighborhood; triangular, hexagonal, etc.� show dif-
ferent patterns, but they all share the same trend: For low
inhibition all neurons are active, then all become silent, then
some neurons regain activity while others remain silent, and
so forth.

The network needs not have a high degree of symmetry
for the pattern formation phenomenon to appear. In Fig. 3 the
activity of a network based on a regular random graph of
N=16 vertices with degree =6 �that is, six synapses per
neuron� is represented. Connections are bidirectional. For
weak values of inhibition �not shown in the figure� the all-
active �gc	−0.22� and the all-silent �−0.24�gc�−0.22�
configurations are obtained, just as in the case of the lattice.
When inhibition is stronger �as in the figure, where
gc=−0.3� some of the neurons fire. Two complementary
groups of neurons emerge and one or the other will be active
depending on the initial conditions. Note that the number of
synapses each neuron receives is the same and thus the ex-
planation of the pattern depends on higher order properties of
the network.

Why do these networks become silent and what triggers
the reappearance of activity from total silence when inhibi-
tion increases further? The answer to the first part of this
question is straightforward: Increasing inhibition is equiva-
lent to decreasing � in Eqs. �1�. This brings the slow
nullcline in Fig. 1 down until it crosses the stable branch of
the fast nullcline and thus neurons draw each other into si-
lence. For this effect only the first order properties of the
network �that is, the degree� are important: The higher the
degree, the less strength of individual synapses will be
needed. But the loss of stability of this equilibrium with even
stronger inhibition is more complex: It requires small posi-
tive voltage perturbations in one neuron to cause negative
excursions in its neighbors that will in turn produce positive
changes in second order neighbors, and so on, in a way that
amplifies the original perturbation. That is, it depends on
network modes. The next section shows indeed how linear
analysis predicts the patterns in Figs. 2 and 3, and highlights
the features of the neuron model that make them possible.

IV. STABILITY ANALYSIS

The networks we are going to study share the property of
balanced inhibition. This means that the weighted sum of
synapses arriving at each neuron is the same, or, in terms of
Eqs. �3�, that the row sum 
 jgc

ij is a constant independent of
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FIG. 3. Patterns of activity in a random regular network of N
=16 neurons with =6 bidirectional connections. Top: The structure
of the network. White and gray neurons represent the two possible
groups of active neurons when inhibition is strong �gc�−0.25�.
Neuron 12 is inactive in all cases. Center and bottom: Two different
simulations of the network with gc=−0.3 showing the two possible
groups of active neurons. Although graphically distributed as a lat-
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i. This is a generalization of the concept of a balanced net-
work �15� where the row sums are 0; in our inhibitory net-
works, the constant row sum is negative. Symmetric net-
works based on regular graphs, such as those we have so far
presented, are particular cases of networks with balanced in-
hibition, and we will refer to them as regular networks.

The balance property together with homogeneity in neu-
ron parameters ensures that the synchronized state where
�xn

i ,yn
i �= �xn

j ,yn
j � for any i and j is an invariant manifold of

the system. We now show that, with a low synaptic threshold
�, this manifold will contain a fixed point whose stability
determines the disappearance of activity in the network and
the rebirth of activity with stronger inhibition, as shown in
Fig. 2. Indeed, in the general case the fixed points of Eqs. �3�
must satisfy the following condition, given by the slow vari-
able equation:

x*
i = − 1 + �i + 


j

gc
ij�x*

j − � j�H�x*
j − � j�, i = 1, . . . ,N .

�4�

The Heaviside function forbids a straightforward solution
of this system, but its thresholding character allows a trial
and error approach by postulating first which neurons are
above or below the threshold. Thus for the equilibrium solu-
tion where all neuron voltages x*

i are above the chemical
interaction threshold � j, Eqs. �4� can be simply written as the
linear system

x* = − 1N + � + gc�c�x* − �� , �5�

where 1N is the all-ones column vector of length N, x*
= �x*

1 , . . . ,x*
N�T, �= ��1 , . . . ,�N�T, and �= ��1 , . . . ,�N�T. We

have introduced a common gc as a convenient scaling param-
eter for the strength of the synapses; it will be negative for
inhibition. �c is the adjacency matrix of synaptic connec-
tions, with values �c

ij =1 or �c
ij =0 depending on whether or

not there exists a synapse from neuron j to neuron i, and
constant row sums =
 j�c

ij for our balanced networks of
degree . This implies that all synapses have the same
strength gc, but results will also apply to nonbinary �c ma-
trices as long as they are balanced.

The solution of Eq. �5� is generically unique, because
only at a few discrete values of gc �when it equals the inverse
of an eigenvalue of �c� will the system matrix be singular.
Thus, generically, at most one equilibrium point can exist
where all neurons are above synaptic threshold level. The
solution will be valid only if x*

i 	�i for i=1, . . . ,N. Let us
suppose that this is the case and analyze the stability of this
fixed point. The Jacobian of the system of Eqs. �3� can be
separated into intrinsic and coupling parts as

J = F + �gc�c � Kc. �6�

F is a 2N�2N block-diagonal matrix where each 2�2
block is

Fi =  f��x*
i � 1

− �i 1
� . �7�

We have abused notation making f��x�=�f�x ,y� /�x and
we suppose that all x*

i �0; that is, that they are in the non-

linear part of f�x ,y�. The symbol � stands for the tensor or
Kronecker product and Kc is the 2�2 synaptic coupling ma-
trix

Kc = 0 0

1 0
� .

In the general case there is little more we can do; we need
to diagonalize the Jacobian case by case and study its eigen-
values as a function of parameters. But when the network is
homogeneous and balanced, the equilibrium state is also ho-
mogeneous, that is, x*

i =x* for all i. We may explicitly obtain
it from Eq. �5� as

x* =
− 1 + � − gc�

1 − gc
. �8�

Now every Fi is the same matrix F and the Jacobian can
be compactly written

J = IN � F + �gc�c � Kc, �9�

where IN is the N�N identity matrix. In this case we can
diagonalize the Jacobian simply by diagonalizing �c, and
obtaining a block diagonal matrix with each block �2�2�
given as

Mk = F + sk�gcKc = 	 f��x*� 1

��− 1 + gcsk� 1
� �10�

=� ��1 − gc�2

�2 − � − �1 − ��gc�2 1

��− 1 + gcsk� 1
� , �11�

where k=0, . . . ,N−1 and sk are the eigenvalues of �c. For
each eigenvalue of �c we obtain a block Mk of the full Jaco-
bian. The stability of the equilibrium solution requires that
the eigenvalues of each Mk matrix have absolute value lower
than 1. We thus obtain a function, the maximum absolute
value of the eigenvalues of Mk, that, for given neuron param-
eters �, �, and �, and connectivity parameters gc, , �, and
sk, determines the stability of the network around the fixed
point. This is called the master stability function �16� and is
a powerful tool to separate the influence of the network to-
pology on stability from that of the intrinsic neuron dynam-
ics.

Observe that each Mk block produces two eigenvalues and
eigenvectors of the Jacobian �9�. Each eigenvector is tangent
to an invariant manifold that, when the mode is dominant
�i.e., when it is the only unstable mode or its exponential rate
of growth is by far the highest� will define the evolution of
the system. We will therefore need to calculate the dominant
eigenvectors of the Jacobian to draw conclusions about net-
work activity patterns. Fortunately, there is a direct relation-
ship between eigenvectors of the Jacobian and of �c. It is
straightforward to prove that if vk is the �N�1� eigenvector
of �c with eigenvalue sk, and if wk1,2 are the �2�1� eigen-
vectors of block Mk, then the eigenvectors of the Jacobian
�9� corresponding to that block are vk � wk1,2. This means
that all the information about the behavior of each neuron in
a mode is contained in vk, while the wk1,2 eigenvectors just
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provide proportionality constants for the fast and slow vari-
ables. We will thus describe the modes of the full system
simply by looking at the components of the eigenvectors of
�c.

A. Stability analysis of symmetric networks

When the network is symmetric, as in the case of the
examples presented in Sec. III, all the sk are real. This allows
a clear graphical representation of stability as a function of
network topology and strength of inhibition. Contours in Fig.
4�a� represent, for different values of the degree  of the
network, the points in the gc-sk plane where the modulus of
the maximum eigenvalue of Mk is 1. For a given symmetric
network with balanced inhibition, we only need to place its

eigenvalues sk on the chart and see at what value of gc they
cross the stability contour corresponding to its degree .
These crossings correspond to bifurcations in the full system;
we will see in Eqs. �12� and �13� that crossing the vertical
contours corresponds to Neimark-Sacker bifurcations, while
crossing the hyperbolic contour corresponds to saddle-node
bifurcations. In the figure, the eigenvalues sk of the 4�4
lattice with 8-neighborhood are represented at the value of gc
where the uniform silent state is about to lose stability. We
can see there that the mode with eigenvalue s1,2=−4, which
has multiplicity 2, is responsible for the loss of stability. The
corresponding eigenvectors are

v1 = �1,0,1,0,0,− 1,0,− 1,1,0,1,0,0,− 1,0,− 1� ,

v2 = �0,1,0,1,− 1,0,− 1,0,0,1,0,1,− 1,0,− 1,0� .

Observe that v1+v2 corresponds to row modes while v1
−v2 corresponds to column modes. Of course depending on
initial conditions any linear combination �1v1+�2v2 may be
amplified, but in the end only the signs of the resulting vec-
tor elements matter to decide which neurons are drawn to-
ward bursting and which toward silence. Thus only four pat-
terns �even rows, odd rows, even columns, and odd columns�
result when inhibition provokes the loss of stability. If inhi-
bition is strong enough, other eigenvalues will also cross the
stability boundary, but the rate of growth of the row and
column modes will always be highest and almost every ini-
tial condition will end up with the row or column pattern.

Figure 4�b� represents the eigenvalues of the uniform
equilibrium of the 4�4 lattice with an 8-neighborhood as a
function of gc; it can be seen as a superposition of horizontal
cross sections of the master stability chart at the sk values of
the network. All modes gain stability at around gc=−0.103
�corresponding with the almost vertical contour in the master
chart� and lose it at different values of gc, the first at
gc=−0.250 �these are the two sk=−4 modes�.

In the case of the regular random network of Fig. 3, the
most negative eigenvalue is sk=−4.17 and its eigenvector is

vk = �0.33,− 0.05,0.12,0.37,0.32,− 0.09,0.34,− 0.29,− 0.08,

− 0.34,0.20,0.03,0.07,− 0.27,− 0.17,− 0.40� .

Observe that the two groups of neurons of Fig. 3 corre-
spond to eigenvector elements of the same sign. Neuron 12,
which was inactive in both cases, has the smallest compo-
nent; it is only weakly excited with this mode and the su-
prathreshold pattern of the network prevents it from bursting.
One particularity is worth elaborating: The eigenvector com-
ponents sum up to zero. This holds for any symmetric matrix
with constant row sums because of orthogonality with re-
spect to the all-ones eigenvector. This, and numerical explo-
ration of symmetric random matrices, suggests that there are
usually about the same number of negative and positive com-
ponents in the dominant eigenvector of symmetric networks,
and with strong enough inhibition neurons will split into two
groups of similar size, one or the other being active depend-
ing on initial conditions.
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FIG. 4. �a� Master stability contours in the gc−sk plane of the
uniform fixed point for balanced symmetric networks of Rulkov
neurons with different degrees . The boundaries marked N-S cor-
respond to Neimark-Sacker bifurcations, while the boundary
marked S-N corresponds to saddle-node bifurcations. Modes that
fall inside the shaded area are stable. Circles represent graph eigen-
values of a 4�4 periodic lattice with 8-neighborhood, drawn at
gc=−0.25, precisely where one mode �corresponding to row or col-
umn activity� becomes unstable. �b� Natural logarithm of the abso-
lute values of the eigenvalues of the Jacobian �9� for the periodic
4�4 lattice with 8-neighborhood around the uniform fixed point as
a function of gc. All modes gain stability near gc=−0.1 through
Neimark-Sacker bifurcations and become unstable for lower values
of gc �beginning at gc=−0.25� through degenerate saddle-node bi-
furcations. Other parameters are �=6, �=0.001, �=0, and �=−2.
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The master stability chart in Fig. 4 is valid only for our
particular choice of parameters �, �, �, and �. We can over-
come this shortcoming by using directly the explicit expres-
sion �11� to find bifurcation points. For a Neimark-Sacker

bifurcation, the necessary condition �1�̄2=1 �with �1, �2 the
eigenvalues of Mk� together with �
1 yields

f��x*� � 1 ⇒ gc �
− 2 + � + ��

��� − 1 + ��
. �12�

The condition f��x*��1 is the same as in an isolated
Rulkov neuron; it is the Neimark-Sacker bifurcation that
happens when � is lowered to the point where the slow
nullcline crosses the stable branch of the fast nullcline and
stops the bursting. Here the effective � is lowered by the
inhibitory connections with immediate neighbors. Observe
that the condition is independent of sk; thus all modes gain
stability with increasing �gc� at almost the same time �the
differences due to the neglected term of the order of ��. In
the master stability chart the bifurcation corresponds to the
almost vertical boundary lines; note the inverse proportion-
ality between  and gc as predicted in Eq. �12�.

The necessary condition �12� does not guarantee that the
eigenvalues will be complex. For this, it is also necessary
that gcsk�1. Thus, the boundary segments given by Eq. �12�
end at the point where gcsk=1. These points form a second
boundary, defined by a saddle-node bifurcation. Indeed, forc-
ing Eq. �11� to have �1=1 we obtain the saddle-node bifur-
cation condition

gcsk = 1. �13�

This condition is independent of neuron parameters and of
; it corresponds to the branch of hyperbola shared by all
contours in Fig. 4. While the Neimark-Sacker bifurcations
could be explained from the point of view of an isolated
neuron in terms of the effective change in the excitation �
due to the influence of neighboring neurons �thus their de-
pendence on �, in the saddle-node bifurcations all the neu-
rons in the network take part �thus their dependence on the
sk�. They have no natural isolated-neuron equivalent: It
would consist of a change in the sign of �. It is at this
bifurcation that the higher order properties of the connectiv-
ity graph show up, and the modes are cleanly separated,
making the one with the most negative sk dominant. This
allows us to predict easily at which inhibition strength the
network will begin to burst with the pattern of the dominant
mode. It is worth noting that the bifurcation only involves
the unique fixed point of the network above synaptic thresh-
old; it takes place without the collision and disappearance of
a pair of equilibrium points. This degeneracy is due to the
neutral stability of the slow variable.

We can now prove the generality of the sequence shown
in Fig. 4�b�, where, as gc decreases from zero towards nega-
tive values, first all modes undergo a gain of stability through
a Neimark-Sacker bifurcation, and later some of them lose
that stability through a saddle-node bifurcation. The
Neimark-Sacker bifurcation will take place if condition �12�
is met with gcsk�1 for all sk. That is, if sk,min is the most
negative sk, we must have

sk,min


	

�� − 1 + �

− 2 + � + ��
. �14�

But we know that the eigenvalues of a regular graph have
modulus less or equal to the degree of the graph �17�. Thus
sk,min /�−1 and we may ensure that Eq. �14� is satisfied for
any regular symmetric network if

1 − �� 	
1

2
��− 1 + �� + �� . �15�

As long as Eq. �15� is met, all modes will gain stability at the
value of gc given by Eq. �12�. Only at a more negative gc
value �indeed, at gc�−1/, since sk,min�−� will the mode
corresponding to the lowest sk meet condition �13�, losing
stability through the saddle-node bifurcation. As gc decreases
further, all modes with sk�0 will become unstable one after
another, at gc=1/sk. On the other hand, since all symmetric
regular networks have at least one eigenvalue sk�−1 �17�,
the first loss of stability must necessarily happen at gc�−1.

The meaning of the constraint �15� is best understood by
following the position of the fixed point x*, given by Eq. �8�,
in the phase plane of the Rulkov model, as gc goes from 0 to
−�. This is shown in Fig. 5. When gc=0, x*=−1+�, the
level of the slow nullcline of an isolated neuron. As gc de-
creases, x* shifts down and, when it arrives at x*=1−�� �the
vertex of the fast nullcline�, all modes become stable through
a Neimark-Sacker bifurcation. As we have explained in the
previous paragraph, this stability can only be lost for gc�
−1/, which corresponds to x*�

1
2 ��−1+��+��. Thus, if the

condition �15� is met, only after all modes have become
stable will the mode with the lowest sk lose stability through
a saddle-node bifurcation. An interval of gc exists, between

−4 −3.95 −3.9
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FIG. 5. Phase plane of the Rulkov model with the position of the
homogeneous equilibrium level x* �left axis� corresponding to val-
ues of gc �right axis�. The gc=−1/ level is exactly midway be-
tween x*=−1+� and x*=�. Since condition �15� is met, it is below
the Neimark-Sacker level x*�1−��. Thus, growing inhibition first
drives the network into silence and only afterwards is the mode
with the most negative eigenvalue excited, at the point in the shad-
owed region corresponding to gc=1/sk,min. Parameters of the
Rulkov neuron are �=6 and �=0.001.
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the value given by Eq. �12� and gc=1/sk,min, where the uni-
form fixed point of the system, and thus the regime of si-
lence, is locally stable.

It is worth noting that the stability of the uniform fixed
point does not preclude sustained activity in the network. In
the 4�4 periodic lattice example, the uniform fixed point is
stable between gc=−0.103 and gc=−0.250, but it is globally
attracting only between gc=−0.162 and gc=−0.250. We shall
discuss the relationship between local and global dynamics
further in Sec. V.

We wish to finish this subsection with a remark on the
secondary pattern found in the 4�4 periodic lattice of Fig. 2
when inhibition is gc�−0.5. It can be explained as a bifur-
cation around the nonuniform fixed points such as the one
shown in Fig. 2 for gc=−0.49; there are four of these corre-
sponding to row and column distributions of neurons above
and below synaptic threshold. The master stability technique
cannot be used for these nonuniform equilibria, but we may
calculate, as we did in Fig. 4�b�, the eigenvalues of the sys-
tem around them. The result appears in Fig. 6�a�. It looks like
the superposition of the eigenvalue charts of two regular net-
works. Indeed, in the row or column pattern, half of the
neurons are below the synaptic threshold and thus have no
functional outgoing connections; they behave like isolated
neurons with a low effective � due to their six active neigh-
bors. On the other hand the neurons over the threshold be-
have as two separate 4�1 rings, i.e., regular networks of
degree =2, with minimum eigenvalue sk=−2. Thus accord-
ing to Eqs. �12� and �13� we expect them to become silent
somewhere below gc=−0.408 and begin firing again at gc
�−0.5 with an alternating pattern. This is in fact what hap-
pens, and our explanation of Fig. 2 is now complete.

B. Stability analysis of general balanced networks

When the network is not symmetric, eigenvalues of the
connectivity matrix will generally be complex. We cannot
use a gc-sk planar chart as in Fig. 4 to gain insight, but we
still can draw conclusions for matrix Mk in Eq. �11�. The
Neimark-Sacker bifurcation that brings about the stability of
the fixed point, given by Eq. �12�, was independent of sk in
the �
1 approximation, and continues to be when sk is
complex. On the other hand, the condition in Eq. �13� for the
destabilizing saddle-node bifurcation cannot be fulfilled with
a complex sk=ak+ ibk; indeed a �=1 eigenvalue is impos-
sible. We may instead search for an eigenvalue �k=ei�k with
�k
1 and obtain another Neimark-Sacker bifurcation satis-
fying

gc = 1/ak, �k = �
gcbk

1 − f��x*�
. �16�

The conjugate eigenvalues that cross the unit circle are
�k1,k2=e±i�k, and they come to two different Mk1 and Mk2
blocks of the Jacobian �9� with sk1,k2=ak± ibk. As we see,
�
1 ensures �k
1 as long as f��x*� is not close to 1, which
is the condition for the other, sk-independent, Neimark-
Sacker bifurcation of Eq. �12�. Thus in asymmetric networks,
instead of the saddle-node bifurcations at gc=1/sk, we have

Neimark-Sacker bifurcations at gc=1/ak with a very low fre-
quency �k
1.

We can therefore expect the same picture as in symmetric
networks, with all neurons firing at low inhibition strengths,
then stable silence at intermediate strengths, and finally
bursting in part of the network when inhibition goes beyond
gc=1/ak,min. When the network is random, the value of ak,min
is easy to predict thanks to the circular law �18�, which states
that the eigenvalues of a random matrix of i.i.d. samples of a
random variable X with zero mean and variance �X

2 tend to
be uniformly distributed in a circle of radius r=�X

�N when
the size N�N of the matrix grows to infinity. In our bal-
anced networks, since row sums are constant and the diago-
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FIG. 6. As a function of gc, logarithmic representation of the
eigenvalues of the Jacobian �9� for �a� the 4�4 lattice with
8-neighborhood around the fixed point in the row or column con-
figuration, �b� a 4�1 ring around the homogeneous equilibrium,
and �c� an isolated neuron with a value of � that accounts for the
inhibition received from six active neighboring neurons. The super-
position of �b� twice and �c� eight times yields �a�. Other parameters
are �=6, �=0.001, �=0 �except in �c��, and �=−2.
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nal elements are zero, the independence hypothesis is not
fully satisfied, but this only produces one positive real
eigenvalue s0= and displaces the center of the circle to
c=− / �N−1�. The law works well even for small matrix
sizes and we may use it to approximate the minimum real
part of the sk as ak,min�−r+c. The distribution of eigenval-
ues in the circle is slightly affected by the lack of indepen-

dence �19� and suffers from the smallness of the system, but
this has little relevance for our results because we are inter-
ested mainly in the dominant mode.

Figure 7�a� shows an asymmetric random balanced net-
work of N=16 neurons with input degree =6. All synapses
have the same strength. Thus, except for the constant sum
constraint, the nondiagonal elements of the connectivity ma-
trix �c may be considered samples of i.i.d. Bernouilli random
variables of mean p= / �N−1�. The circle law expects the
eigenvalues of such matrix to be distributed in the circle of
center �−p ,0� and radius

r =
��N − 1 − �N

N − 1
.

Therefore we expect the eigenvalue with the most negative
real part to be no further than −p−r=−2.36. The actual ei-
genvalues are depicted in Fig. 7�b�, with the leftmost conju-
gate pair at ak,min=−2.21. With such a small network, the
discrepancy is not surprising. In Fig. 7�c� the corresponding
loss of stability can be seen at gc�−1/2.21�−0.452. Ob-
serve also the Neimark-Sacker bifurcations around the value
predicted in Eq. �12� for =6, namely gc�−0.14.

In order to know the pattern of activity that sets in when
stability is lost we look at the eigenvectors of the dominant
mode. If, as in the example of Fig. 7, the cause of instability
is a pair of complex conjugate eigenvalues of �c giving rise
to the Neimark-Sacker bifurcation of a pair of complex con-
jugate boxes Mk of the Jacobian �9�, the mode will consist of
a pair of conjugate eigenvectors producing oscillations.

Figure 8 shows the time evolution of the network of Fig.
7 for two values of gc: One barely past the loss of stability
and the other with slightly stronger inhibition. Oscillations
just above the bifurcation are subthreshold, almost linear and
stable �the bifurcation is supercritical�. They are slow, their
frequency correctly given by wk in Eq. �16�. Amplitude and
phase of the oscillations is encoded in the modulus and angle
of the complex components of any of the two eigenvectors;
these are depicted in the left part of the figure. As inhibition
grows the oscillations also grow and we should expect the
neurons corresponding to the components of maximum
modulus to be the first to burst. In the example, neurons 13
and 5 have the highest amplitudes but neuron 5 does not
burst, while smaller amplitude neurons 10, 12, and �some-
times� 8 do. This is a clustering effect. See in the figure that
neurons 10 and 12 have high amplitudes and phases similar
to neuron 13; when the latter bursts, it boosts neurons with a
similar phase to do the same, and draws neurons in the op-
posite part of the cycle toward negative voltages �note the
notches in the trace of neurons 5, 7, 14, 15, and 16�. This
lowers the subsequent maximum of their oscillation and pre-
vents them from firing. If due to initial conditions neuron 5
fires first, it may carry neurons 7 and 16 with it, but their
combination is weaker than that of neurons 13, 12, and 10
and unable to prevent their bursts. Interestingly, although all
synapses are inhibitory, some neurons have indirect excita-
tory effects on each other due to mode formation.

When inhibition goes further beyond the instability
threshold, oscillations grow in all neurons and different pat-
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FIG. 7. �a� An asymmetric balanced network of N=16 neurons
with =6 input connections in each neuron. �b� Eigenvalues of the
connectivity matrix of the network in the complex plane. The
dashed circumference is the expected area of distribution of the
eigenvalues according to the circle law. The eigenvalue s0=6 is not
shown. �c� Eigenvalues of the Jacobian �9� around the homoge-
neous equilibrium point x* as a function of gc. Other parameters are
�=6, �=0.001, �=0, and �=−2.
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terns emerge. Figure 9 shows raster plots of network activity
for three values of gc. The first corresponds to the same value
shown in Fig. 8, right. Neurons 13 fires first, triggering
bursts in neurons 12, 10, sometimes followed by neuron 8,
and inhibiting the opposite phase cluster. The sequence of
eigenvector component angles would predict neuron 10 to
fire first, but it has lower amplitude and cannot do it by itself;
it is instead carried along, when already past the maximum
of its oscillation, by the burst of neuron 13. When gc=−0.5,
the cluster of neuron 13 is joined sometimes by lower am-
plitude neurons 1, 2 and 4 �note that in Fig. 8 the component
of neuron 2 is hidden behind that of neuron 4� while in the
opposite part of the cycle neuron 5 fires, sometimes together
with high-amplitude, similar-phase neurons 7 and 16. With

very strong inhibition gc=−0.8 most of the neurons burst
forming a very characteristic pattern, where we may discern
again the opposing neuron-13 and neuron-5 clusters. Ob-
serve how neuron 8 bursts in the transition between the two,
as corresponds to its phase in Fig. 8, and also that now neu-
ron 10 does burst before neurons 13 and 12. Neurons with
high amplitude in the diagram of Fig. 8 burst several times in
each cycle, because their slow-wave oscillation remains
above bursting threshold long enough to fit more than one
burst �burst duration is determined mostly by the intrinsic
parameters of the neuron�. Bursts affect the subthreshold pe-
riod, and with gc=−0.8 we can see that the period is signifi-
cantly lengthened compared to the linear prediction of Eq.
�16�.
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FIG. 8. Top Left: Complex plane with the components of one of the two conjugate eigenvectors of the dominant mode of the network
in Fig. 7. The dark and light gray sectors span 90° around components 13 and 5, respectively, to help see groups of neurons tending to burst
together. Bottom: Activity in the network barely past instability. Note that amplitudes and phases correspond with the eigenvector component
diagram. Right: Activity for slightly stronger inhibition.
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V. DISCUSSION

We have seen how the symmetry, balance and most im-
portantly the spectral properties of the topology determine
the activity patterns observed in networks of bursting inhibi-
tory neurons. Linear analysis around the fixed point of the
system has allowed us, by simply looking at the eigenvalues
and dominant eigenvectors of the network graph, to predict
the pattern of bursts as a function of the strength of inhibi-
tion. Since the fixed point is unstable for those values of gc

that produce activity, the validity of this technique depends
on reinjection, i.e., the system must repeatedly pass near the
fixed point for its modes to dominate the dynamics. The
intrinsic bursting dynamics of the neurons ensures indeed
that the subthreshold region of the state space is visited for
almost all initial conditions. Besides this, the dominant mode
must have noticeably faster growth than the other modes;
otherwise a mixture of modes sets in and the prediction of
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FIG. 10. Eigenvalues of the connectivity matrix of an asymmet-
ric balanced network of N=16 neurons with input degree =6, and
raster plot of its activity. The modes corresponding to the leftmost
real eigenvalue and the leftmost pair of conjugate eigenvalues are
both unstable, and this results in a complex pattern.
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injected in the soma of all neurons to place them in the bursting regime.
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FIG. 9. Raster plots of the activity in the network of Fig. 7 for
different strengths of inhibition. Black patches mark bursting peri-
ods of each neuron. Gray areas mark the length of the period pre-
dicted by the �k in Eq. �16�.
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the pattern is not obvious. Figure 10 shows the eigenvalues
and activity of an asymmetric network with two dominant
modes �one real and one complex�; the result is a rich pattern
whose relationship with the eigenvectors of the two modes is
not evident. In large networks, when the eigenvalues of the
connectivity matrix are densely packed, mode mixture is un-
avoidable and statistical approaches should be used �20�.

As we have seen in the previous section, asymmetric net-
works with a complex dominant mode have a rhythmic be-
havior marked by the slow subthreshold oscillations over
which the bursts ride. Besides, with strong enough inhibition,
almost all neurons participate in the activity at different
phases of the slow cycle. This contrasts sharply with sym-
metric networks �or asymmetric with a real dominant mode�
where the only rhythm present is the fast intrinsic bursting
frequency, and where �when only one mode is dominant� two
mutually exclusive groups form and only one of them is
active, depending on initial conditions. But there is
another level of pattern formation in symmetric networks
that we have not analyzed; namely, the sequence of bursts
inside the active group. Note, for example, in Fig. 2 that for
gc=−0.40 bursts inside the active rows alternate between
neighbors. In the random network of Fig. 3, the sequence of
bursts is persistent and robust against initial conditions al-
though this cannot be appreciated in the figure.

These burst sequence patterns, in fact, appear in the weak
inhibition regime �when all neurons are active� in both sym-
metric and asymmetric networks; they appear in Fig. 2 for
�gc � �0.20. If we see them also in the strong inhibition re-
gime of symmetric networks, it is because there a new, less
dense, effective network has formed containing only the ac-
tive neurons �remember that in the case of the lattice this has
allowed us to explain the secondary patterns for gc�−0.50�.
This effective network is again in a weak inhibition regime,
and bursts follow in it a certain sequence that depends on gc.

At any rate, the burst sequence in the weak inhibition
regime cannot be directly derived from the linear properties
around the fixed point. For example, the eigenvalues of the
Jacobian �9� for the 4�4 lattice, shown in Fig. 4�b�, give, for
low strength of inhibition, no hint about the values of gc at
which the different bursting sequences set in. Indeed, these
sequences can be found in exactly the same order when the
synaptic threshold is placed at a high voltage ��=0, for ex-
ample�, which makes the fixed point nonexistent �due to the
Heaviside function in Eq. �4��.

This brings us to one important limitation of our study,
namely the low synaptic threshold. Patterns of synchroniza-
tion are very sensitive to the synaptic threshold �21�. Nor-
mally, the threshold for synaptic interaction is set above
spike initiation, because spikes, and not subthreshold dynam-
ics, are responsible for the postsynaptic potentials. If we
wish to carry over our analysis to a model with high synaptic
threshold we may substitute the study of stability of the fixed
point, which will no longer exist, by that of a synchronous
bursting trajectory; but in that case we lack a reinjection
mechanism that ensures that the dynamics near that trajec-
tory are dominant.

Our choice of model and coupling has allowed us to es-
tablish the link between the spectral properties of the adja-
cency matrix and the dynamics of the network. We wish to

note that this link is also apparent in biologically plausible
models. In Fig. 11 we have kept the same connectivity graph
of Fig. 3, but we have replaced the Rulkov neurons and
direct coupling with thalamic reticular neurons connected
through GABAA and GABAB synapses �22�. The same two
complementary groups of neurons, corresponding to differ-
ent signs in the components of the eigenvector of the domi-
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FIG. 12. Top: Nonbalanced network of N=16 neurons. The in-
put degree to each neuron has been randomly chosen between 4 and
8. Center: Eigenvalues of the connectivity matrix in the complex
plane. The real eigenvalue s0=5.97 is not shown. Bottom: Eigen-
values of the Jacobian �6� around the equilibrium point x* given by
Eq. �4� as a function of gc. Other parameters are �=6, �=0.001,
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nant eigenvalue of the adjacency matrix, show up in the
simulation, although here we find them alternating in an ap-
parently random fashion along the same run. The alternation
is suppressed if either the fast GABAA or the slow GABAB
synapses are eliminated, hinting at a complex interplay be-
tween their time constants. Stronger synapses also fix one of
the two groups. More complex patterns, similar to those
found in the weak inhibition regime of the Rulkov networks,
arise from weaker synapses and different time constants.

This example shows that even in some cases that are not
immediately amenable to master stability function decompo-
sition, the spectrum of the adjacency matrix dominates the
dynamics. To determine why this is so and, in the cases
where it is not, what peculiarities of the connectivity graph
are reflected in the pattern of activity, is open to research.
Two restrictions of our study are certainly, in all cases, fun-
damental: The homogeneity and balance conditions. They
ensure that spatial inhomogeneities can only arise from to-
pological properties of the graph. In particular, in our study,
they were required for the fixed point to be homogeneous, so
that mode structure was exclusively due to the network to-
pology embodied in �c in Eq. �9�. If the network is not
balanced or not homogeneous, the equilibrium levels x*

i are
different for the different neurons, and thus another level of
structure is added to the network in top of the topology of
connections. As a result, the Jacobian �6� can no longer be
diagonalized with the same matrix as �c, and there is no
direct relationship between the spectrum of �c and that of the
system. The difficulty is compounded by the fact that x*
enters the stability equations through the nonlinearity f�x�. In
Fig. 12 we see that, while the eigenvalues of �c for a non-
balanced network do not differ wildly from those of a bal-
anced network, the eigenvalues of the system around the
equilibrium point do show a very complex dependence on gc.
We can still, for a given level of inhibition, analyze the
dominant mode of the whole system, but cannot draw con-
clusions about it by simply looking at the spectrum of the
connection graph. If the imbalance or the inhomogeneity are
small we may approximate the perturbation of the Jacobian
by a linear term dependent on �c, and perhaps this would

allow an extension of the master stability method. The fea-
sibility and usefulness of this approach is left for future
work.

A minor point for further discussion arises from the type
of Neimark-Sacker bifurcation of our model. The linear
analysis we have performed of the oscillatory modes in
asymmetric networks depends on the corresponding
Neimark-Sacker bifurcation being supercritical and thus giv-
ing rise to a small stable limit cycle. The Rulkov model, with
its neutral slow variable, favors the supercritical behavior
�13�. It would be interesting to investigate the phenomenon
in a subcritical model.

We have used small networks to easily visualize the re-
sults. They hold equally for somewhat larger random net-
works �in the order of tens or a hundred neurons�, as long as
single mode dominance prevails. This scale is appropriate for
most central pattern generators. But if the network under
study has a highly modular, nonrandom structure, the tech-
nique will carry over to much larger sizes thanks to the as-
sociated nonuniform spectral distribution �as in the lattice
example�. This is important because many prototypical neu-
ral systems, including neocortex, cerebellar cortex and hip-
pocampus, are highly modular and structured �23�. Besides,
recent research on the structure of the cortex reveals that a
small number of strong connections may constitute the driv-
ing core of cortical dynamics �24�. Thus medium sized sys-
tems with nonrandom topology can reveal important features
of extended ensembles of neurons. As our knowledge of the
structure of the nervous system deepens, rough models based
on spotty statistical evidence are superseded by more de-
tailed and structured networks. The approach followed in this
paper can provide valuable insight into their dynamics.
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