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We have proposed an adaptive procedure in order to estimate unknown parameters of a numerical
model of a chaotic CO2 laser, which is observed through a time series that represents the output
intensity of the laser. To do that, we consider a coupled system with the same functional form and
adjustable parameters. The salient feature of the proposed technique is that accurate parameter
estimation and identical synchronization can be jointly achieved by adaptively adjusting the
desired parameters of the coupled system.
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1. Introduction

Nonlinear systems can exhibit very rich dynami-
cal behavior, such as chaos, self-oscillations, bifur-
cations, switching, etc. An important issue in this
type of systems is the estimation of the model
parameters using scalar measurements from the
system [Maybhate & Amritkar, 1999]. One typi-
cal approach to this problem consists the iterative
processing of the whole set of available measure-
ments. This includes several multiple-shooting tech-
niques [Ghosh et al., 2001] and statistical and
Monte Carlo procedures [Pisarenko & Sornette,
2004; Sakaguchi, 2002]. However, iterative process-
ing is computationally expensive and inadequate
for problems where the observations must be han-
dled online. An appealing strategy in this situa-
tion is to exploit the synchronization properties
of coupled chaotic systems in order to attain

parameter estimation [Parlitz, 1996; Maybhate &
Amritkar, 1999].

In this work, we address the problem of estimat-
ing the unknown parameters of a numerical model
that represents a chaotic laser. This is very use-
ful in order to predict the dynamical behavior and
to study the fundamental properties of this type
of physical systems, which have important applica-
tions in different fields such as biology, medicine or
engineering [VanWiggeren & Roy, 1998].

The remainder of this paper is organized as fol-
lows. In Sec. 2 we describe the numerical model of
the chaotic CO2 laser that we investigate. In Sec. 3
we propose a parameter estimation procedure based
on the methodology of [Mariño & Mı́guez, 2006]
in order to estimate scalar parameters of the laser
model. We illustrate the validity of our technique
with computer simulation results in Sec. 4. Finally,
Sec. 5 is devoted to the conclusions.
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Fig. 1. (a) Bifurcation diagram for the CO2 laser model as a function of the amplitude of the external forcing, β1. (b) Temporal
evolution of the laser intensity, x1, for β1 = 0.08.

2. CO2 Laser Model

We consider the following model of five differential
equations that represents the behavior of a CO2

laser model [Mariño et al., 2004], that is,

ẋ1 = kx1(x2 − 1 − α sin2(F1(t))
ẋ2 = −γ1x2 − 2kx1x2 + gx3 + x4 + p

ẋ3 = −γ1x3 + gx2 + x5 + p

ẋ4 = −γ2x4 + zx2 + gx5 + zp

ẋ5 = −γ2x5 + zx3 + gx4 + zp,

(1)

where

F1(t) = β1 sin(2πft) + b (2)

is the external forcing signal of the laser. In the
above equations, x1 represents the laser output
intensity, x2 is the population inversion between the
two resonant levels, and x3, x4 and x5 account for
molecular exchanges between the two levels reso-
nant with the radiation field and the other rota-
tional levels of the same vibrational band. The
parameters of the model are the following: k is the
unperturbed cavity loss parameter, g is a coupling
constant, γ1 and γ2 are population relaxation rates,
z accounts for an effective number of rotational
levels, α accounts for the efficiency of the electro-
optic modulator and p is the pump parameter. The
rest of the parameters are related to the external
periodic forcing. In particular, f is the frequency,
b is the bias voltage and β1 is the amplitude of the
external forcing.

We choose the following fixed values of the
parameters: k = 30, α = 4, γ1 = 10.0643, g = 0.05,
p = 0.0198, γ2 = 1.0643, z = 10, f = 1/7, b = 0.2
and β1 = 0.08, which corresponds to a chaotic
regime. This can be seen in Figs. 1(a) and 1(b),
which represent the characteristic bifurcation dia-
gram for the CO2 laser model as a function of the
parameter β1 and the temporal evolution of the
laser intensity, x1, for β1 = 0.08, respectively.

3. Parameter Estimation

We consider the parameter estimation methodol-
ogy proposed in [Mariño & Mı́guez, 2006], which
is based on the synchronization phenomenon that
appears in coupled chaotic systems. We consider
the laser output intensity x1 as the only signal
observed from the system modeled by Eq. (1), which
we will subsequently refer to as primary system. It
is assumed that the exact value of parameter β1 in
Eq. (2) is unknown and we are interested in estimat-
ing it. To do that, we consider a secondary laser,
modeled by the same differential equations as the
primary one, but with its external sinusoidal forc-
ing function adequately modified. In particular, we
consider

F2(t) = β2(1 + ε(x1 − y1)) sin(2πft) + b, (3)

where y1 and x1 represent the output intensity of
the secondary and primary lasers, respectively, ε
represents the coupling strength between the two
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systems, and β2 is an adjustable parameter. It is
known that for an appropriate value of the cou-
pling strength, ε, both systems synchronize when
they have identical parameters values [Mariño et al.,
2004].

The approach to parameter estimation which
we are going to consider, consists of a gradient-
descent optimization of an adequate series of cost
functions. In our case, we propose to use the follow-
ing cost functions

Jn = |e(nT )|2, n = 1, 2, . . . , (4)

where T is the period of the spikes of the laser inten-
sity and e(nT ) is an error signal consisting of the
difference between the first temporal derivatives of
x1 and y1, i.e. e(nT ) = ẋ1(nT ) − ẏ1(nT ). Notice
that the functions Jn depend on β2 through ẏ1(nT )
and all of them attain a common minimum value
at β2 = β1. In order to find this minimum of the
series of cost functions, we assume that we have
the ability to update the parameter β2 every T sec-
onds. Therefore, we can compute the sequence of
parameter estimates

β2,n = arg min
β2

{Jn}, n = 1, 2, . . . . (5)

A simple procedure to find the minimum of this
series is to use the gradient-descent method

β2,n = β2,n−1 − µ
∂Jn

∂β2
, (6)

where µ is a step-size parameter.1

The problem of calculating ∂Jn/∂β2 reduces
to finding an expression for ∂|e(nT )|2/∂β2. It is
straightforward to obtain that

∂|e|2
∂β2

= −2(ẋ1 − ẏ1)
∂ẏ1

∂β2
. (7)

but, unfortunately, the derivative with respect to β2

on the right-hand side of (7) cannot be expressed in
closed form because of the complex implicit depen-
dence of the dynamic variables on the parameters.2

However, if we consider only the explicit derivative,
Eq. (7) becomes very simple. Specifically, if we use
notation ∂ ′/∂ to denote explicit derivation (mean-
ing that implicit dependencies of the variables on
the parameters are neglected), (7) reduces to

∂|e|2
∂β2

≈ ∂′|e|2
∂β2

= 4(ẋ1 − ẏ1)kx1 sin(F2(t))

× cos(F2(t))
F2(t)
β2

(8)
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Fig. 2. (a) Temporal average, J , of the series of cost functions Jn as a function of β2 represented in a logarithmic scale.
(b) Temporal average of the explicit derivative of the series of cost functions, labeled as ∂′J/∂β2, as a function of β2.

1Other more sophisticated optimization methods could be used as described in [Hastie & Tibshirani, 1990].
2In a general case, if the available data are noisy, there may be errors in the numerical computation of instantaneous time
derivatives. One obvious way of mitigating this problem is to use an appropriate filter to “clean” the observed signal before
proceeding to compute its derivative (actually, such a filter will be a constituent part of any good differentiating circuit or
system). Other refined methods to estimate derivatives can be found in [Ahnert & Abel, 2005].
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Fig. 3. (a) Time evolution of the parameter β2. (b) Time evolution of |y1 − x1|.

that yields the desired approximate derivative of
∂Jn/∂β2.

In order to verify the appropriateness of the
described approximations, numerical simulations
have been carried out to approximate both Jn and
its explicit derivative ∂ ′/∂β2 as functions of the
model parameter β2. We have assigned to the pri-
mary laser model the parameter values indicated in
Sec. 2, in particular, β1 = 0.08, which corresponds
to the chaotic behavior indicated in Fig. 1(b). The
parameter values for the secondary laser model are
identical to the primary one, except β2 that has
taken values from 0 to 0.085, corresponding to the
bifurcation diagram of Fig. 1(a). Figure 2(a) rep-
resents a temporal average of Jn, labeled as J , as
a function of β2 in a logarithmic scale, where the
minimum is located at 0.08, which corresponds to
the value of β1. The validity of the approximation
by the explicit derivative is illustrated in Fig. 2(b).
We can observe that this derivative is positive when
the function J increases, is negative when this func-
tion decreases and vanishes at the minimum of J .
Because of this relationship between the explicit
derivative and the true derivative, the generic gra-
dient algorithm of Eq. (6) is particularized to

β2,n = β2,n−1 − µ
∂′Jn

∂β2
. (9)

4. Numerical Results

We have carried out additional computer
simulations in order to numerically demonstrate

the performance of algorithm (9) in terms of both
parameter estimation and synchronization accu-
racy. The parameter values in the primary system
are the same as in Sec. 2 and we use a fourth-
order Runge–Kutta method with step h = 10−2

time units (t.u.) to numerically integrate the sys-
tems. The starting value for the parameter estimate
is β2,0 = 0.01, which corresponds to a nonchaotic
state of the secondary laser model (see the bifurca-
tion diagram of Fig. 1(a)). The parameter adapta-
tion period is set to T = 700h = 7 t.u.

Figure 3(a) shows the time evolution of the
parameter β2, that is, the convergence of the
parameter estimate, and Fig. 3(b) shows the time
evolution of the absolute deviation between the out-
put intensity of the primary and secondary lasers,
specifically, |y1−x1|. It is clearly seen that identical
synchronization of both laser intensities is achieved
at the same pace as the parameter estimate con-
verge to the desired value, that is β2 = 0.08. As
this occurs, the secondary laser, that begins with
β2,0 = 0.01, is going through the different behaviors
of the characteristic bifurcation diagram.

5. Conclusions

We have proposed an adaptive procedure in order
to estimate unknown parameters of a numerical
model of a chaotic CO2 laser which is observed
through a time series that represents the output
intensity of the laser. To do that, we consider a
coupled system with the same functional form and
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adjustable parameters. The salient feature of the
proposed technique is that accurate parameter esti-
mation and identical synchronization can be jointly
achieved by adaptively adjusting the desired param-
eters of the coupled system. Here, we have shown
how it is possible to estimate the amplitude of the
external forcing signal that regulates the behavior
of the laser, that is, parameter β, but estimation of
other parameters, like the bias voltage of the exter-
nal forcing signal, b, or the pump of the laser, p,
have also been carried out with satisfactory results.

Finally, although the objective of this paper is
to demonstrate the estimation method in a numer-
ical model, it is interesting to discuss its implemen-
tation in real experiments. On the one hand, if an
accurate model of the physical system is available,
the latter can be regarded as the primary system
and the secondary system be a numerical one, built
from the model. In this case, it is necessary that the
model yield a good representation of the experimen-
tal data. On the other hand, we can also consider
that both the primary and the secondary systems
are physical devices (with some adjustable parame-
ter in the latter). Since the method is based on iden-
tical synchronization, it is important that, in this
case, the systems be as tightly matched as possible,
except for the parameter to be estimated. With this
setup, the derivative of the cost function should be
approximated numerically, instead of the analytical
procedure described in this paper.
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