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Abstract—In this article we study the performance of a class
of parallel concatenated encoders similar to a turbo trellis coded
modulation, but where the constituent encoders are chaos coded
modulators. We show that, even when the uniform error property
does not hold for the kind of constituent chaos coded modulations
employed, it is still possible to draw a reasonable bound for
the bit error probability at the error floor region based on
the interleaver structure. The simulations validate the bounds
and show that the dynamics of the underlying chaotic maps,
rather than the quantization level of the constituent encoders,
is the most important factor to account for both the bit and
frame error rate behavior at the error floor region. We also
show that these chaos bases parallel concatenated schemes yield
performances comparable to binary turbocodes and are thus of
potential interest in communications.

Index Terms—Channel coding, Chaos, Concatenated coding,
Modulation coding, Error analysis.

I. I NTRODUCTION

The possibility of using chaotic signals to carry information
was first considered in 1993 [1]. This aroused a big deal of
work on chaotic communications, which became a hot topic in
both nonlinear science and engineering. The interest in chaotic
communications was due to the foreseen good properties of the
chaotic signals in the fields of secure systems or broadband
multiple access systems. In the case of secure systems, one
can take advantage of the uncorrelation and unpredictability
of the chaotic signals to build encryption algorithms. These
are the same properties desirable for the spread sequences of
a code division multiple access (CDMA) system. On the other
hand, chaotic modulations and channel encoders derived from
chaotic systems attracted much attention, but the intereston
this kind of chaotic communications dropped somewhat due to
the bad performance of the systems proposed so far, since they
did not outperform other usual coded communication schemes,
and they did not have even better performance than uncoded
systems [2].

However, in later times and in some contexts we have wit-
nessed the arising of some proposals with good performance
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(e-mail:francisco.escribano@ieee.org)
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as compared with classical communication systems [3], and
this has reopened the way to look further into the possibilities
of chaotic systems to act efficiently in coded modulation
schemes. Chaos based modulation systems working at the
waveform level have already shown to be of potential use in
multipath fading channels [4], as well as chaos based systems
working at the coding level [5]. Other recent works have
stressed the fact that chaos coded modulation (CCM) systems
working at a joint waveform and coding level can be efficient
in AWGN [3], [6]. It has been also shown that communications
based on high dimensional chaotic systems and belief propaga-
tion decoding can offer an excellent performance characterized
with thresholds [7]. Moreover, chaos based coded modulation
systems have shown to be of potential interest in flat fading
channels [8]. This contrasts strongly with previous state of
the art [9]. Such success has been achieved by building a
comprehensive bridge linking the fields of chaos theory and
digital communications.

In particular, the proposal of a kind of chaos based coded
modulations which could be seen under a trellis encoding
view [3] opened the road to evaluate such kind of encoders in
the same schemes where convolutional codes or trellis coded
modulation (TCM) systems are able to yield high coding gains.
For example, one can build very efficient coded and modulated
systems using concatenation: parallel concatenation, such as
in the so-called turbocodes or turbo TCM systems; and serial
concatenation, such as in serially concatenated convolutional
codes, or in serially concatenated TCM systems [10].

The mentioned convolutional encoder view of such kind of
chaos based coded modulations is much like Ungerboeck’s
TCM [10], and since the turbo TCM systems combining
the bandwidth efficient TCM systems and the philosophy
of turbocoding offer good performance in white noise and
radio channels, it was expected that new systems built under
the same principles could lead to comparable results. This
was ascertained in [11], where parallel concatenated chaos
coded modulations were shown to give coding gains as high
as with standard binary turbocodes. Another advantage of
designing systems under these similarities is that we can use
well established tools to design the encoders and decoders
and to evaluate their performance, thus avoiding the need to
start from scratch. The use of the EXIT charts to evaluate the
convergence of the decoding algorithm in [11] is an instance
of this. Other examples of the success of this philosophy in
chaotic communications are the proposals of [12] and [6],
where the convolutional encoder view allowed the design
of systems with serially concatenated channel and chaotic
encoders leading to good bit error rate (BER) results.
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Fig. 1. Scheme of the whole communications system. Left side: parallel concatenated encoder structure forR = 1/2; center: channel model for AWGN;
right side: soft-input soft-output (SISO) iterative decoder.

The successful proposal of turbo-like structures based on
chaos coded modulations in [11] for the AWGN channel is
still lacking of a deep and comprehensive study which could
allow us to address the design task. That is the reason why we
look here into the possibility to draw tight bounds for the bit
error rate performance in the error floor region based on the
minimum distance concept [13], with the aim also to link the
dynamical properties of the underlying chaotic systems and
the final performance of the concatenated system. This work
is an extension of a previous conference paper [14].

According to all this, the article is structured as follows.
Section II is devoted to the description of the whole system,
including the concatenated encoder for some constituent chaos
coded modulations, the channel and the iterative decoder. In
Section III, we show how the minimum distance analysis can
be extended to this kind of nonlinear concatenated codes,
and how to draw bounds for the error floor region. Section
IV exhibits the simulation results and compares them with
the proposed bounds. Finally, Section V is devoted to the
conclusions.

II. SYSTEM MODEL

A. Encoder

The concatenated encoder consists in the parallel concate-
nation of two chaos coded modulations (CCM’s) [3], and,
accordingly, we will call these systems parallel concatenated
chaos coded modulations (PCCCM’s). They have been first
proposed in [11], where it is shown that these systems can
reach comparable performance to binary turbo codes and turbo
TCM systems. The general structure of the system, including
the concatenated encoder, the AWGN channel and the iterative
decoder is shown in Fig. 1.

The first CCM receives ani.i.d. binary input wordb =
(b1, · · · , bN) of size N . The second CCM receives as input
a scrambled sequencec = (c1, · · · , cN ), which is the word
b interleaved by an S-random interleaver [15] of sizeN . The
factorS of this kind of interleaver is the minimum separation
between bit positions at the output for any two contiguous
bits at the input. The permutation function is chosen in a semi-
random basis. This function will map an indexj into an index
πj , which means that the bit in positionj, bj , will be taken as
bit in position πj , cπj

, within the input word for the second
encoder. The index permutation is chosen according to the
following steps:

• Choose an integerS.

• For indexπj corresponding to positionj draw a random
integert between1 andN .

• If t has not been chosen before, verify if theS previously
chosen indexes lie at least at a distance ofS from t, i.e.
|πp − t| > S for p = j − S, · · · , j − 1.

• If t satisfies the previous conditions, keep it asπj = t and
proceed in the same way until allN indexes are chosen.

This algorithm converges in a reasonable time whenS is
chosen according to:

S <

√

N

2
. (1)

WhenS = 1, we have a purely random interleaver.
Each CCM belongs to the class of discrete chaotic switched

maps driven by small perturbations [3]. They follow the
general expression

zn = f (zn−1, bn) + g (bn, zn−1) · 2−Q, (2)

xn = 2zn − 1, (3)

wheref (·, 0) = f0(·) and f (·, 1) = f1(·) are chaotic maps
that leave the interval[0, 1] invariant. They are piecewise linear
maps with slope±2. The natural numberQ indicates the num-
ber of bits to representzn (thusxn), andg (bn, zn−1) ∈ {0, 1}
is the small perturbations term [3], given by

g (b, z) =

{

b z < 1

2

b z ≥ 1

2

, (4)

where b = b ⊕ 1 and ⊕ is the binary XOR operation. If
f0(·) = f1(·) is the Bernoulli shift map,g(b, z) is equivalent
to a precoder defined by the polynomial1+DQ−1 [16], where
D stands for delay and the exponentQ − 1 means that input
is delayedQ − 1 sample periods. In any case, the function
g (b, z) ensures that two binary input words (b, b

′) differing
in only 1 bit do not lead to output sequences (x, x

′) for
any individual CCM with a low squared Euclidean distance
d2

E =
∑N

n=1
(xn − x′

n)2. This recursive term is included to
ensure a good interleaver gain, as it is mandatory for the inner
encoders in any concatenated encoder [17].

With these definitions, it is easy to see that the recursion
of (2) leaves the finite setSQ = {i · 2−Q|i = 0, · · · , 2Q − 1}
invariant and, therefore, we can restrict (2) toSQ by taking as
initial conditionz0 = 0. We shall consider the following pairs
of mapsf0(·) andf1(·):

1) Bernoulli shift map (BSM).

f0(z) = f1(z) = 2z mod 1. (5)
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Fig. 2. Maps for the constituent CCM encoders. The continuous line
corresponds tof0(·); the dotted line, tof1(·). (a) mTM (continuous line:
TM); (b) mBSM (continuous line: BSM).

2) Tent map (TM), corresponding to equations

f0(z) = f1(z) =

{

2z 0 ≤ z < 1

2

2 − 2z 1

2
≤ z ≤ 1

. (6)

3) The BSM and a shifted version of the same (multi-
Bernoulli shift map, mBSM), following

f0(z) = 2z mod 1, (7)

f1(z) =







2z + 1

2
0 ≤ z < 1

4

2z − 1

2

1

4
≤ z < 1

2

2z − 3

2

3

4
≤ z ≤ 1

. (8)

4) The tent map and a shifted version of the same (multi-
tent map, mTM), following

f0(z) =

{

2z 0 ≤ z < 1

2

2 − 2z 1

2
≤ z ≤ 1

, (9)

f1(z) =
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Fig. 3. Encoding structure for the mTM CCM.si stands for a memory
position holding one bit,⊕ is the binary XOR operation and the feedback
path befores1 implements the recursive precoding of (4). The rest of feedback
paths account for the structure of the equivalent finite-state machine of the
discretized map chosen.

In Fig. 2 we have depicted the corresponding maps. These
CCM systems, when restricted toSQ, allow an equivalent
representation in terms of atrellis encoder, closely related
to a trellis coded modulation (TCM) system [3]. In Fig. 3, for
example, we can see the equivalent trellis encoder structure
for the mTM CCM.

The constituent encoders seen work at a rate of one chaotic
sample per bit, and therefore, the parallel concatenation of
two CCM’s will have a coding rate ofR = 1/2. The output
words have thus size2N , x = (x1, · · · , x2N ), with xk,
k = 1, · · · , 2N , taking values alternatively from each of the
CCM’s: when k is odd (k = 2n − 1, n = 1, · · · , N ), the

sample corresponds to the first CCM; whenk is even (k = 2n,
n = 1, · · · , N ), the sample corresponds to the second CCM
(see Fig. 1). Note that the overall system is similar to a
turbo TCM system, but now the sequencexn is a chaos-like
broadband signal not intended for spectral efficiency.

B. Channel

The channel corresponds to the well known AWGN model.
The sequence arriving at the decoder side,r = (r1, · · · , r2N ),
will then be

rk = xk + nk, (11)

wherenk are i.i.d. samples of a Gaussian RV with zero mean
and powerσ2. Since the joint PCCCM system proposed has
rateR = 1/2, the relationship between the power of the noise
and the signal to noise ratio in terms of bit energy to noise
spectral density will be

σ−2 = 2
R

P

Eb

N0

=
1

P

Eb

N0

, (12)

whereP is the power of the chaos coded modulated signal1.

C. Decoder

A chaos based signal coded with the mentioned finite
state machine scheme (see Fig. 3) can be decoded with any
standard method intended for general state machine coding,
in particular maximum likelihood(ML) [3] or maximum a
posteriori (MAP) algorithms [18]. They are based on the set
of 2Q possible states defined by the memory positionssi (see
Fig. 3), and the transitions between those states. As seen in
Fig. 4, each transition happens for timen over an edgeen

between a starting stateSS(en) and an ending stateSE(en).
The transition is driven by an input bitbn and produces as
output a chaotic samplexn = 2zn−1 as a function ofbn and of
the previous chaotic samplexn−1 (equivalent to the previous
state). This is indicated by functionh(·, ·). The stateSE(en)
is the starting state for the subsequent transition,SS(en+1).

input:

output:

transition

=
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Fig. 4. Transition diagram of the equivalent finite state machine for a chaos
based coded modulated system.

In particular, the iterative decoder for a concatenated system
can use standard soft-input soft-output (SISO) decoding mod-
ules [19]. As seen in Fig. 1, the decoder chosen consists on
two SISO decoding blocks working iteratively over each set

1For the kind of maps considered, the invariant density ofxk is uniform
in [−1, 1] and, therefore, we can assumeP ≈ 1/3 whenQ > 4, sinceP is
equivalent to the square standard deviationσ2

x of the invariant density.



of received samples (the ones coming from the first encoder,
r2n−1, n = 1, · · · , N , and the ones coming from the second
one, r2n, n = 1, · · · , N ). This decoder reproduces the well
known structure of the SISO iterative decoders for parallel
concatenated binary channel codes, but with channel metrics
adapted to the CCM setup

p(rn|xn) =
1√
2πσ

exp

(

− (rn − xn)2

2σ2

)

, (13)

wherexn = 2zn − 1, zn ∈ SQ, is the candidate quantized
chaotic sample for the corresponding branch metric [12]. We
do not review here further details of the adapted SISO decoders
for brevity. The calculation of the output binary log likelihood
ratios (llr’s, see Fig. 1) as a function of the inputllr’s and
the channel metrics is straightforward [2] using the already
known log-MAP algorithm [19].

III. M INIMUM DISTANCE ANALYSIS

The CCM’s of the kind described are not linear and do
not comply in general with the uniform error property [10],
and so a ML bound for the bit error probability based on the
PCCCM transfer function is almost unfeasible. Nevertheless,
we will see that we can give a reasonable bound in the error
floor region. In binary turbocodes or turbo TCM systems, the
minimum or free distance of the resulting parallel concatenated
code or coded modulation is usually employed to provide this
error floor bound [10].

Each individual CCM has a characteristic binary input error
evente = b ⊕ b

′ associated to its output minimum squared
Euclidean distance. For example, in the case of the TM CCM,
the minimum squared Euclidean distance is given by an input
error event with lengthL = Q + 1 and Hamming weight
w(e) = Q + 1. This event producesQ different output values
for the resulting encoded sequencesxn and x′

n, and a mini-
mum squared Euclidean distanced2

E =
∑m+L−2

n=m (xn − x′

n)2

tending to0 for Q → ∞ [3].
Nevertheless, due to the presence of the parallel concate-

nated scheme with the S-random interleaver, the input binary
error events leading to the output minimum squared Euclidean
distance for the joint PCCCM system are normally to be found
among the Hamming weight2 input binary error events (or
concatenations of the same). Such error eventse

∗ consist in
two 1’s separated byL∗ − 2 0’s, and have lengthL∗ = Q + 1
for the BSM and mBSM CCM’s, andL∗ = Q + 2 for the
TM and the mTM CCM’s. The Hamming weight2 binary
error events with lengthp(L∗ − 1) + 1, p ∈ N will lead to
increasing values in the associated output squared Euclidean
distances by a factor ofp. In the case of the BSM, each pair of
sequences produced by a pair of input binary words differing
only on a Hamming weight2 error event of lengthL∗ will
determine a squared Euclidean distance given by [3]

d2
min = 4

L∗

+m−1
∑

n=m

(zn − z′n)2 = 4

Q
∑

i=1

1

4i
=

4

3

(

1 − 1

4Q

)

.

(14)
For the rest of CCM’s, the squared Euclidean distances asso-
ciated to such error events will depend generally on the input
wordsb andb

′. In Figs. 5(a), 5(b) and 6(a) we can see the
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Fig. 5. Histogram of thed2

Ei
corresponding to the Hamming weight2

binary input error events in the case of a CCM system withQ = 5 for all
the possible input sequences. (a) mBSM CCM; (b) TM CCM.
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Fig. 6. (a) Histogram ofd2

Ei
for the Hamming weight2 binary input error

events in the case of an mTM CCM withQ = 5 for all the possible input
sequences; (b) Histogram ofd2

E
when the binary error events consist on

the concatenation of2 binary input error events with Hamming weight2 and
lengthL∗ each, in the case of a PCCCM with two mTM CCM’s withQ = 5.

distance spectrum for the corresponding maps, produced forall
possibleb andb

′ sequences differing on a Hamming weight
2 error event with lengthL∗.

Let us denote asDL∗

2 the set of all the possible squared
Euclidean distances given by such binary error events in a
CCM, that is to say

DL∗

2 =
{

d2(x,x′)
∣

∣x ↔ b,x′ ↔ b
′,b⊕ b

′ = e
∗
}

d2(x,x′) =
∑N

n=1
(xn − x′

n)2. (15)

If the S-random interleaver is designed withS taking a value at
least3L∗, the input binary error events with Hamming weight
2 will not be the dominant ones in the error floor region, since
they would lead to squared Euclidean distances consisting on
the sum of the distances associated with an error event of
lengthL∗ for one CCM, and of lengthp(L∗ − 1)+ 1 > S for
the other CCM (p > 3). That is to say, the squared Euclidean
distances in the PCCCM system will be aroundd2

E1
+ pd2

E2
,

with d2
Ei

∈ DL∗

2 .
Since the S-random interleaver does not put any restriction

about the concatenation of error events, in the case ofS >
3L∗, the dominant error events will have Hamming weight
4 and will consist in two Hamming weight2 binary error
events differing inb at indexesi, i + L∗ − 1 and j, j +
L∗ − 1, and leading to an analogous combination inc, so
that, for example,|π(i) − π(j)| = L∗ − 1 and |π(i + L∗ −
1) − π(j + L∗ − 1)| = L∗ − 1. These Hamming weight4
compound binary error events will lead to squared Euclidean
distances in the PCCCM system,d2

E =
∑4

i=1
d2

Ei
, d2

Ei
∈



DL∗

2 , lower than the squared Euclidean distances associated
to the Hamming weight2 binary error events allowed by the
interleaver structure.

In the case of two concatenated BSM CCM’s, all Hamming
weight2 binary error events of lengthL∗ have the same asso-
ciated squared Euclidean distance (DL∗

2 has only one element),
so that, as with turbocodes, the error floor determined by the
concatenation of two of such events will be given by

Pbfloor ≈
w4N4

2N
erfc





√

4d2
min

4P
R

Eb

N0



 , (16)

whered2
min is given in (14),w4 = 4 is the number of error bits,

andN4 is the number of compound binary error events with
Hamming weight4 consisting in the mentioned concatenation
of Hamming weight2 binary error events with lengthL∗

allowed by the interleaver structure. In the rest of cases, such
compound binary error events will lead to squared Euclidean
distancesd2

E = d2
E1

+ d2
E2

+ d2
E3

+ d2
E4

, whered2
Ei

∈ DL∗

2

is the individual squared Euclidean distance induced by each
individual Hamming weight2 binary error event in each of the
CCM’s, which depends generally onb andb

′. For the mBSM
CCM and the TM CCM, these distancesd2

Ei
have the same

frequency (see Fig. 5), and so it is enough to consider the
combinations with repetition of4 elements inDL∗

2 to account
for all possible values ofd2

E between two PCCCM words.
Therefore, the bound is given as

Pbfloor ≈
w4N4

2N

(

t + 3

4

)

−1
∑

d2

E

erfc





√

d2
E

4P
R

Eb

N0



 , (17)

where t is the number of elements inDL∗

2 and d2
E =

∑4

i=1
d2

Ei
, d2

Ei
∈ DL∗

2 . The term
(

t+3

4

)

is the number of said
combinations of the elements ofDL∗

2 .
When we have two mTM CCM’s, the number of distances

in DL∗

2 is remarkably larger and their frequency is not uniform
(see Fig. 6(a)), so that the overall squared Euclidean distance
spectrum for the PCCCM outputs,d2

E =
∑4

i=1
d2

Ei
, d2

Ei
∈

DL∗

2 , follows the almost Gaussian distribution of Fig. 6(b). To
provide a bound based on the related binary error events, we
can resort to computing the probability density function (pdf)
of d2

E with the help of the related histogram and calculate
numerically

Pbfloor ≈
w4N4

2N

∫ d2

Emax

d2

Emin

p(v) · erfc
(

√

v

4P
R

Eb

N0

)

dv, (18)

wherep(v) is the estimated pdf ford2
E .

With respect to the frame error probability (Pe), i.e., the
probability for a frame ofN bits to contain bit errors, it is easy
to calculate for the error floor region once we have calculated
the mentioned bound forPbfloor . Assuming that the dominant
errors will be those with Hamming weightw4 = 4, then

Pefloor
≈ N

w4

Pbfloor . (19)

The next section will show the accurateness of this result with
the help of the frame error rate (FER) results.
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IV. SIMULATION RESULTS

For all the simulations,20 decoding iterations were per-
formed and the BER and FER results were recorded after
finding 20 frames on error. In Figs. 7 and 8 we have depicted
the BER results for the parallel concatenation of two equal
CCM’s with an S-random interleaver of lengthN = 10000 and
S = 23. All the CCM’s have a quantization factor ofQ = 5. In
Fig. 7 we plot the simulation results for a Cdma2000 binary
turbocode [10] of similar complexity, with an interleaver of
size N = 6138 specially designed for its constituent codes.
We see that we can get comparable results in the waterfall
region in the case of the concatenation of 2 mBSM CCM’s,
though the error floor of the latter is higher. On the other
side, the concatenation of 2 mTM CCM’s allows us to achieve
a much lower error floor than with the Cdma2000 binary
turbocode. It has been shown that a good combination of
CCM’s can yield chaos based concatenated systems competing
with standard alternatives in both the waterfall and error floor



regions [11]. In Fig. 8, we also show the bounds for the BER
at the error floor region calculated according to the principles
and expressions seen in the previous section. Though they only
take into account the kind of error events mentioned there,
they are reasonably tight. In the case of BSM and mBSM,
the interleavers employed allowed a total ofN4 = 5 possible
concatenations of pairs of Hamming weight2 binary error
events withL = L∗ = Q + 1, and the interleavers of the TM
and mTM cases allowed a total ofN4 = 4 of such compound
events (this time withL = L∗ = Q + 2). It is remarkable the
fact that the theoretical error floor, together with the error floor
shown by the simulations, decreases as the regularity in the
spectrum of the squared Euclidean distances associated to the
individual Hamming weight2 binary error events decreases.
In fact, the mTM case, which has the most complex squared
Euclidean distance spectrum as seen in Fig. 6(a), exhibits a
very good behavior respecting the error floor. The fact that
this system reaches the waterfall region some tenths of dB
after the system concatenating of 2 mBSM’s is related to the
fact that the decoding algorithm starts converging for a higher
Eb/N0 [11], but, once decoding convergence is reached, the
better squared Euclidean distance spectrum manifests itself in
a lower error floor. This means that the properties ofEb/N0

convergence threshold (that determines the waterfall region)
and the error floor level are to be dealt with separately when
choosing a possible concatenation of CCM systems. The rest
of cases, excepting the very bad performing concatenation
of BSM CCM’s, agree well with the principles of parallel
concatenation: a general good behavior for low-midEb/N0

once reached the turbo cliff threshold, but a relatively high
BER error floor forEb/N0 → ∞. Note that the results shown
here are comparable to the ones attained by binary turbocodes
or turbo TCM systems of similar complexity [10], [11].

In Fig. 9 we show the BER and the error floor bounds for
the mBSM PCCCM with different values ofN , S andQ. The
difference betweenQ = 5 andQ = 6 is small, and seems to
affect mainly to the turbo cliff, determining a slightly steeper
slope for theQ = 6 case. Nevertheless, the error floor is very
similar: though forQ = 6 there are some important differences
(the minimal loop length is nowL∗ = 7), the values of the
squared Euclidean distances are practically the same, since
the changes in such values are small asQ → ∞ when Q >
4. Therefore, the main change with a change inQ is in the
multiplicity N4 of the compound error events allowed by the
interleaver permutation. This makes it clear that the dynamics
of the map, which determines the spectrum of the squared
Euclidean distances between pairs of chaotic sequences, isa
more influential factor at the error floor region than the ad-hoc
quantization levelQ.

On the other hand, when we change the value ofN , we can
appreciate in Fig. 9 that the interleaver gain in the error floor
region changes asN−1. This is the expected behavior for any
parallel concatenated system with interleavers [10]. There is
not even a noticeable improvement in theEb/N0 threshold for
the waterfall region with a growing value ofN with respect
to the case withN = 10000. Only whenN < 10000 (see the
N = 1000 case), the situation is clearly worse and the behavior
starts resembling the pure BSM case. In fact, withN = 1000
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Fig. 9. BER and error floor bounds for the parallel concatenation of two
equal mBSM CCM’s in AWGN. Bounds are depicted with dash-dotted lines.
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Fig. 10. BER and FER for different parallel concatenation oftwo equal
CCMs in the AWGN channel,Q = 5, N = 10000 and S = 23. BER:
continuous line. FER: dashed line. Thick continuous lines merging for high
Eb/N0 with the dashed lines depict the relationFER = (N/w4)BER for
each corresponding PCCCM kind (except for the mTM).

the interleaver requires a lower value forS, and, since it takes
now the valueS = 12, the dominant error events in the error
floor region are those with overall Hamming weight2 (instead
of 4) and given by one individual binary error loop withL =
L∗ in one encoder andL = 3(L∗ − 1) + 1 = 16 > S in the
other. These error events have associated squared Euclidean
distances lower than the squared Euclidean distances for the
compound Hamming weight4 error events of the cases with
S > 3L∗. Note that the maximum possible value forS is
limited by the size of the interleaverN , sinceS <

√

N/2.
This also puts a limit on the value ofQ once we have a pair
S and N , becauseL∗ = Q + a, a ∈ N, and we require that
L∗ < S to avoid low squared Euclidean distance weight2
error events in the concatenated code.

Finally, we have plotted in Fig. 10 the BER and FER results
for several concatenation of CCM’s. We have also included
the plots of(N/w4)BER (see (18)). We can see how the FER
curves follow the expected behavior for a parallel concatenated



scheme, with the waterfall and the error floor regions located
where is hinted by the BER curves (with the commented
exception of the pathological BSM system). With respect to
the error floor region, we verify that the relationship (18) holds
for the FER, and we can be sure that the dominant error events
present in each frame with errors are those of Hamming weight
4 and structure seen. We have not depicted(N/w4)BER for
the concatenation of two mTM’s since the results obtained are
still far from reaching the error floor steady state.

V. CONCLUSIONS

In this article we have reviewed a class of chaos coded
modulations with switched discrete chaotic maps and small
perturbations control, and we have analyzed the behavior at
the error floor region of the parallel concatenation of such
modulations. This scheme has shown to be of potential interest
since the attainable performance is quite similar to that of
binary turbocodes or turbo TCM. The analysis of the error
events leading to low output square Euclidean distances has
allowed us to draw bounds for the bit error probability at said
error floor region. The same analysis has provided a valuable
insight into the properties of the concatenated system and has
stressed the fact that the dynamics of the underlying map
is a major factor in the system design, since this dynamics
controls the squared Euclidean distance spectrum. In fact,the
best results were obtained when the uniform error property
was furthest from being met.
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