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Abstract—In this article we study the performance of a class as compared with classical communication systems [3], and
of parallfel concatenated encoder.s similar to a turbo trells coded this has reopened the way to look further into the possislit
modulation, but where the constituent encoders are chaos ded ¢ na0tic systems to act efficiently in coded modulation
modulators. We show that, even when the uniform error propety . .
does not hold for the kind of constituent chaos coded modulains schemes. Chaos based modulation systems W0rk}ng at j[he
employed, it is still possible to draw a reasonable bound for Waveform level have already shown to be of potential use in
the bit error probability at the error floor region based on  multipath fading channels [4], as well as chaos based sgstem
the interleaver structure. The simulations va!idate the. bainds working at the coding level [5]. Other recent works have
and show that the dynamics of the underlying chaotic maps, gyegsed the fact that chaos coded modulation (CCM) systems
rather than the quantization level of the constituent encoérs, . .. . 7
is the most important factor to account for both the bit and yvorklng at a joint waveform and coding level can be gfﬂqent
frame error rate behavior at the error floor region. We also iIn AWGN [3], [6]. It has been also shown that communications
show that these chaos bases parallel concatenated schemiddy based on high dimensional chaotic systems and belief peapag
performances comparable to binary turbocodes and are thusfo tion decoding can offer an excellent performance chariaeter
potential interest in communications. with thresholds [7]. Moreover, chaos based coded modulatio

Index Terms—Channel coding, Chaos, Concatenated coding, systems have shown to be of potential interest in flat fading

Modulation coding, Error analysis. channels [8]. This contrasts strongly with previous state o
the art [9]. Such success has been achieved by building a
. INTRODUCTION comprehensive bridge linking the fields of chaos theory and

The possibility of using chaotic signals to carry infornoati digital co_mmunlcanons. :
was first considered in 1993 [1]. This aroused a big deal ofIn par_t|cular, the proposal of a kind of chaos b_ased coo_led
work on chaotic communications, which became a hot topic modulatlons which could be seen under a trellis encodm.g
both nonlinear science and engineering. The interest intcha view [3] opened the road to evaluatg such kind of enchers o
communications was due to the foreseen good propertieg of Eﬂe same schemes where convolutlona_l cod(_as or tr_ellls C(.)ded
chaotic signals in the fields of secure systems or broadbemadmat'on (TCM) SVSte”_‘S are ablg t_o yield high coding gains
multiple access systems. In the case of secure systems, Oﬂ%examplg, one can bund_very efficient coded and_ modulated
can take advantage of the uncorrelation and unpredidi)abil?yStemS using concatenation: parallel concatenatiorh asc .
of the chaotic signals to build encryption algorithms. Tnhed" the so—cglled turbocodes or.turbo TCM systems; and sgnal
are the same properties desirable for the spread sequehce%oecatena.t'on’ SUCh as in serially concatenated conootalti
a code division multiple access (CDMA) system. On the Othgpdes, or in serially conca_tenated TCM™ systems [10]. .
hand, chaotic modulations and channel encoders derived fro The mentioned convolutlongl engoder view of such kind Of,
chaotic systems attracted much attention, but the int«meastCh""OS based cod_ed modulations is much like Ungerb_o_ecks
this kind of chaotic communications dropped somewhat due (S;M [10],.and since the turbo TCM systems Comb'”'”g
the bad performance of the systems proposed so far, singe t bandwu_jth efficient TCM systems a}nd the ph|!osophy
did not outperform other usual coded communication schem@ turbocoding offer good performance in white noise and

and they did not have even better performance than uncotﬂ@g'o channe_ls, _'t was expected that new systems built und_er
systems [2] the same principles could lead to comparable results. This

However, in later times and in some contexts we have wifaS ascertained in [11], where parallel concatenated chaos

nessed the arising of some proposals with good performar‘fé)éje(.j modulations were shown to give coding gains as high
as with standard binary turbocodes. Another advantage of
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Fig. 1. Scheme of the whole communications system. Left gideallel concatenated encoder structure foe= 1/2; center: channel model for AWGN;
right side: soft-input soft-output (SISO) iterative deead

The successful proposal of turbo-like structures based ore For indexn; corresponding to positiof draw a random
chaos coded modulations in [11] for the AWGN channel is  integert betweenl and N.
still lacking of a deep and comprehensive study which could« If ¢t has not been chosen before, verify if thigreviously
allow us to address the design task. That is the reason why we chosen indexes lie at least at a distanceSdfom ¢, i.e.
look here into the possibility to draw tight bounds for thé bi |mp —t| >Sforp=5—-5,---,j—L
error rate performance in the error floor region based on thes If ¢ satisfies the previous conditions, keep itias= ¢ and
minimum distance concept [13], with the aim also to link the  proceed in the same way until @ indexes are chosen.
dynamical properties of the underlying chaotic systems angis algorithm converges in a reasonable time wttéris
the final performance of the concatenated system. This waikosen according to:
is an extension of a previous conference paper [14].

According to all this, the article is structured as follows. S < \/E (1)
Section Il is devoted to the description of the whole system, 2
including the concatenated encoder for some constitue@hWhen S = 1, we have a purely random interleaver.
coded modulations, the channel and the iterative decoder. | Each CCM belongs to the class of discrete chaotic switched
Section Ill, we show how the minimum distance analysis canaps driven by small perturbations [3]. They follow the
be extended to this kind of nonlinear concatenated codggneral expression
and how to draw bounds for the error floor region. Section —Q
IV exhibits the simulation results and compares them with o = f(zn-1,b0) + 9 (bn, 20-1) - 277, ©)
the proposed bounds. Finally, Section V is devoted to the T, = 2z, —1, )

conclusions. where f (,0) = fo(-) and f (-,1) = f1(-) are chaotic maps
that leave the interval, 1] invariant. They are piecewise linear
[l. SYSTEM MODEL maps with slopet2. The natural numbe® indicates the num-
A. Encoder ber of bits to represent, (thusz,,), andg (b,, z,—1) € {0,1}

L is the small perturbations term [3], given b
The concatenated encoder consists in the parallel concate- P Bl g Y

nation of two chaos coded modulations (CCM’s) [3], and, g(b,2) = b z<
accordingly, we will call these systems parallel concatietha ’ b 22>
chaos coded modulations (PCCCM'’s). They have been firs - . : .
proposed in [11], where it is shown that these systems C\?vﬁereb =b@1andd is the binary XOR operation. If

: (4)

SIS

. I'](~) = f1(-) is the Bernoulli shift mapg(b, =) is equivalent
reach comparable performance to binary turbo codes and tq (E)}a precoder defined by the polynomiak D@~ [16], where

TCM systems. The general structure of the system, includi :
the concatenated encoder, the AWGN channel and the itera% stands for delay and the exponedt-1 means that input

decoder is shown in Fig. 1 is delayed@ — 1 sample periods. In any case, the function
The first CCM receivés .ami.d. binary input wordb = g (b, z) ensures that two binary input wordb, (b") differing

i i /
(b1,--- ,bn) of size N. The second CCM receives as mpu{n Omy.l. bit do not I_ead to output sequences, &) _for
Lo any individual CCM with a low squared Euclidean distance
a scrambled sequenee= (cy,---,cn), Which is the word 22 SN (2, — /)2 This recursive term is included to
b interleaved by an S-random interleaver [15] of sife The ~F n=11"" n’ . o .
L . ; o ._ensure a good interleaver gain, as it is mandatory for therinn
factor S of this kind of interleaver is the minimum separation ;
) . . encoders in any concatenated encoder [17].
between bit positions at the output for any two contiguous; . D o .
; . . o LS With these definitions, it is easy to see that the recursion
bits at the input. The permutation function is chosen in aisem

! \ . : L . of (2) leaves the finite sefg = {i-27%[i =0,--- ,29 — 1}
random basis. This function will map an indginto an index invariant and, therefore, we can restrict (2)%o by taking as
w3, which means that the bit in positigin b;, will be taken as ' ’ y g

bit in position,, ¢, within the input word for the SeCOnd|n|t|aI condition zg = 0. We shall consider the following pairs

encoder. The index permutation is chosen according to tﬂlémapsfo(-) ?nd_fl('):
following steps: 1) Bernoulli shift map (BSM).

« Choose an integes. fo(z) = f1(2) = 2z mod 1. (5)



. ) sample corresponds to the first CCM; whers even § = 2n,
n =1,---,N), the sample corresponds to the second CCM
, , (see Fig. 1). Note that the overall system is similar to a
’ turbo TCM system, but now the sequence is a chaos-like
. . broadband signal not intended for spectral efficiency.

@ (b) B. Channel
Fig. 2. Maps for the constituent CCM encoders. The contisuboe The channel corresponds to the well known AWGN model
corresponds tofo(-); the dotted line, tofi(-). (@ mTM (continuous line: - . )
TM); (b) mBSM (continuous line: BSM). The sequence arriving at the decoder side; (rq,- - - ,72n),
will then be
Ty = Tk + Nk, (11)
2) Tent map (TM), corresponding to equations . . )
. wheren,, arei.i.d. samples of a Gaussian RV with zero mean
fo(2) = fi(z) = { 2z (1) sz<j3 . (6) and poweros?. Since the joint PCCCM system proposed has
2-2z 5<z<1 rate R = 1/2, the relationship between the power of the noise
3) The BSM and a shifted version of the same (multnd the signal to noise ratio in terms of bit energy to noise

Bernoulli shift map, mBSM), following spectral density will be
R E 1 FE
fo(z) = 2z mod 1, @) -2 _otb _ - b 12
0(2) o PN, - PN, (12)
224+ % 0<z< i . .
filz) =14 22— Tl << 4% _ 8) where P is the power of the chaos coded modulated signal
2z — % 1<z<1
4) The tent map and a shifted version of the same (mulfe: Decoder
tent map, mTM), following A chaos based signal coded with the mentioned finite
1 state machine scheme (see Fig. 3) can be decoded with any
folz) = 9_9, l<.<1 (9) standard method intended for general state machine coding,
2="= in particular maximum likelihood(ML) [3] or maximum a
2z + % 0<z< % posteriori (MAP) algorithms [18]. They are based on the set
2z — 5 <<l of 29 possible states defined by the memory positiontsee
hz) =9 5_ 2z 1 <z< 3 (10) Fig. 3), and the transitions between those states. As seen in
2 3S%<1 9. 3), ar . :
5—2z 7<2<1 Fig. 4, each transition happens for timeover an edge:,

between a starting statg®(e,,) and an ending statg” (e,,).
The transition is driven by an input bit, and produces as
output a chaotic sample, = 2z,,—1 as a function ob,, and of

> Dz, the previous chaotic samplg, ; (equivalent to the previous
\ state). This is indicated by functioi(-, ). The stateS¥(e,,)
) — is the starting state for the subsequent transi €ntl)
1297 +
1/2
D—
’\1/2 edge )
Y110
) . input: SE( )= SS( )
Fig. 3. Encoding structure for the mTM CCM; stands for a memory & G+l
position holding one bit® is the binary XOR operation and the feedback b

path befores; implements the recursive precoding of (4). The rest of faekb
paths account for the structure of the equivalent finitéestaachine of the S
discretized map chosen. Si(&)

output:

Xn
Xn =h(Xn-1, B )

In Fig. 2 we have depicted the corresponding maps. These transition
CCM systems, when restricted 8y, allow an equivalent
representation in terms of tellis encoder closely related Fig. 4. Transition diagram of the equivalent finite state hire for a chaos
to a trellis coded modulation (TCM) system [3]. In Fig. 3, fopased coded modulated system.
example, we can see the equivalent trellis encoder strictur
for the mTM CCM. In particular, the iterative decoder for a concatenatetesys
The constituent encoders seen work at a rate of one cha@ use standard soft-input soft-output (SISO) decodind-mo
sample per bit, and therefore, the parallel concatenation Wes [19]. As seen in Fig. 1, the decoder chosen consists on
two CCM’s will have a coding rate of = 1/2. The output WO SISO decoding blocks working iteratively over each set
words have thus siz€N, x = (z1,---,zan), With xg,

. . 1For the kind of maps considered, the invariant density:pfis uniform
k=1,---,2N, t?kmg values alternatively from each of the, |_; 1] and, therefore, we can assurffex: 1/3 when @ > 4, since P is
CCM's: whenk isodd ¢ = 2n— 1, n = 1,--- ,N), the equivalent to the square standard deviatichof the invariant density.
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one,ro,, n = 1,--- , N). This decoder reproduces the well*
known structure of the SISO iterative decoders for paralle=
concatenated binary channel codes, but with channel raetri
adapted to the CCM setup
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wherez,, = 2z, — 1, z, € Sg, is the candidate quantized
chaotic sample for the corresponding branch metric [12]. Wkg. 5.  Histogram of thed3, corresponding to the Hamming weight
do not review here further details of the adapted SISO d_esodg:gagzs'gﬁ)‘fé ?r:;r)%rt 2zzzt:n?eg_]e(a§a;%g|fv|ac%ﬁ:\/|'\;ﬂ (%Sﬁvlmc“gtﬁ 5 for all
for brevity. The calculation of the output binary log liketiod

ratios (lr’s, see Fig. 1) as a function of the inplt’'s and

the channel metrics is straightforward [2] using the alyeadw
known log-MAP algorithm [19]. o
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Ill. M INIMUM DISTANCE ANALYSIS

The CCM'’s of the kind described are not linear and de
not comply in general with the uniform error property [10],o
and so a ML bound for the bit error probability based on th e FE T 5 TEEEET
PCCCM transfer function is almost unfeasible. Nevertheles §
we will see that we can give a reasonable bound in the error @
floor region. In binary turbocodes or turbo TCM systems, th_qg. 6. (a) Histogram ofi2, for the Hamming weight binary input error
minimum or free distance of the resulting parallel concated events in the case of an mMTM CCM witQ = 5 for all the possible input

code or coded modulation is usually employed to provide trﬁsquences? (b) Hi(si;og_fam af, when the binaf}’he"or events 0_0”5ng on
error f|00l‘ bound [10] the concatenation inary |nput error events witl Hammlng Welghtal"l

o o . length L* each, in the case of a PCCCM with two mTM CCM’s with= 5.
Each individual CCM has a characteristic binary input error

evente = b @ b’ associated to its output minimum squared

Euclidean distance. For example, in the case of the TM CCMistance spectrum for the corresponding maps, producedifor
the minimum squared Euclidean distance is given by an iNRyssibleb and b’ sequences differing on a Hamming weight
error event with lengthl = @ + 1 and Hamming weight 9 error event with lengthL*.

w(e) = @+ 1. This event produceQ differen/t output values | et us denote as)L” the set of all the possible squared
for the resulting encoded sequencesand aniQand a mini-  gyclidean distances given by such binary error events in a

mum squared Euclidean distanég = 37"~ (z, — 2,)>  CCM. that is to say

tending to0 for Q — oo [3]. i

Nevertheless, due to the presence of the parallel concate- D5 = {d*(x,X')|x = b,x' = b/, bab' =e*}
nated scheme with the S-random interleaver, the input inar Px,x") =N (2, — )2 (15)
error events leading to the output minimum squared Eudlidea
distance for the joint PCCCM system are normally to be fourfithe S-random interleaver is designed witttaking a value at
among the Hamming weight input binary error events (or least3L”, the input binary error events with Hamming weight

concatenations of the Same)_ Such error evehtsonsist in 2 will not be the dominant ones in the error floor region, since
two 1's separated by.* — 2 0's, and have lengttiL* = Q +1 they would lead to squared Euclidean distances consisting o

for the BSM and mBSM CCM’s, and* = Q + 2 for the the sum of the distances associated with an error event of
TM and the mTM CCM's. The Hamming weight binary lengthL* for one CCM, and of lengtip(L* — 1) +1 > S for
error events with lengtlp(L* — 1) + 1, p € N will lead to the other CCM f > 3). That is to say, the squared Euclidean
increasing values in the associated output squared Eadlidélistances in the PCCCM system will be aroufid + pd3,,
distances by a factor g¢f. In the case of the BSM, each pair ofwith dQEi € DY,
sequences produced by a pair of input binary words differingSince the S-random interleaver does not put any restriction
only on a Hamming weigh® error event of lengthL* will about the concatenation of error events, in the cas§ of
determine a squared Euclidean distance given by [3] 3L*, the dominant error events will have Hamming weight
L*+me1 4 and will consist in two Hamming weigh? binary error

Q
2 Z N2 Z _ 2 events differing inb at indexesi, i + L 1 andj, j+
dmin =4 = (Zn Zn) - 41-:1 4 - 3 (1 ) !

4Q L* — 1, and leading to an analogous combinationcinso

(14) that, for example|n(i) — n(5)] = L* — 1 and | (i + L* —

For the rest of CCM's, the squared Euclidean distances as$p— n(j + L* — 1)| = L* — 1. These Hamming weight
ciated to such error events will depend generally on thetinpeompound binary error events will lead to squared Euclidean

wordsb andb’. In Figs. 5(a), 5(b) and 6(a) we can see thdistances in the PCCCM systeni?, = S° | d,, d, €



DX", lower than the squared Euclidean distances associatec * ! —=—ZmTMcom, Qs

—#—2 mBSM CCM, Q=5
—6—2TM CCM, Q=5
—>*—2BSM CCM, Q=5

— — — Cdma2000 turbocode

to the Hamming weigh® binary error events allowed by the o
interleaver structure.

In the case of two concatenated BSM CCM’s, all Hamming w7t
weight2 binary error events of length* have the same asso-
ciated squared Euclidean distané®( has only one element), 10
so that, as with turbocodes, the error floor determined by the o .
concatenation of two of such events will be given by “

-3

10°k

E

w4N4 4dr2nin b
Pogoor N erfc FRFO ; (16) ool

107F

whered? ; is given in (14)w, = 4 is the number of error bits, ‘

and Ny is the number of compound binary error events with w0

Hamming weightd consisting in the mentioned concatenation F/No (@9)

of Hamming weight2 binary error events with lengtl.* _ . -
llowed by the interleaver structure. In the rest of caseshs roer o1 for different parallel concatenation of two eqECM' in

a y ) e "2 AWGN, Q = 5, N = 10000 and S = 23, compared with a Cdma2000

compound binary error events will lead to squared Euclideamary turbocode.

distancesi?, = d,, + df, + d, + df,, wheredj, € Dy

is the individual squared Euclidean distance induced byneac ' ¢— - T Zesmoom o

individual Hamming weigh® binary error event in each of the P e D ’

CCM’s, which depends generally dnandb’. For the mBSM °

CCM and the TM CCM, these distancés, have the same 0l

frequency (see Fig. 5), and so it is enough to consider the

'| —*— 2 mBSM CCM, Q=5
—o— 2 TM CCM, Q=5
—5— 2mTM CCM, Q=5

combinations with repetition of elements inD4" to account 107 5
for all possible values ofi, between two PCCCM words. | nasw
Therefore, the bound is given as R 3

-1
wylNy (t+3 d2E Ey =2
Pogoor * N ( 4 ) Zerfc @Rﬁo . (A7) oL
d%
where ¢ is the number of elements i}  and d%, = ; ,
St dy., d%, € DY The term(*}?) is the number of said ool ‘ ‘ ‘ ‘ ‘ ‘ ‘
combinations of the elements %"
When we have two mTM CCM’s, the number of distances § toor bounds for dif o .
; L* ; ; ; ; ig. 8. BER and error floor bounds for different parallel catenation o
in Dy is remarkably larger and their frequency is not un!forrﬁNo equal CCM's in AWGN,Q = 5, N = 10000 and S — 23. Bounds are
(see Fig. 6(a)), so that the overall squared Euclideanriista gepicted with dash-dotted lines.
spectrum for the PCCCM outputdy, = 3-;_, d,, d3, €
DE”, follows the almost Gaussian distribution of Fig. 6(b). To
provide a bound based on the related binary error events, we IV. SIMULATION RESULTS
can resort to computing the probability density functiodffp
of d2, with the help of the related histogram and calcula
B 0
numerically

3 4
E,/N, (dB)

For all the simulations20 decoding iterations were per-
rmed and the BER and FER results were recorded after
finding 20 frames on error. In Figs. 7 and 8 we have depicted

Ny [ CEmax E the BER results for the parallel concatenation of two equal
Lata / p(v) - erfc < LR—b> dv, (18)
d2

~

beloor ~ 2N

1P N, CCM's with an S-random interleaver of length = 10000 and
S = 23. All the CCM’s have a quantization factor ¢f = 5. In
wherep(v) is the estimated pdf fod3,. Fig. 7 we plot the simulation results for a Cdma2000 binary

With respect to the frame error probab|||ty380’ i.e., the turbocode [10] of similar Complexity, with an interleavelr o
probability for a frame ofV bits to contain bit errors, it is easySize N = 6138 specially designed for its constituent codes.
to calculate for the error floor region once we have calcdlat¥Ve see that we can get comparable results in the waterfall
the mentioned bound faP,,, . Assuming that the dominantregion in the case of the concatenation of 2 mBSM CCM's,

errors will be those with Hamming weight, = 4, then though the error floor of the latter is higher. On the other
N side, the concatenation of 2 mTM CCM’s allows us to achieve
P,

oo R — Pog . (19) a much lower error floor than with the Cdma2000 binary

W4 turbocode. It has been shown that a good combination of
The next section will show the accurateness of this result wiCCM’s can yield chaos based concatenated systems competing
the help of the frame error rate (FER) results. with standard alternatives in both the waterfall and erraorfl

E

min



regions [11]. In Fig. 8, we also show the bounds for the BER
at the error floor region calculated according to the prilesip LR
and expressions seen in the previous section. Though thgy on
take into account the kind of error events mentioned there, 7L
they are reasonably tight. In the case of BSM and mBSM,
the interleavers employed allowed a total /§f = 5 possible 10 g
concatenations of pairs of Hamming weightbinary error ¢ [ Ne10000,05 |
events withl, = L* = @ + 1, and the interleavers of the TM oo
and mTM cases allowed a total &f; = 4 of such compound W
events (this time withl = L* = @ + 2). It is remarkable the Neossas
fact that the theoretical error floor, together with the efimor W0k ? i
shown by the simulations, decreases as the regularity in the N =L — .
spectrum of the squared Euclidean distances associatée to t N=100000. - N=10000, Q=6 TTE S T
individual Hamming weigh® binary error events decreases. R A S S S £
In fact, the mTM case, which has the most complex squared BN, (@3)
Euclidean distance spectrum as seen in Fig. 6(a), exhibits a
very good behavior respecting the error floor. The fact thee, %, 9 a1 etr fect voues o e bk concaercet o
this system reaches the waterfall region some tenths of B
after the system concatenating of 2 mBSM’s is related to the
fact that the decoding algorithm starts converging for daig e g o= 5
Ey /Ny [11], but, once decoding convergence is reached, the T
better squared Euclidean distance spectrum manifesisiitse
a lower error floor. This means that the propertiesFpf Ny 107
convergence threshold (that determines the waterfalbrggi
and the error floor level are to be dealt with separately when :
choosing a possible concatenation of CCM systems. The resig
of cases, excepting the very bad performing concatenation 1w
of BSM CCM'’s, agree well with the principles of parallel
concatenation: a general good behavior for low-nfig/ Ny 10
once reached the turbo cliff threshold, but a relativelyhhig } X:ZMCEEMQQ;
BER error floor forE, /Ny — oo. Note that the results shown 10 e 2 mBsM coM, Q=5
here are comparable to the ones attained by binary turbecode T 2mTMOen, 979
or turbo TCM systems of similar complexity [10], [11]. Wy o 1

In Fig. 9 we show the BER and the error floor bounds for
the mBSM PCCCM with different values df, S and@. The Fig. 10. BER and FER for different parallel concatenationtwb equal
difference betweer)) = 5 and @ = 6 is small, and seems to CCMs in the ANGN channelQ = 5, N = 10000 and S = 23. BER:
affect mainly to the turbo cliff, determining a slightly steer ‘]‘;J"b’}t]'\’;(‘jmfh“{‘h‘z gfﬁ;gﬁfﬂfg&g‘;g mgkr;‘;’;f'ﬂr%‘ﬁui“(’ﬁﬂ%fg;}'g:‘
slope for the@ = 6 case. Nevertheless, the error floor is Veryach corresponding PCCCM kind (except for the mTM).
similar: though forQ = 6 there are some important differences
(the minimal loop length is now.* = 7), the values of the
squared Euclidean distances are practically the samee sitiwe interleaver requires a lower value forand, since it takes
the changes in such values are smallkhs~ co when@ > now the valueS = 12, the dominant error events in the error
4. Therefore, the main change with a changelns in the floor region are those with overall Hamming weightinstead
multiplicity N, of the compound error events allowed by thef 4) and given by one individual binary error loop with=
interleaver permutation. This makes it clear that the dyinam L* in one encoder and = 3(L* — 1) +1 = 16 > S in the
of the map, which determines the spectrum of the squarether. These error events have associated squared Eurclidea
Euclidean distances between pairs of chaotic sequencas, @istances lower than the squared Euclidean distances dor th
more influential factor at the error floor region than the ad-h compound Hamming weight error events of the cases with
guantization level). S > 3L*. Note that the maximum possible value f8ris

On the other hand, when we change the valu&ofve can limited by the size of the interleave¥, since S < /N/2.
appreciate in Fig. 9 that the interleaver gain in the errasrflo This also puts a limit on the value ¢} once we have a pair
region changes a& —!. This is the expected behavior for anyS and N, because.* = @ + a, a € N, and we require that
parallel concatenated system with interleavers [10]. &hisr L* < S to avoid low squared Euclidean distance weight
not even a noticeable improvement in thg/N, threshold for error events in the concatenated code.
the waterfall region with a growing value @f with respect  Finally, we have plotted in Fig. 10 the BER and FER results
to the case withV = 10000. Only whenN < 10000 (see the for several concatenation of CCM’s. We have also included
N = 1000 case), the situation is clearly worse and the behavitite plots of(N/w,4)BER (see (18)). We can see how the FER
starts resembling the pure BSM case. In fact, with= 1000 curves follow the expected behavior for a parallel concatiesh

—— N=10000, =23, Q=5
—+— N=1000, =12, Q=5

—#— N=100000, S=67, Q=5
—6— N=65536, S=37, Q=5
—&— N=10000, $=23, Q=6

S,

2
E /N, (dB)



scheme, with the waterfall and the error floor regions latat13] T. Richardson, “Error Floors of LDPC Codes,” iRroceedings of
where is hinted by the BER curves (with the commented

exception of the pathological BSM system). With respect Q4]
the error floor region, we verify that the relationship (18)ds

for the FER, and we can be sure that the dominant error events

presentin each frame with errors are those of Hamming weiq{g]
4 and structure seen. We have not depictdtfw,)BER for

the concatenation of two mTM'’s since the results obtained a[ge

still far from reaching the error floor steady state.

V. CONCLUSIONS

[17]

In this article we have reviewed a class of chaos coded
modulations with switched discrete chaotic maps and smé&i$]
perturbations control, and we have analyzed the behavior at
the error floor region of the parallel concatenation of sughygj
modulations. This scheme has shown to be of potential isitere
since the attainable performance is quite similar to that of
binary turbocodes or turbo TCM. The analysis of the error

events leading to low output square Euclidean distances has

allowed us to draw bounds for the bit error probability atisai
error floor region. The same analysis has provided a valuable

insight into the properties of the concatenated system asd |
stressed the fact that the dynamics of the underlying m
is a major factor in the system design, since this dynami

controls the squared Euclidean distance spectrum. In tfzet,

best results were obtained when the uniform error propet

was furthest from being met.
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