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Tulipán s/n, 28933 Móstoles, Madrid, Spain

received 17 September 2007; accepted in final form 17 December 2007
published online 21 January 2008

PACS 05.45.Xt – Synchronization; coupled oscillators
PACS 42.55.Px – Semiconductor lasers; laser diodes
PACS 42.65.Sf – Dynamics of nonlinear optical systems; optical instabilities, optical chaos and

complexity, and optical spatio-temporal dynamics

Abstract – We give the first experimental demonstration of simultaneous bidirectional commu-
nication through chaotic carriers thanks to the phenomenon of isochronal synchronization. Two
Mackey-Glass electronic circuits with chaotic behaviour exchange their signals through a coupling
line with delay. When the internal feedback of the circuits and the coupling are accurately matched,
isochronal synchronization arises. Under this dynamical regime, we introduce a binary message at
both outputs and recover it at the opposite circuit. Finally, we discuss the security of this kind of
communication system by analyzing the message recovered by a potential eavesdropper.

Copyright c© EPLA, 2008

Introduction. – Probably, one of the most promising
application of the synchronization of chaotic systems is
its use in secure communications. First proposed by Pecora
and Carroll in their seminal paper about chaos synchro-
nization [1], the transmission/recovery of an encrypted
message using chaotic systems was experimentally demon-
strated by Kocarev et al. two years later [2]. The message
recovery process relies on the chaos-pass filtering prop-
erties of the synchronized chaotic systems, i.e., when a
message is introduced in the chaotic carrier output of the
transmitter system, the receiver synchronizes only with
the chaotic part of its input signal and the message can
be recovered after a straightforward signal treatment.
Therefore, synchronization between chaotic systems is a
necessary requirement in communications with chaotic
carriers, nevertheless synchronization can have many
faces [3]. If we assume a certain delay in the coupling line,
which would correspond to the case of real applications,
it would be possible to define different kinds of synchro-
nization by taking into account the delay between the
synchronized systems. In the most general case, the
receiver follows the transmitter output with a lag equal
to the coupling time, in what is usually called achronal
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synchronization [4]. However, if the internal parameters
of the coupled systems are adequately tuned, it is possible
to obtain anticipated synchronization [5,6], where the
receiver system advances in time the dynamics of the
transmitter. The intermediate case is known as isochronal
synchronization [7] (also called zero-lag synchronization)
and corresponds to the situation where both chaotic
systems have the same dynamics at exactly the same
moment, despite the time lost in the transmission
line. Isochronal synchronization has been observed in
the dynamics of interconnected cortical areas of the
brain [8–10] and it has been recently reproduced in small
arrays of coupled chaotic lasers [11,12] and electronic
circuits [13] where bidirectional coupling was introduced.
It is within the framework of lasers that isochronal
synchronization has been proposed as a technique to
bidirectionally encrypt/decrypt a message. Two recent
works [14,15] have shown by means of numerical simula-
tions that it is possible to establish bidirectional secure
communication between two independent chaotic lasers
and, in addition, messages can be sent simultaneously
(i.e., both lasers sending/receiving messages at the same
time). More recently, unidirectional message transmission
in the framework of isochronal synchronization has
been shown experimentally in semiconductor lasers with
opto-electronic feedback [16].
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Fig. 1: (Colour on-line) In (a) a single Mackey-Glass circuit
is represented. The circuit is composed of a nonlinear func-
tion f(x) outlined in the dashed box. At the output of
the nonlinear function a simple RC circuit, composed of R4
and C1, integrates the voltage Vout. Vout is further intro-
duced into a delayed feedback loop, represented by a trian-
gle. The symbols τf and κf correspond to the feedback delay
and feedback strength, respectively. Parameter values are:
R1 = 1kΩ, R2 = 0.5 kΩ, R3 = 4kΩ, R4 = 1kΩ, C1 = 1µF, J177
is a JFET transistor and LM348 is an operational ampli-
fier. In (b) we plot the schematic setup of the experiment
corresponding to the transmission of a message with chaotic
masking. The outputs of two identical Mackey-Glass
circuits are coupled through a digital delay line and then
they are added to the feedback signal of the opposite
circuit.

In this letter we present, to the best of our knowledge,
the first experimental demonstration of simultaneous
bidirectional communication between two chaotic systems
by means of isochronal synchronization. First, we
synchronize two Mackey-Glass electronic circuits with
time-delayed feedback, where, a delay is also introduced in
the coupling line. Both systems are coupled bidirectionally
and isochronal synchronization arises when feedback and
coupling parameters are accurately matched. Then an
encrypted message is introduced in both chaotic outputs
and recovered at the opposite system. Finally we show
how this encryption technique is suitable to negotiate
an encryption key between both systems, even in the
case that an eventual eavesdropper has access to both
transmitted signals.

Experimental setup. – We have chosen a Mackey-
Glass electronic circuit [17–19] as the chaotic system to
encrypt/decrypt the transmitted messages. The electronic
circuit, based on the Mackey-Glass model, is shown in
fig. 1(a) and consists in a nonlinear oscillator whose
oscillations are induced by the feedback loop with delay.
Three basics elements can be distinguished. First of all, a
nonlinear function f(x), which processes the signal Vin, so
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Fig. 2: (Colour on-line) Chaotic attractor of the system in the
phase space given by [Va, Va(t− τf )] and the corresponding
time series (inset) for an uncoupled Mackey-Glass circuit.
The overall aspect of the attractor reflects the nonlinear
function f (dashed line). The maximum value of this function
is Vmax = 1.605V which scales the dynamics of the circuit.
The feedback parameters of the system for this experiment
are: τf = 8ms, κf = 1. The threshold for the feedback strength
which undergoes a Hopf bifurcation is κf = 0.55, below this
value the system does not oscillate. However, this threshold
depends on the delay τf of the feedback loop.

that it feeds the analog integrator with the voltage f(Vin).
This integrator is the second element of the system and
it is composed of a simple RC circuit, represented by R4
and C1. The voltage at the capacitor C1 is the dynamical
variable Vout, which is sent in turn to the third element,
a digital delay line represented by a triangle in fig. 1(a).
Along the delay line, a gain κf and a delay τf is applied to
the voltage Vout, so that the voltage Vin(t) at the output
of the delay line is Vin(t) = κfVout(t− τf ).
The differential equations that represent this circuit are

quite similar to the Mackey-Glass model. The form of
the nonlinearity differs slightly with the original Mackey-
Glass model [17] and it can be seen in fig. 2 (dashed
line). However, these differences do not change the main
characteristics of the system. Equations corresponding to
the circuit of fig. 1(a) can be easily deduced by circuit
analysis. We obtain the differential equation:

R4C1
dVout
dt
=−Vout+ f(κfVout(t− τ)), (1)

where the nonlinear function f(κfVout(t− τ)) depends on
a p-channel JFET (Junction Field Effect Transistor).
Now we describe the communication setup which

consists in a coupling line with delay that connects two
identical Mackey-Glass electronic circuits (see fig. 1(b)).
Both circuits are coupled to each other (bidirectionally)
by adding the output signals Vout to the variables Vin
of the opposite circuit. The variable Vout of each circuit
is sent through a digital coupling line with a certain
delay and gain. The equations of the coupled system
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represented in the fig. 1(b) are:

R4C1
dVa
dt
=−Va+ f(κfV

τf
a +κc(V

τc
b +M

τc
b )), (2)

R4C1
dVb
dt
=−Vb+ f(κfV

τf
b +κc(V

τc
a +M

τc
a )), (3)

where variables Va and Vb correspond to the output
variable of each circuit, and the superscript τc means
the delayed variable, i.e., V

τf
a = Va(t− τf ). The encrypted

messages are Ma and Mb and they are introduced at Va
and Vb, respectively, by means of a voltage adder, in a
classical chaos masking encryption way. A parallel method
of introducing the message through the feedback loop has
been recently proposed [20], however, a third dynamical
unit is required in this case.
The digital delay line is composed of an autonomous

microcontroller with on-board memory and DAC (Digital-
to-Analog Converter) and ADC (Analog-to-Digital
Converter) converters. The signal is first converted to
a digital signal and then stored into a FIFO buffer and
after a number of clock ticks, the signal is then converted
back into analog. The gains κf and κc and the delay τc of
each channel can be adjusted by software, so that we can
make automated measurement for several gains and
delays. The delay ranges from 0 to 20ms. The gains κf
and κc have values in the interval [0, 1].
Finally, the output signals of both circuits are sampled

with an ADC sampling board connected to a computer
and signals are later analyzed with Matlab software.
More details of the experimental setup can be found in
ref. [13].

Isochronal synchronization. – Figure 2 shows the
dynamics of one of the circuits in the absence of coupling,
which behaves chaotically for a sufficient feedback and
delay. The output voltage Va exhibits a single extremum
dynamics when plotted in the phase space defined by
[Va, Va(t− τf )], which reflects its chaotic behaviour. Both
circuits behave similarly, since the only difference between
them is introduced by the tolerance of their electronic
components.
At this point, we couple together both circuits through

a delay line of gain κc and delay τc. When the bidirectional
coupling is introduced different scenarios arise, as it can
be observed in the bifurcation diagram of fig. 3 (left
inset). From low to moderate coupling strengths, both
circuits behave chaotically, although windows of N -period
oscillations arise for intermediate and high couplings.
Since we are interested in communicating through

chaotic masking, we set the coupling strength to κc = 0.3
which sets the system to lie within the chaotic region.
Figure 3 shows the outputs of both circuits corresponding
to the mentioned value of κc and a coupling delay time
of τc = 18ms. We can observe how the system is highly
synchronized without a delay between both outputs,
despite the time lost in the transmission line. This is the
typical signature of isochronal synchronization.
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Fig. 3: (Colour on-line) Time series of both circuit outputs Va
(black line) and Vb (red line) under isochronal synchroniza-
tion (κc = 0.3). Inset on the left shows the bifurcation diagram
of the coupled system as a function of the coupling strength
κc with a fixed coupling delay of τc = 18ms. The right inset
shows the cross-correlation function under isochronal synchro-
nization. A maximum of 0.99 is observed at ∆t= 0, which
indicates that there is no delay between both outputs. Time
series and cross-correlation function plotted here are obtained
for κc = 0.3. The time window used for the computation of the
cross-correlation is 1.3 s. Feedback parameters (equal for both
circuits) are τf = 18ms and κf = 0.4. The rest of the internal
parameters are those given in fig. 1.

In order to characterize the quality of the synchroniza-
tion and to evaluate the delay between the output of both
circuits we compute the Cross-Correlation function (CC)
between the Va and Vb. The CC function is defined as:

C(∆t) =
〈(Va(t)−〈Va〉)(Vb(t+∆t)−〈Vb〉)〉
√

〈(Va(t)−〈Va〉)2〉〈(Vb(t)−〈Vb〉)2〉
,

where the brackets indicate time averaging. In this way we
compute the correlation between time series for different
shifts in the time axis, obtaining the quality of the
synchronization (−1<C(∆t)< 1) and the delay between
the time series, indicated by the position of the maximum
of the CC function.
In the right inset of fig. 3, we plot the CC function,

which confirms that we are dealing with isochronal
synchronization since: a) The maximum of the CC
(∼ 0.99) function has a value close to unity, indicating the
synchronized behaviour and b) the maximum is placed at
∆t= 0, which reflects that there is no delay between both
outputs despite the time taken in the transmission line.
Note that similar to ref. [12], the bidirectional coupling
and the inclusion of the feedback loops lead to a stable
zero-lag synchronization, i.e., leader-laggard alternation
between both outputs is not observed.
We have repeated the experiment for different values

of κc and τc, obtaining similar results. The only require-
ment to obtain isochronal synchronization with high
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Fig. 4: (Colour on-line) (a) and (b) show the input and
output signals of circuit a and b, respectively. The message
can be recovered by subtraction of both signals. Plots (c) and
(d) show the transmitted (dashed line) and recovered (solid
line) message at both circuits.

cross-correlation values is to accurately match the feed-
back and the coupling delay, i.e., τc = τf , as previously
reported in [12].

Bidirectional communication. – Since the synchro-
nization is a necessary condition to communicate by means
of chaotic masking, the next step is the evaluation of the
ability of the system to encrypt/decrypt a message.
We introduce a binary message with a bit rate of 80 b/s.

In the frequency domain, the message is hidden by the
broad spectrum of the circuit dynamics, which has a peak
at ∼ 120Hz. The transition between the 0/1 state has been
filtered since we have observed that drastic jumps worsen
synchronization. The amplitude of the message must be
as low as possible to guarantee a good encryption, but
it is also limited by the amplitude of the intrinsic noise
of the system, which hinders the message recovery for low
values of the message amplitude. Taking into account both
restrictions, we have selected a message amplitude of 0.4V
for the clarity of the results. It corresponds to a 25% of
the RMS value of the circuit output.
Figures 4(a), (b) show the input and output signals of

both circuits, where a message has been already added
to both chaotic signals. A message Mb(t) is encrypted by
chaos masking with the Vb(t) signal, while at the opposite
circuit a message Ma(t) is masked by Va(t). In order to
recover the message, the input signal has been shifted a
time τc, since it is the time taken by the output signal
to arrive at the opposite circuit. We can observe how, by
subtracting the output to the input signal, it is possible
to decrypt the transmitted message, whose quality can
be improved further by filtering and reshaping. Note that
thanks to the bidirectional coupling both systems are
sending/receiving a message simultaneously, something
that cannot be achieved in unidirectional communication.
It is worth to distinguish from two similar but different

bit-recovery scenarios. When both circuits are sending and
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Fig. 5: (Colour on-line) Transmitted bits (solid lines) and
recovered signals at circuit a (blue lines) and b (red lines).
The bottom figure corresponds to the absolute value of the
signal recovered by an eavesdropper. We can observe that only
when two bits do not coincide, the transmitted signal can be
recovered by an eavesdropper.

receiving the same bit, we obtain identical synchroniza-
tion, which can be analytically demonstrated by substitut-
ing Va = Vb and Ma =Mb in eqs. (2), (3). Intuitively, we
can argue that if both outputs are synchronized, and the
same signal (Ma =Mb) is perturbing both inputs, we are
helping to synchronize both outputs thanks to a common
external signal (i.e., the message). A different, but also
efficient, bit-recovery process occurs when circuits are
sending different bits. In this case, the added message,
whose amplitude should be low enough to be hidden by
the chaotic signal, is treated by the receiving circuit as
additive noise, which is filtered due to the chaos-pass
filtering properties of the synchronized system [14]. In
both cases, the intrinsic noise of the electronic circuits,
and the tolerance of the electronic components, lead to
the appearance of noisy fluctuations at the recovered
message, which translates into a similar quality in the
recovered bit. However, an appropriate filtering together
with a threshold-passing treatment lead to a satisfactory
recovery of the message.
Arriving at this point it is worth discussing the security

of this kind of transmission. Since the signal of both
circuits is accessible to a potential eavesdropper, it would
be reasonable to think that the eavesdropper could be
able to recover the encrypted messages by subtracting
both signals (note that in unidirectional communication
only one signal is accessible). Nevertheless, as it has been
proposed in refs. [14,15], it is a suitable technique to
negotiate a secret key between the users. Figure 5 shows
the message recovered by a possible eavesdropper (bottom
time series) when both users are communicating. We can
observe that when a bit “1” (or “0”) is sent by the two
systems at the same time, the eavesdropper do not detect
its presence, since the bit is suppressed when doing the
signal subtraction. Only when two bits do not coincide

40005-p4



Bidirectional chaotic communication by means of isochronal synchronization

the eavesdropper recovers the bit. In this way both users
could send a certain number of bits randomly distributed
and take the first N bits that coincide as the secret key to
communicate. Note that each receiver system knows which
are the right bits by simply comparing the received signal
with the sent signal.

Conclusions. – We have shown that two bidirection-
ally coupled Mackey-Glass electronic circuits can exhibit
isochronal synchronization despite the delay existing in
the transmission line. Isochronal synchronization appears
for a wide range of coupling time and is robust against
the intrinsic noise of the electronic systems. We have
used the isochronal synchronization in order to transmit,
bidirectionally and simultaneously, an encrypted message.
Finally, we have shown the ability of this kind of commu-
nication to negotiate secret keys between users. When
a potential eavesdropper has access to both transmitted
signals he/she is not able to recover the whole chain of
transmitted bits, since bits that coincide are not detected.
Despite this type of secure communication has been
recently proposed, we give here the first experimental
implementation.
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