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Abstract – This paper deals with the distinction between white noise and deterministic chaos
in multivariate noisy time series. Our method is combinatorial in the sense that it is based on
the properties of topological permutation entropy, and it becomes especially interesting when the
noise is so high that the standard denoising techniques fail, so a detection of determinism is the
most one can hope for. It proceeds by i) counting the number of the so-called ordinal patterns in
independent samples of length L from the data sequence and ii) performing a χ2 test based on the
results of i), the null hypothesis being that the data are white noise. Holds the null hypothesis,
so should all possible ordinal patterns of a given length be visible and evenly distributed over
sufficiently many samples, contrarily to what happens in the case of noisy deterministic data. We
present numerical evidence in two dimensions for the efficiency of this method. A brief comparison
with two common tests for independence, namely, the calculation of the autocorrelation function
and the BDS algorithm, is also performed.

Copyright c© EPLA, 2008

Introduction. – Roughly speaking, an ordinal pattern
of length L is a digest of the up-and-down in a length-L
segment of a sequence whose elements can be linearly
ordered. Ordinal patterns have been used in different ways
to study time series since Bandt and Pompe discussed
them in ref. [1]; see, e.g., [2–4]. This paper deals with the
application of ordinal patterns to the detection of deter-
minism in multivariate time series corrupted by obser-
vational white noise; the univariate case was considered
in ref. [5] from a more qualitative point of view. By
detection of determinism we mean as usually in physics,
that the data of a random-looking sequence are actually
not independent with a high degree of confidence. Our
method is based on some recent results on the topological
permutation entropy of expansive maps of q-dimensional
intervals endowed with lexicographical order [6], although
we conjecture that these results hold also true for more
general maps. Specifically, the orbits of expansive maps
cannot materialize all possible ordinal patterns of suffi-
cient length, contrarily to randomly generated orbits, in
which any ordinal pattern is allowed with finite probabil-
ity. Here and henceforth, “random” means generated by
an unconstrained, stochastic process taking on arbitrary

(a)E-mail: jm.amigo@umh.es

values. This result applies also to piecewise monotone
maps from a one-dimensional interval into itself [7], which
encompass virtually all one-dimensional interval maps
encountered in practice. Missing ordinal patterns in a
deterministic sequence are called (true) forbidden patterns
and have two basic properties: a) robustness against obser-
vational noise and b) super-exponential growth with the
length. Notice, however, that real time series are finite and
thus real random sequences may also have missing ordinal
patterns (called false forbidden patterns) just because of
their finite length.
Noisy univariate and multivariate time series have

been intensively studied in the last few decades [8,9].
Depending on the noise level of the data, one can expect
to recover the full deterministic dynamics, to reconstruct
the geometry of the denoised signal in some appropriate
space or just to ascertain the existence of an underlying
determinism. The method presented in this paper falls in
the third category but, unlike other proposals, it does
not rely on analytical leverage but on discrete tools:
the number of forbidden patterns in a finite, random
sequence and in a noisy, deterministic sequence of the same
length, is different and, thanks to the properties a) and
b) mentioned above, this difference persists into very high
levels of observational noise. Moreover, the lexicographical
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order reduces in practice to ordering vectors according
to their “leading” coordinate, usually the first, so that
the analysis of multivariate and univariate time series is
formally the same. The bottom line is that determinism
in noisy vector time series can be decided by observing a
single component, a possibility that can come in handy in
experimental situations. This decision requires to contrast
the randomness hypothesis of the data by means of a χ2

test based on the number of visible ordinal patterns in
sliding, non-overlapping windows.

Forbidden ordinal patterns. – For definiteness,
we will consider Rq, q� 1, endowed with a product or
lexicographical order < defined as follows: (x(1), x(2), . . . ,
x(q))< (y(1), y(2), . . . , y(q)) iff (x(1), x(2), . . . , x(q)) �= (y(1),
y(2), . . . , y(q)) and i) x(1)<y(1) or ii) x(k)= y(k) for 1�k<q
and x(k+1) < y(k+1). This particular convention singles
out the first coordinate as the leading coordinate, i.e.,
the one that “decides” most of the time the order of
the points. Other conventions are of course possible and
may be sometimes more convenient. We say that a set
D⊂Rq is a (q-dimensional) simple domain if it is obtained
by a continuous and invertible deformation of a closed
and bounded q-dimensional interval (think, e.g., of the
invariant region of the Hénon map or, more generally,
of the domains considered in integration theory on Rq);
in dimension q= 1, simple domains are always closed
intervals. As a subset of Rq, D is also lexicographically
ordered. Given the map f :D→D, we say that x∈D
defines an ordinal L-pattern π= 〈π0, π1, . . . , πL−1〉, if

fπ0(x)< fπ1(x)< . . . < fπL−1(x), (1)

where f0(x)≡ x and fn(x)≡ f(fn−1(x)). Alternatively
we say that x is of type π, and also that π is realized
by x. Thus, an ordinal L-pattern (or an ordinal pattern of
length L) is just a permutation of {0, 1, . . . , L− 1} written
between angular brackets, that encapsulates the order of
the points xk = f

k(x), 0� k�L− 1, in D. For example, if
x1 = f(x0), x2 = f

2(x0) = f(x1) and x2 <x0 <x1, then x0
defines the ordinal 3-pattern (or is of type) π= 〈2, 0, 1〉.
The set of ordinal patterns of length L will be denoted

by SL. Ordinal patterns that are missing in the orbits of
f are called forbidden patterns for f ; otherwise, they are
allowed or admissible. Hence

|SL| = |{π ∈ SL: π admissible forf}|

+|{π ∈ SL: π forbidden forf}|, (2)

where |·| denotes cardinality.
Let now X be a compact metric space with metric d. A

continuous map f :X→X is said to be (positively) expan-
sive if there exists a δ > 0 such that d(fn(x), fn(y))� δ
for all n� 0 implies x= y. In particular, expansive maps
are sensitive to initial conditions. Intuitively, the orbits of
an expansive map f can be resolved by taking a suffi-
ciently high precision. Standard examples of expansive
maps include expanding maps on the circle, topological
Markov chains, and hyperbolic toral automorphisms.

It can be shown that if

(C1) f is a piecewise monotone map of a one-dimensional
closed interval (i.e., there is a finite partition of the
interval into subintervals such that f is continuous
and strictly monotone on each of those subintervals),

or

(C2) f is an expansive map of a q-dimensional simple
domain, q > 1,

then,

|{π ∈ SL: π admissible forf}| ∼ e
Lhtop(f), (3)

where ∼ means “asymptotically” as L→∞, and htop(f)
is the topological entropy of f [1,10].
On the other hand, Stirling’s formula,

|SL|=L!∼ e
L(lnL−1)+(1/2) ln 2π L,

spells out that the number of ordinal L-patterns defined
by the orbits of f grows super-exponentially with L. We
conclude from (2) and (3) that maps complying with
(C1) or (C2) have necessarily forbidden ordinal patterns
and, moreover, these grow super-exponentially with L.
In particular, the orbits of such maps cannot realize all
possible ordinal patterns for sufficiently long patterns.
Details on the super-exponential growth of forbidden
patterns can be found in [5,11].

Combinatorial detection of determinism. – In
the literature there is a wealth of different methods to
detect [4,12] and recover [13,14] the deterministic dynam-
ics from time series contaminated with different degrees
of observational noise (see also [9] and references therein).
Our objective is modest in that we only seek to discrimi-
nate deterministic, noisy time series from white noise. As a
compensation, the method we will describe shortly is much
simpler, and it has a remarkable success even when power-
ful denoising techniques, like the one described in [13], fail
to deliver due to the high level of noise. A comparison
with two independence tests is made also below. Since the
method is based on the existence of forbidden patterns,
we should in principle always assume that the condi-
tion (C1) or (C2) is fulfilled, although we conjecture, based
on numerical evidence with chaotic maps, that forbidden
patterns exist under more general conditions. Further-
more, we can dispense with a set of Lebesgue measure
zero in numerical simulations, since points of such a set
have probability zero to contribute to the quantity being
calculated. This means that the conditions guaranteeing
the existence of forbidden patterns can be weakened in
practice to hold “almost everywhere”.
Thus, a basic difference between deterministic and

random sequences is that the latter have no forbidden
patterns on account of all ordinal patterns being allowed
with finite probability. Unfortunately, real sequences are

60005-p2



Combinatorial detection of determinism in noisy time series

finite and this entails false forbidden patterns, i.e., ordi-
nal patterns missing in a finite, random or determinis-
tic sequence just by chance. On the opposite end stand
the true forbidden patterns, that is, those ordinal patterns
that cannot appear in (finite nor infinite) deterministic
sequences and whose “existence” is warranted at least
under the hypothesis (C1) or (C2) —and shown numeri-
cally for more general maps. In other words, true forbidden
patterns never occur in deterministic (finite or infinite)
sequences, but allowed patterns need not occur in finite
(random or deterministic) sequences either. In the second
case, we say sometimes that a pattern is visible to stress
that it is realized in the finite time series under analysis.
Missing patterns in finite sequences can be true or false
forbidden patterns and will be generically referred to as
forbidden (or just missing).
If a data sequence has length N and we are sorting,

say, K ordinal patterns down the sequence, a necessary
condition for all possible patterns to be visible is certainly
L!�K. Thus, given the length of the sequence in ques-
tion, we may expect forbidden patterns to make a differ-
ence between deterministic and random generation only
as long as L!≪K to allow for admissible patterns with
low probability to become visible. In the numerical simu-
lations we will refer to below, where a χ2 goodness-of-fit
hypothesis test is used, it is enough to have

5L!�K. (4)

In particular, if the sequence is white noise, i.e. gener-
ated by N independent and identically distributed (i.i.d.)
random variables, then the probability that any fixed ordi-
nal pattern is missing goes to 0 exponentially as N grows.
At this point we need to consider observational noise.

Two properties of forbidden patterns come to the rescue
now. First of all, admissible (and thus forbidden) ordinal
patterns are robust against noise because they are
defined by inequalities (see eq. (1)), although the greater
the sample size K, the higher the chance that a given
missing pattern becomes visible. Moreover, we know
already that the number of forbidden patterns grows
super-exponentially with their length, so the odds are
high that some of them will survive even in very noisy
environments. Indeed, the simulations made in [5] with
time series of the form

ξn = f
n(x0)+wn, (5)

where f(x) is the logistic map and wn is white noise,
confirm this expectation.
In order to distinguish white noise from noisy determin-

istic (uni- or multivariate) time series of the form (5), we
propose a χ2 test based on the count of visible ordinal
patterns, to accept or reject the null hypothesis:

H0: the ξn’s are independent and
identically distributed.

(6)

Numerical simulations. – First of all, notice that the
determination of visible ordinal patterns in multivariate

time series can be speeded up in practice by looking at a
single and the same component. Indeed, when calculating

the orbit points xn = f
n(x0), n� 0, where xn = (x

(1)
n ,

x
(2)
n , . . . , x

(q)
n )∈D⊂Rq, we will find that, in general,

x
(1)
i �= x

(1)
j for i �= j, hence the ordinal patterns of f will

be actually determined by the first components of the
orbit points, or by any other fixed components for that
matter, in correspondence to the different definitions of
lexicographical order. In sum, it suffices in numerical
simulations to consider the projection of the orbit of a
generic initial condition on any dimension, to sort and
count the ordinal patterns of the map.
Let Nmax denote the length of the data time series

under scrutiny, and let n(L,N) be the number of forbidden
L-patterns in the initial segment ξ0, ξ1, . . . , ξN−1 of vari-
able length N �Nmax. In the simulations below, we
count visible patterns in sliding, overlapping windows of
length L. Since, in this case, the sample size is K =
N −L+1, we recommend to take

5L!�N �Nmax (7)

to comply with (4).
Next, we will analyze numerically the forbidden patterns

of lengths 4�L� 7 for self-maps in two and three dimen-
sions. In order to estimate an average number 〈n(L,N)〉
in sequences of the form (5) with 0� n�N − 1 and N
complying with the condition (7), we generate 100 samples
of length Nmax = 8000 and normalize the corresponding
count of missing L-patterns. In our simulations we have
taken f to be the Hénon map (2D),

xn+1 = 1− 1.4x
2
n+0.3yn, yn+1 = xn, (8)

see ref. [15]. As justified above, it suffices to consider, say,
the first component. As for the additive noise wk, we have
used Gaussian white noise,

〈wn ·wm〉= σ
2δnm,

with different standard deviations σ. The results with
white noise uniformly distributed and different supports
(not shown) are very much the same.
Figure 1 shows the return map ξn+1 vs. ξn for a

typical orbit of the Hénon map on its attractor (fractal
dimension D0 = 1.28± 0.01 [15]) for Gaussian white noise
with σ= 0.25 (SNR≃ 9.2 dB). Notwithstanding the fact
that Hénon’s attractor has been completely masked by
the noise, the count of forbidden patterns (in logarithmic
scales) in fig. 2(a) for signal plus noise, and in fig. 2(b)
for only noise, are different, making feasible to distinguish
between both situations by means of forbidden patterns.

Statistical analysis. – Consider now sliding windows
of length L, overlapping at a single point (i.e., the last
point of a window is the first point of the next one) down
a sequence of N entries. The number of such windows is

K =

⌊

N − 1

L− 1

⌋

,
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Fig. 1: Return map for a time series of the Hénon map contami-
nated with Gaussian white noise with σ= 0.25 (SNR≃ 9.2 dB).
The high noise level does not allow to recognize the underlying
deterministic dynamics. However, the number of forbidden
patterns is sensibly higher than in the purely random case.
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Fig. 2: Average number of forbidden patterns of length L found
in a time series of lengthN , 〈n(L,N)〉 (in logarithmic scale), for
time series of the Hénon map with Gaussian white noise with
σ= 0.25 (SNR≃ 9.2 dB) (a), and for a time series of Gaussian
white noise (b).

each comprising the elements

ηk := ξkL−k, . . . , ξ(k+1)L−(k+1), 0� k�K − 1.

Notice that if the values ξ0, ξ1, . . . , ξN−1 are independently
drawn from a uniform probability distribution, then the
same will happen to the ordinal patterns of length L
defined by the components of ηk ∈RL, which we denote
by π(ηk)∈ SL. Therefore, if one or several ordinal patterns

of length L are missing in a sample obtained using non-
overlapping windows, this might be a statistically signif-
icant signal that independence and/or equiprobability
are/is not fulfilled. The level of significance will depend
on the specifics of the sample.
Consider a time series {ξn: n� 0} and the corresponding

realization of the multivariate random process {ηk: k� 0},
and suppose that some ordinal patterns of length L are
missing in the initial segment ξ0, ξ1, . . . , ξN−1. Let νj
be the number of ηk’s such that ηk is of type πj (i.e.,
π(ηk) = πj ∈ SL), 1� j �L!. Thus, νj = 0 means that the
pattern πj has not been observed and, hence, it could be
a true forbidden pattern of the time series.
In order to accept or reject the null hypothesis H0 of (6)

based on our observations (sampling, in statistical terms),
we apply a χ2 test with statistic

χ2 =
L!
∑

j=1

(νj −K/L!)
2

K/L!
.

As said before, the rationale behind this procedure is that
if the ξn’s are i.i.d., then the ordinal patterns π(ηk)∈
SL are independent and uniformly distributed. If H0
is true, then χ2 converges in distribution (as K→∞)
to a χ2 distribution with L!− 1 degrees of freedom. Thus,
for large K, a test with approximate level α is obtained
by rejecting H0 if χ

2 >χ2L!−1,1−α, where χ
2
L!−1,1−α is the

upper 1−α critical point for the χ2 distribution with
L!− 1 degrees of freedom [16]. Notice that since this test is
based on distributions, it can happen that a deterministic
map has no forbidden L-patterns, thus νj �= 0 for all j,
and, however, the null hypothesis be rejected because the
νj ’s are not evenly distributed.
Although in the tests below only the thresholds
χ2L!−1,1−α for L= 4, 5 and α= 0.05 will be needed, we
give next some typical values in this range. For L= 4 we
have

χ223,0.90 = 32.007; χ
2
23,0.95 = 35.172.

For L� 5, corresponding to degrees of freedom number-
ing more than 100, the following approximation is
used [16]:

χ2L!−1,1−α ≈

(L!− 1)

(

1−
2

9(L!− 1)
+ z1−α

√

2

9(L!− 1)

)3

,

where z1−α is the upper 1−α critical point for the stan-
dard normal distribution, N (0, 1); in particular, z0.90 =
1.282 and z0.95 = 1.645. Table 1 shows χ

2
L!−1,1−α for 4�

L� 6 and α= 0.1, 0.05.
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Table 1: Some values of χ2L!−1,1−α.

χ2L!−1,1−α α= 0.10 α= 0.05

L= 4 32.01 35.17
L= 5 139.15 145. 46
L= 6 768. 02 782. 50
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Fig. 3: Distribution N(χ2) of χ2 for 10000 noisy sequences
generated with the Hénon map, for L= 4, N = 1000, and
σ= 0.10 (continuous line), σ= 0.25 (dashed line) (SNR≃
17, 9.2 dB, respectively) (a), and for L= 5, N = 8000, σ= 0.25
(SNR≃ 9.2, 3.2 dB, respectively) (continuous line), σ= 0.50
(dashed line) (b).

Furthermore,

χ2 =
L!

K

⎛

⎝

L!
∑

j=1

ν2j − 2
K

L!

L!
∑

j=1

νj +

(

K

L!

)2 L!
∑

j=1

1

⎞

⎠

=
L!

K

L!
∑

j=1

ν2j − 2K +K

=
L!

K

∑

j:πjvisible

ν2j −K,

since (i)
∑L!
j=1 νj =K and (ii) νj = 0 if πj is not visible.

Figure 3 shows the distribution of the statistic χ2

obtained for 10000 sequences generated by the Hénon
map (8) contaminated with additive Gaussian noise. In
(a) we used sequences of length N = 1000, non-overlapping
windows of length L= 4 (thus, the sample comprises
K = 333 ordinal 4-patterns) and noise with standard
deviations σ= 0.1, 0.25 (SNR≃ 17, 9.2 dB, respectively);

0 5 10 15 20
−0.5

0

0.5

1

τ

C
(τ

)

Fig. 4: Autocorrelation calculated for a time series of length
N = 1000 of the Hénon map, in absence of noise (light gray),
with σ= 0.5 (SNR≃ 3.2 dB) (gray), with σ= 1 (SNR≃
−6.4 dB) (dark gray) and for a random time series (dashed
line). As σ is increased, the fluctuations around C(τ) = 0 of the
deterministic time series become closer to those of a random
time series.

the rejection threshold of the null hypothesis H0 at level
α= 0.05 is χ223,0.95 = 35.17, see table 1. In (b) we used
sequences of length N = 8000, non-overlapping windows
of length L= 5 (thus, the sample comprises K = 1999
ordinal 5-patterns) and noise with standard deviations σ=
0.25, 0.50 (SNR≃ 9.2, 3.2 dB, respectively); the rejection
threshold of the null hypothesis H0 at level α= 0.05 is
χ2119,0.95 = 145.46, see table 1. In both cases, the χ

2 test
clearly rejects H0 based on the counts of visible ordinal
patterns, with a high degree of confidence.

Comparison with other methods. – In order to
evaluate the usefulness of our method, we can compare
its performance with that of other approaches. A first
qualitative approach to detect determinism in time series
would be the calculation of the autocorrelation C(τ) =
〈ξn · ξn+τ 〉. In fig. 4 we can observe the computed C(τ)
for a time series of length N = 1000 of the Hénon map
contaminated with different noise levels. As the noise
increases, the fluctuations of C(τ) around zero become
comparable to those observed for random time series of
the same length, making it difficult to distinguish between
them. Thus, this approach does not lead to any significant
advantage compared to counting the number of forbidden
patterns appearing in the time series.
A more quantitative (statistical) method to determine

whether a time series is random, is the Brock-Dechert-
Scheickman (BDS) test described in [17]. This test exploits
the fact that for random time series, finding two pairs
of vectors of m consecutive elements whose coordinates
differ in no more than a fixed ǫ should be statistically
independent events. The parameter ǫ is chosen as a
fraction of the standard deviation of the time series
considered. This idea is substantiated in the form of a
test whose statistics for random time series is perfectly
characterized and, hence, can be used to accept/reject the
null hypothesis H0 (the time series is i.i.d.) for a given
time series with different levels α.

60005-p5



J. M. Amigó et al.
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Fig. 5: Solid lines: probability P of rejecting the null hypothesis
H0 (the time series is i.i.d.) for 27 different BDS tests applied
on a time series of the Hénon map of length 1000 contaminated
with white noise with different σ values (SNRs down to
approximately −8.9 dB). A lighter gray color indicates a bigger
value of ǫ. Dashed line: probability P of rejecting H0 using
our chi-square test. All the tests have level α= 0.05. Our test
rejects the null hypothesis more often.

We have used the algorithm provided in ref. [18]. An
important issue when implementing the BDS test is how
to choose m and ǫ. Following the procedure given in [19]
we have taken ǫ values of the form ǫ= 0.9j and selected
all the combinations of j and m such that the BDS test
rejects H0 as often as expected from the level α chosen.
This comparison is shown in fig. 5. There we show the

probability P of rejecting the null hypothesis H0 for the
27 different adequate BDS tests that can be performed
for a time series of length N = 1000 of the Hénon map
contaminated with white noise with σ between 0 and 2
(and thus with SNRs down to approximately −8.9 dB). In
the same figure, we have also plotted the probability P of
rejectingH0 using our χ

2 test with the same level α. Notice
that using our test the null hypothesis is rejected more
often. In other words, the probability of a false positive is
higher with the BDS test.
We have obtained analogous results when applying this

test to time series under other conditions, and even for
different chaotic systems. Furthermore, the BDS algorithm
is O(N2) [18], whereas a simple estimation shows that our
χ2 test is approximately O(N). This, together with the
fact that our method does not require to adjust parameters
like m and ǫ (we just have to investigate the distribution
of the patterns of length L satisfying eq. (4)), allows us
to conclude that our test compares favorably to standard
methods to test for independence in time series.

Conclusion. – We proposed an ordinal pattern-based
test to detect determinism in univariate and multivariate
time series contaminated with observational white noise.
This test exploits the fact that, under some mild math-
ematical assumptions, deterministic sequences exhibit
forbidden patterns, while this is not the case in the
random ones. Numerical simulations in two and three
dimensions show that the number of forbidden patterns
in noisy deterministic sequences is noticeably higher

than in random sequences, even when the level of the
i.i.d. uniform or Gaussian noise used in simulations, as
measured by the amplitude or the standard deviation,
respectively, is so high that the return map gives no
hint about a hypothetical underlying dynamics. In the
case of multivariate sequences, the method works also
when applied to single components and orbits moving in
two-dimensional attractors. Lastly, a χ2 test based on
the counts of visible ordinal patterns in non-overlapping
windows, clearly discriminates between white noise and
noisy deterministic time series. We have shown that our
technique compares favorably to two well-established
methods to test for independence in time series.
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[11] Amigó J. M., Elizalde S. and Kennel M. B., J. Comb.
Theory, Ser. A, 115 (2008) 485.

[12] Zhang J. and Small M., Phys. Rev. Lett., 96 (2006)
238701.

[13] Mera M. E. and Morán M., Chaos, 16 (2006) 013116.
[14] Ortega G. J. and Louis E., Phys. Rev. Lett., 81 (1998)

4345.
[15] Sprott J. C., Chaos and Time-Series Analysis (Oxford

University Press, Oxford, UK) 2003.
[16] Law A. M. and Kelton W. D., Simulation, Modeling

Analysis, 3rd edition (McGraw-Hill, Boston) 2000.
[17] Brock W. A., Dechert W. D., Scheinkman J. A. and

LeBaron B., Econom. Rev., 15 (1996) 197.
[18] LeBaron B., Stud. Nonlinear Dyn. Econom., 2 (1997)

52.
[19] Liu T., Granger C. W. and Heller W. P., J. Appl.

Econom., 7 (1992) 25.

60005-p6


