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Transport of particles by surface waves:
a modification of the classical bouncer model
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Abstract. We consider a ball under the influence of gravity on a platform.
A propagating surface wave travels on the surface of the platform, while the
platform remains motionless. This is a modification of the classical bouncing
ball problem and describes the transport of particles by surface waves. Phase
and velocity maps cannot be expressed in an explicit form owing to implicit
formulations, and no formal analytical analysis is possible. Numerical analysis
shows that the transition to chaos is produced via a period doubling route,
which is a common property for classical bouncers. The bouncing process can
be sensitive to the initial conditions, which can build the ground for control
techniques that can dramatically increase the effectiveness of particle transport
in practical applications.
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1. Introduction

A particle falling down, in a constant gravitational field, on a moving platform is called
a bouncing ball problem, or a bouncer. This model was suggested more than 30 years
ago [1, 2] as an alternative to the Fermi–Ulam model [3] of cosmic ray acceleration [4]. In
the ensuing years, many approaches to the bouncer model have been studied theoretically and
experimentally [5]–[8]. It has been proved to be a useful system for experimentally exploring
several new nonlinear effects [9, 10]. Moreover, it has been implemented in a number of
engineering applications [11, 12].

The bouncer model can be briefly characterized by the following basic statements:
(i) maps derived for the bouncer model can be exactly iterated for any time function describing
the moving platform [7, 9] (though usually the platform is assumed to oscillate with a single
frequency); (ii) the ball platform collisions can be characterized by a coefficient of restitution
α changing from α = 1 for a perfectly elastic case to α = 0 for a completely inelastic situation;
and (iii) the chaotic bouncer can be easily used to relate theoretical predictions to experimental
results [9, 10], which makes it a paradigm model for the study of nonlinear dynamics.

In this paper, we assume that a particle is falling down in a constant gravitational field on a
stationary platform. A propagating surface wave travels on the surface of the platform, while the
platform remains motionless. Such a model can be used to describe the transport of particles by
propagating surface waves, which is an important problem with numerous applications. Powder
transport by piezoelectrically excited ultrasonic surface waves [13], manipulation of bioparticles
using traveling wave electrophoresis [14, 15] and conveyance of submerged buoys in coastal
waters [16] are just a few examples of problems involving the interaction between propagating
waves and transported bouncing particles.

2. The model of the system

Let us consider a two-dimensional system (figure 1): the surface of an elastic plate is represented
by a solid line, which coincides with the x-axis in a state of equilibrium. A point on the surface
in the state of equilibrium (x, 0) is translated into coordinates (X, Y ) when a wave process takes
place. This translation is sensitive to time t and coordinate x :

X = x + η(x, t),

Y = ζ(x, t),
(1)

where the functions η(x, t) and ζ(x, t) determine deflections from the state of equilibrium.
Whenever a traveling non-dispersive Rayleigh surface wave occurs in a medium, it can be

characterized by a retrograde elliptic motion of the particles of that medium:

η(x, t) = a sin(ωt − kx),

ζ(x, t) = b cos(ωt − kx),
(2)

where a and b are longitudinal and transverse amplitudes of the oscillations; ω is the
angular frequency and k is the wave number. Recall that in the usual elastic medium it is quite
normal for the transverse displacement to be about 1.5 times larger than the longitudinal
displacement [17].
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Figure 1. Schematic diagram illustrating the collision between the particle and
the surface.

The coordinates of the particle are denoted by (u, v). Assume that the particle is in contact
with the surface at time moment t ; then the following constraint takes place:

v = ζ(x, t), (3)

where x is to be found from the following algebraic equality (where u and t are given and x is
the unknown):

x + η(x, t) = u. (4)

In other words, the instantaneous shape of the surface cannot be described by an explicit
function. Nevertheless, the tangent to the surface at the point with abscissae u can be expressed
explicitly:

tan γ =
∂ζ(x, t)/∂x

1 + ∂η(x, t)/∂x
, (5)

where γ is the angle between the tangent and the x-axis. Instantaneous velocities (x- and
y-components) of the point on the surface in contact with the particle can be expressed as
∂η(x, t)/∂t and ∂ζ(x, t)/∂t accordingly.

The governing equations of motion of a particle in a free flight mode are:{
mü + hu̇ = 0,

mv̈ + hv̇ = −mg,
(6)

where the top dots denote full derivative by time, m is the mass of the particle, h is the coefficient
of viscous damping of the media above the surface and g is the free fall acceleration. The initial
conditions u(t0) = u0; u̇(t0) = u̇0; v(t0) = v0 and v̇(t0) = v̇0 yield partial solutions:

u(t) = u0 + u̇0
m

h

(
1 − exp

(
−

h

m
(t − t0)

))
,

u̇(t) = u̇0 exp
(

−
h

m
(t − t0)

)
,

v(t) = v0 +
(
v̇0 +

mg

h

) m

h

(
1 − exp

(
−

h

m
(t − t0)

))
−

mg

h
(t − t0),

v̇(t) = v̇0 exp
(

−
h

m
(t − t0)

)
−

mg

h

(
1 − exp

(
−

h

m
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))
.

(7)
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Figure 2. Reconstruction of the collision moment t̂ . The particle is depicted as a
black dot and the surface, as a solid line. Initially, t̂ is localized in the rth time
interval. Then the bisection rule is used to reach the necessary accuracy. If the
particle is in a free flight stage above the surface in the middle of the r th time
interval, the search continues in the later subinterval. Note that the instantaneous
shape of the surface cannot be expressed explicitly; variables u and x are cross-
linked by equation (4).

The free flight stage continues until the particle collides with the surface. Unfortunately,
it is impossible to determine the explicit time moment of the collision due to the fact that the
instantaneous shape of the surface cannot be expressed by an explicit function. Instead, one has
to use iterative numerical techniques in order to determine the exact moment of the bounce.

Localization of the root (the time moment of the collision) is performed using a time
marching technique starting from the initial conditions until

v(t0 + i · 1t) < ζ(xi , t0 + i · 1t), (8)

where 1t is the time step; i = 1, 2, . . . , r ; r is the step number for which equation (8) is satisfied
for the first time; and xi is the solution of equation (4) at fixed i :

xi + η(xi , t0 + i · 1t) = u(t0 + i · 1t); (9)

and u(t0 + i · 1t) and v(t0 + i · 1t) are determined by equation (7). The solution of equation (9)
also requires an iterative numerical algorithm.

When the root t̂ is localized in the interval t0 + (r − 1) · 1t < t̂ 6 t0 + r · 1t , one needs to
determine a more precise estimate of t̂ using an iterative computational algorithm (figure 2).
This iterative algorithm can be the most simple bisection method, although more sophisticated
algorithms comprising the golden section rule or Newton’s iterations, for example, can be used
instead until the desirable accuracy is achieved. As the collision moment t̂ is determined in
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every iteration, the coordinate x̂ (corresponding to the collision point û: x̂ + η(x̂, t̂) = û) is also
made more precise. Initially, xr−1 < x̂ 6 xr ; every iteration helps us to reach a better accuracy.

Such an iterative method for the determination of the collision moment leads us to the
important conclusion that phase and velocity maps cannot be expressed in an explicit form and
no formal analytical analysis is possible.

Nevertheless, the geometrical coordinates of the point of collision are (û; ζ(x̂, t̂)) and
can be reconstructed using computational techniques. Velocities of the particle just before the
collision are u̇(t̂) and v̇(t̂). Similarly, instantaneous velocities of the surface in contact with the
particle are η′

t(x̂, t̂) and ζ ′

t (x̂, t̂).
Projections of the particle’s velocities just before the collision to the normal and to the

tangent to the surface at the contact point can be expressed in the following form:

ˆ̇Pn = −u̇(t̂) sin γ + v̇(t̂) cos γ,

ˆ̇P t = u̇(t̂) cos γ + v̇(t̂) sin γ,

(10)

where the angle γ is determined from equation (5) at the point of collision.
Analogously, projections of velocities of the point on the surface in contact with the particle

to the normal and to the tangent take the following form:

Ṡn = −η′

t(x̂, t̂) sin γ + ζ ′

t (x̂, t̂) cos γ,

Ṡt = η′

t(x̂, t̂) cos γ + ζ ′

t (x̂, t̂) sin γ.
(11)

Then, the velocities of the particle just after the collision (in the normal and tangent
directions) are:

Ṗn = (1 + α)Ṡn − α ˆ̇Pn,

Ṗ t = β Ṡt + (1 − β) ˆ̇P t ,
(12)

where α is the coefficient of restitution for the collision in the normal direction. This constant is a
measure of the energy loss at each impact. For elastic collisions, α = 1; for inelastic collisions,
α < 1. The coefficient β determines the friction between the particle and the surface at the
moment of collision. There is no friction between the particle and the surface when β = 0.
The highest value β = 1 represents the situation when the projection of the particle’s velocity
(immediately after the impact) and the projection of the surface’s point velocity to the tangent
are equal.

The free flight stage starts over again immediately after the collision, and the initial
conditions are:

u(t̂) = û,

u̇(t̂) = −Ṗn sin γ + Ṗ t cos γ,

v(t̂) = ζ(x̂, t̂),

v̇(t̂) = Ṗn cos γ + Ṗ t sin γ.

(13)

The presented model is a modification of the classic bouncer model which can be derived
assuming ζ(x, t) = b cos(ωt) and η(x, t) = 0. In that case, u = x and the model becomes
explicit.
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Figure 3. Transport of particles at increasing wave speeds (elastic collisions,
viscous medium over the surface). Reduced impact representation (a) shows
the transition to chaos via a period doubling route. Note that impact heights
are distributed in the interval [−0.5, 0.5]. The non-dimensional longitudinal
particle’s transport velocity Tu drops down at higher wave speeds due to the
viscosity of the medium above the surface (b). The system’s parameters are:
α = 1; β = 0; η(x, t) =

2
3 sin(ωt − x); ζ(x, t) =

1
2 cos(ωt − x); h = 0.1; m =

0.5; and g = 9.81.

3. Nonlinear dynamics of the modified bouncer

We will demonstrate that the modified bouncer model possesses such an inherent feature as
chaotic dynamics. Moreover, we will show that the sensitivity to initial conditions can be
exploited for the control of the process of conveyance.

Initially, we will assume that collisions are completely elastic (α = 1) and there is no
tangential friction between the particle and the surface (β = 0), but the medium above the
surface is viscous (h = 0.1). We use the reduced impact representation, where the height of the
bouncing ball is sampled at each impact with the surface (impact sampling). Since the system is
dissipative, we plot the bouncing process after the initial transients cease down (figure 3(a)). We
skip 1500 successive bounces before starting to plot the collision heights v(t̂) for every discrete
value of ω. The parameter ω is varied following the rule ωi = 1 + (3/ln 21)ln(1 + (20i/1024));
i = 1, . . . , 1024, which helps us to expand the cascade of period doubling bifurcations. The
control parameter in our case is not the amplitude of the platform’s oscillation but the velocity
of the wave propagation; the collision height is used instead of collision velocity for a reduced
impact representation. Moreover, the medium above the surface of the plate is viscous. It appears
that the transition to chaos via a period doubling route observed for a classical bouncer [18] is
observed also for a particle bouncing on the surface of a stationary platform with a propagating
wave traveling on its surface.

A phenomenological model could be used to exemplify the bifurcation diagram presented
in figure 3(a). The logistic map [19] is probably the simplest model ever used to study
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Figure 4. Sensitivity of transient processes to initial conditions. The particle’s
trajectories are plotted as solid lines and collision heights as solid dots. The
system’s parameters are: α = 0.82, β = 0.02, η(x, t) =

2
3 sin(t − x), ζ(x, t) =

1
2 cos(t − x), h = 0.1, m = 0.5 and g = 9.81. The initial conditions u(0) = 0,
u̇(0) = 1, v(0) = 0.6 and v̇(0) = 0 result in complete chattering (a), whereas
u(0) = 0, u̇(0) = 2; v(0) = 0.6 and v̇(0) = 0 result in infinite bouncing (b). Note
the different timescales in (a) and (b).

the transition to chaos via a period doubling route. Simple computational experiments with
appropriately chosen parameter values of the logistic map would illustrate the universality of
the bifurcation diagram shown in figure 3(a).

An important parameter characterizing the effectiveness of the transport is the average
longitudinal velocity of the particle ¯̇u. We average it over a long period of time after the initial
transients cease down. In order to calculate a non-dimensional quantity, we divide the average
longitudinal velocity by the velocity of the traveling wave Tu = k ¯̇u/ω. Thus, the average velocity
of conveyance is equal to the velocity of the traveling wave when Tu is equal to 1 (figure 3(b)).

It is interesting to observe that the particle is transported with the average velocity of the
traveling wave until the period 3 bouncing mode after a cascade of period doubling bifurcations
(figure 3(a)). The particle’s average transportation velocity drops down only when the period 3
bouncing mode experiences its own cascade of period doubling bifurcations. External damping
forces acting on the particle prevent its motion with the average wave’s velocity in the
direction of the wave propagation when this velocity becomes large enough (even though the
collisions are elastic). Also, the bouncing process is insensitive to initial conditions—eventually
it converges to the one and only attractor shown in figure 3(a) (at fixed ω).

The situation becomes different when collisions are inelastic. Figure 4(a) illustrates a
vanishing bouncing process (complete chattering [18]) when the particle sets into the state
of rest on a slope of the propagating wave. The term ‘complete chattering’ is used in the
literature to describe the process when the time interval between inelastic bounces tends to
zero and the ball finally ‘sticks’ to the surface of the oscillating platform. It can be noted that
the collision heights are plotted versus time t , not coordinate u in figure 4(a). The time interval
between adjacent collisions converges to zero (figure 4(a)) until the bouncing particle model
becomes inadequate and the dynamics of the system must be analyzed exploiting a sliding
particle model.
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The sliding particle model on the surface of a propagating wave (the detailed description
of this model is given in [20]) can exhibit a rich dynamic behavior characterized by coexisting
attractors. One of these attractors is a stable equilibrium point. It corresponds to a steady
sliding motion on one slope of the propagating wave. Another attractor is a stable limit cycle.
It corresponds to an oscillatory motion with a small average velocity compared with the wave’s
propagation velocity; the particle slides over the peaks of the wave. The characteristic shape
of the basin boundaries of coexisting attractors [20] can be exploited for the development of
attractor control techniques. These techniques are based on small external impulses [21] and
can dramatically increase the effectiveness of the conveyance. The trajectory of the limit cycle
is located quite near the basin boundary, so that a small single external force impulse can kick
the trajectory from the limit cycle to the basin of the equilibrium point (the reverse is not so
simple). It is quite natural to expect that the bouncing particle model should also exhibit the
sensitivity to initial conditions at certain sets of system parameters. In fact figure 4(b) illustrates
this effect. All system parameters in figures 4(a) and (b) are the same except for the initial
velocity u̇(0). The bouncing process terminates into the sliding mode in figure 4(a), whereas it
continues infinitely in figure 4(b).

4. Concluding remarks

Transport of particles by surface waves is an important scientific and engineering problem, with
numerous practical applications, including micro-electro-mechanical systems (MEMS), used to
manipulate objects like particles or cells. We show that this problem is a modification of the
classical bouncer model, which is considered as a paradigm model in nonlinear physics. The
formulations of our model are implicit, thus phase and velocity maps cannot be expressed in an
explicit form.

Chaotic dynamics of a conveyed particle is not an unexpected fact due to the complexity
of the constitutive model. More surprising is the rich dynamical behavior in models comprising
dissipative dynamics, elastic and inelastic collisions. It appears that the transition to chaos via
a period doubling route is a universal property for bouncers and is observed in our model
of particle transport in viscous media. It is also shown how the bouncing ball problem is
transformed into a sliding ball problem. Moreover, the sensitivity to initial conditions can
build the ground for control techniques which can dramatically increase the effectiveness of
the particles’ transport by surface waves.

Although the numerical analysis was concentrated on the dimensionless system only,
theoretical and experimental investigation of dry particle conveyance and its control is a suitable
object for future research.
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