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A system consisting of two map-based neurons coupled through reciprocal excitatory or inhibitory chemical
synapses is discussed. After a brief explanation of the basic mechanism behind generation and synchronization
of bursts, parameter space is explored to determine less obvious but biologically meaningful regimes and
effects. Among them, we show how excitatory synapses without any delays may induce antiphase synchroni-
zation; that a synapse may change its character from excitatory to inhibitory and vice versa by changing its
conductance, without any change in reversal potential; and that small variations in the synaptic threshold may
result in drastic changes in the synchronization of spikes within bursts. Finally we show how the synchroni-
zation effects found in the two-neuron system carry over to larger networks.
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I. INTRODUCTION

Among the topics of interest in theoretical neuroscience,
the dynamics of networks of coupled neurons stands out as a
very fundamental problem with deep implications for our
understanding of the brain. In particular, the collective be-
havior of neural assemblies, detected as synchronous compo-
nents in brain signals, has been shown to be correlated with
cognitive activities �1� during the normal functioning of the
brain, while important brain disorders, such as epilepsy, Par-
kinson’s disease, Alzheimer’s disease, schizophrenia, and au-
tism, are linked to abnormal synchronization �2�.

The relevance of neural synchronization has prompted a
great deal of recent theoretical and computational work on
the synchronizing behavior of neuron models, in particular in
networks of bursters. Bursting neurons, which respond to
steady current injection with repetitive sequences of spikes,
make up a variety of important neural and excitable cell sys-
tems, including pancreatic � cells in charge of the secretion
of insulin �3�, the thalamic reticular nucleus responsible for
rhythms during sleep �4�, areas in the basal ganglia related to
motor control �5�, and central pattern generators that drive
coordinated rhythmic tasks �6�. Nevertheless, the mecha-
nisms leading to collective dynamic patterns and synchroni-
zation in such systems are not fully understood.

The dynamics of bursting has been extensively studied
and classified for single neuron models �7�, and there is no
lack of studies about the synchronization regimes in net-
works of bursters �8�, including some by the authors �9,10�.
In the present work we study the synchronization between
two map-based square bursters coupled through fast thresh-
old modulation �FTM� �11� and show how the behaviors we
find affect the dynamics of larger networks. In contrast with
our previous work, where by using linear coupling we were
able to profit from the power of master stability functions
�12� to predict activity patterns, here we use the FTM cou-
pling model, which precludes such linear analysis, but in-

cludes biologically relevant coupling parameters �conduc-
tance, synaptic threshold, and reversal potential�, allowing us
to obtain biologically meaningful results about burst and
spike synchrony. In particular we show that in this kind of
bursters shunting synapses can be made to promote either
in-phase or antiphase burst synchronization, depending either
on synaptic conductance or cell polarization. This is a phe-
nomenon that differs from other similar results about the
dependence of the phase of synchronization on synaptic time
scales �13�, or about modulating spike synchronization re-
gimes �14,15�. We conclude with a discussion on how the
modulation of bursting regimes translates into a control of
network modes of synchronization.

II. DESCRIPTION OF THE COUPLED MAP-BASED
NEURON SYSTEM

We consider a simple network of two identical map-based
neurons �16,17� coupled through reciprocal excitatory or in-
hibitory chemical synapses that follow the fast threshold
modulation �FTM� model �18,11�:

xn+1,1 = F��xn,1,yn,1 + �n,1� ,

yn+1,1 = yn,1 − ��xn,1 − �� ,

xn+1,2 = F��xn,2,yn,2 + �n,2� ,

yn+1,2 = yn,2 − ��xn,2 − �� , �1�

where

�n,1 = − gcH�xn,2 − ���xn,1 − �� ,

�n,2 = − gcH�xn,1 − ���xn,2 − �� .

The x variables represent the transmembrane voltage of each
neuron, appropriately scaled, whereas the y variables repre-
sent slow gating processes. In the � coupling terms, H�xn,i�
�i=1,2� is the Heaviside step function and � is the presyn-
aptic threshold for chemical synaptic interaction. Thus only*borja.ibarz@urjc.es
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when the presynaptic neuron voltage x is above � does the
postsynaptic neuron receive any external input. This is a use-
ful simplification of the way fast chemical synapses work,
and � is closely related to the sharp voltage response of the
presynaptic terminals. The constant � denotes the reversal
potential associated with the synapses, which is defined by
the nature of the postsynaptic ionic channels. The synapse
will be excitatory if � is higher and inhibitory if � is lower
than the range of xn,i �the intermediate cases will deserve
further discussion later�. Parameters � and � are O�1�, while
� satisfies 0	�
1. Parameter gc�0 denotes the coupling
strength of chemical synapses; it is linked to the aggregate of
the maximal conductances of the postsynaptic channels.

Due to the smallness of the parameter �, the evolution of
yn,i , �i=1,2� is much slower than that of xn,i , �i=1,2�. Thus
we will refer to xn,i as the fast variables and yn,i as the slow
variables, and we will divide the system of Eqs. �1� into two
subsystems:

xn+1,1 = F��xn,1,�1 + �n,1� ,

xn+1,2 = F��xn,2,�2 + �n,2� , �2�

and

yn+1,1 = yn,1 − ��xn,1 − �� ,

yn+1,2 = yn,2 − ��xn,2 − �� . �3�

For convenience, we call Eqs. �1� the full system, Eqs. �2�
the fast subsystem, and Eqs. �3� the slow subsystem. From
now on, whenever we want to stress the role of y as a pa-
rameter of the fast subsystem we will refer to it as �.

The nonlinear function F��x ,y� is responsible for the gen-
eration and reset of spikes. We will use two different forms
of F��x ,y�, which will give rise to two different versions of
the neuron model. The first one �16�, which we will refer to
as the chaotic Rulkov model, is given by

F��x,y� =
�

1 + x2 + y . �4�

The second one �17�, which we will refer to as the noncha-
otic Rulkov model, is given by

F��x,y� = �
�

1 − x
+ y , if x 	 0,

� + y , if 0  x 	 � + y ,

− 1, if x � � + y .
� �5�

Observe that variable y enters into F��x ,y� additively in both
cases, except in the threshold-and-reset pieces of the noncha-
otic map �see Fig. 1�. Thus we may write

F��x,y� = f��x� + y , �6�

and, if we consider y as a parameter �, F��x ,�� will repre-
sent a return map that is shifted up or down by increasing or
decreasing �. The shape of this map is represented in Fig. 1
for both forms of F��x ,��. In both maps a pair of fixed
points exists for low values of � that disappear through a
saddle-node bifurcation when � increases. The rationale for

the terms chaotic and nonchaotic becomes clear at the sight
of the return maps: the first one corresponds to a unimodal
map with chaotic orbits, while the second one only presents
periodic orbits. A unimodal fast map is a convenient way to
introduce unpredictability in the sequence of spikes, but
other choices are possible. For example, a similar bursting
model is obtained by using a Lorenz-type return map �19�,
and our results about burst synchronization carry over to it as
well in the appropriate range of parameters. Particular
choices of the chaotic fast map will affect spike, but not burst
dynamics, which is the main focus of our study.

When gc=0, Eqs. �1� represent two identical neurons
without any coupling. It has been shown �16,20� that the
behavior of a single neuron can be predicted by studying the
dynamics of the one-dimensional subsystem xn+1=F��xn ,��.
The key to bursting is the fact that there is a range of values
of the bifurcation parameter � for which there is bistability.
This range is defined by two bifurcations: the saddle-node
bifurcation �sn on one side, and, on the other, either the
external crisis bifurcation �cr �in the chaotic model� or the
homoclinic bifurcation �h �in the nonchaotic model�. Both
are represented on nullcline diagrams of the full system in
Fig. 2.

In the chaotic map �Fig. 2�a��, �cr is the value of � where
the minimum iterate of xn �which is the second iterate of the
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FIG. 1. Return map F��x ,�� for the fast variable of �a� the
chaotic Rulkov model, with �=−3 and �=4.15, and �b� the noncha-
otic Rulkov model, with �=−4 and �=6.0. With these values of �
both models are bursters, and the values of � have been chosen in
the region of bistability. S and U denote stable and unstable fixed
points, respectively, of the fast map. The shape of the fast maps is
the only difference between the two variants of the model, with the
consequence that in �a� we get irregular bursts, while in �b� bursts
are regular.

IBARZ, CAO, AND SANJUÁN PHYSICAL REVIEW E 77, 051918 �2008�

051918-2



critical point x=0� maps onto the unstable middle branch of
the curve of fixed points. In the nonchaotic map �Fig. 2�b��,
�h is the value of � at the intersection between the unstable
branch of the curve of fixed points and the reset level
x=−1. When �cr	�	�sn, or �h	�	�sn, the one-
dimensional fast subsystem is bistable, with coexisting spik-
ing and silence regimes. This allows the transition between
the silent phase and the active phase of bursting. During the
silent phase, the state of the neuron runs � close to the stable
bottom branch of the curve of fixed points, while in the ac-
tive phase the interval between the minimum and maximum
iterates of the one-dimensional subsystem xn+1=F��xn ,��
lies above the unstable branch of the curve of fixed points. It

is also necessary for bursting that the position of the slow
nullcline is above the stable bottom branch of the fast sub-
system nullcline and below the average x value during spik-
ing. Figure 3 shows the orbit in the phase plane of a single
neuron of both the chaotic and the nonchaotic maps. Observe
that the nonchaotic map presents a periodic bursting trajec-
tory that ends � close to the homoclinic bifurcation at �h,
while the chaotic map presents irregular bursts that may end
well past the external crisis at �cr.

The condition for bursting can be assessed from a two-
parameter bifurcation diagram of the fast subsystem
xn+1=F��xn ,�� in the �� ,�� plane, as in Fig. 4. In the fol-
lowing we choose for � the values �=4.15 in the chaotic
case and �=6 in the nonchaotic case, both in the middle of
the bursting region. Also, unless specified otherwise, the
small parameter � will take values �=0.001 in the chaotic
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FIG. 2. Nullcline diagrams of the Rulkov models. �a� Chaotic
model with �=4.15, �=−1.5. Ns and Nu are stable and unstable
branches of the fast nullcline; y=�sn marks the saddle-node bifur-
cation of the fast subsystem. The dashed horizontal line is the slow
nullcline at x=�. The dotted, nearly horizontal line �min represents
the second iterate of the critical point x=0. �cr is the value of y of
the external crisis bifurcation. Mspikes is the manifold of average
values of spiking in the fast subsystem at each fixed value of y. �b�
Nonchaotic model with �=6.0, �=−1.2. Same labels as before;
now �min is at the reset level x=−1 and �h marks the homoclinic
bifurcation.
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FIG. 3. �Color online� Bursting orbit in phase space of �a� the
chaotic Rulkov model, with �=4.15, �=−1.2, and �=0.001, and
�b� the nonchaotic Rulkov model, with �=6.0, �=−1, and
�=0.002. Ns and Nu denote the stable and unstable branches of
fixed points of the fast subsystem, respectively. �max and �min are
the maximum and minimum possible iterates of the fast map for
each value of y. �cr, �h, and �sn mark the y values of the external
crisis, homoclinic, and saddle-node bifurcations, respectively.
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case and �=0.002 in the nonchaotic case, which yield a
similar average burst period.

III. BASIC MODES OF SYNCHRONIZATION

When gc�0 the neurons are coupled and their temporal
evolution becomes interdependent. Except for very small
values of gc, this interdependence results in burst synchroni-
zation, a process whereby the timing of the bursts of the two
neurons becomes strongly correlated. In both the chaotic and
nonchaotic case it can be seen that, generally, when synapses
are excitatory the neurons synchronize in phase, bursting si-
multaneously, while inhibitory synapses give rise to an-

tiphase synchronization, with alternating bursts. Examples of
the two cases are shown in Fig. 5. Note that bursts are regu-
lar in the nonchaotic model and irregular in the chaotic one.

The existence of synchronized states can be explained by
the emergence, when coupling grows from zero to a finite
value, of a stable attractor in the four-dimensional phase
space. This attractor stems from the collapse of the invariant
torus defined by the orbits of the uncoupled neurons. A pro-
jection of the attractors resulting from in-phase and antiphase
synchronization is shown in Fig. 6 for the chaotic model:
with inhibitory synapses �Fig. 6�b��, the attractor has two
off-diagonal branches that, as the reversal potential increases
toward excitatory values, collapse into a single branch cov-
ering the whole suprathreshold area �Fig. 6�d��. An analo-
gous transition takes place in the nonchaotic model, between
antiphase and in-phase periodic orbits; in this case, attractors
are one-dimensional. In the chaotic case we may characterize
the changes in the attractor by measuring its correlation di-
mension �21�: the dimension of the uncoupled system orbit
�gc=0� is twice that of the isolated neuron �D=1.03�0.02�,
while in the coupled system �gc�0� the dimension deviates
from that value, as shown in Fig. 6�a�.

However, the relationship between the local properties
�such as the correlation dimension� of the attractor and the
synchronization regimes is far from trivial and calls for
heavy mathematical analysis. Unfortunately, the discontinu-
ous nature of FTM coupling precludes the use of the analytic
tools usually employed to explain the origin of these attrac-
tors �22� because the two neurons only influence each other
through the timing of their transitions across the synaptic
threshold �, and otherwise behave as if isolated. Indeed,
when one neuron, for example, neuron 2, has its x variable
below �, neuron 1 follows the isolated neuron equations:

xn+1,1 = F��xn,1,yn,1� ,

yn+1,1 = yn,1 − ��xn,1 − �� . �7�

On the other hand, if neuron 2 is above threshold, neuron 1
follows the shifted single-neuron equations:

xn+1,1 = F�„xn,1,yn,1 − gc�xn,1 − ��… ,

yn+1,1 = yn,1 − ��xn,1 − �� . �8�

Neuron 2 is affected by neuron 1 in the same way. Thus each
neuron may be considered as an isolated system that
switches from one dynamic equation to the other depending
on the x level of the other neuron. If the threshold � is such
that it lies above the silent branch Ns but below the spiking
region delimited by the line of minimum iterates �min, the
switching coincides with the alternation between silence and
spiking, and this is the key to synchronization of bursts. Ob-
serve that the differences between the isolated Eqs. �7� and
the shifted Eqs. �8� are negligible at the local level, and
therefore features that stem from local properties are mostly
insensitive to the coupling and do not explain the origin of
the synchronized solutions. For example, Lyapunov expo-
nents, standard indicators of complete synchronization in
chaotic systems �22�, remain almost unchanged as burst syn-
chronization arises from increasing gc because they are
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FIG. 4. Two-parameter bifurcation diagram of the single neuron
fast subsystem xn+1=F��xn ,�� of �a� the chaotic rulkov model and
�b� the nonchaotic Rulkov model. The thick solid line �sn represents
the curve of saddle-node bifurcations. The thick dashed lines �cr

and �h represent the curves of external crisis and homoclinic bifur-
cations, respectively. In the shadowed region, bistability exists in
the fast variable, and the neuron bursts if � has an appropriate
value.
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dominated by spike dynamics, where the system is most ex-
pansive �see Fig. 7�a��. Thus what they reflect is mostly
changes in the duty cycle of bursts, but not in their correla-
tion �Fig. 7�b��.

Since local indices are of little help, the explanation of
burst synchronization must come from global differences be-
tween the isolated and shifted equations. Such explanation
has been given in detail for the Fitzhugh-Nagumo model
�18,11�, which is a good abstraction of our bursting neurons.
A brief summary, as applies to our models, follows, which
will give us important clues about the influence of the syn-
aptic parameters upon synchronization. This in turn will be
the topic of the next section.

The main difference between the isolated system �7� and
the shifted system �8� lies in the position of the nullclines
and curves of minimum iterates, and correspondingly of the
limiting values �sn and �cr or �h. This rapid switching of the
bursting thresholds is the rationale for the term fast threshold
modulation. Figure 8 shows both the isolated and shifted
phase plane diagram of the chaotic Rulkov model, in the
cases of strongly excitatory and strongly inhibitory synapses.

In the excitatory case, the shifted nullclines are to the left
of the isolated nullclines. This favors in-phase synchroniza-
tion as follows �see Fig. 9�. Suppose that both neurons are
silent and moving rightward along the slow branch Ns of the
fast nullcline, with different y values �Fig. 9�a��. When the
neuron with the higher value of y, say neuron 1, reaches
yn,1=�sn, it jumps up into the spiking regime, above x=�.
This switches the phase plane of the second neuron to the
shifted mode, moving its fast nullclines leftwards and either
driving it into bursting immediately �if yn,2��sn� at that mo-
ment� or shortening its distance to the saddle-node bifurca-
tion. In the first case, burst initiation occurs synchronously;

in the second, the y gap between both neurons is shortened.
Similarly, suppose that both neurons are spiking, also with
different y values �Fig. 9�b��. When the neuron with the
lower value of y, say neuron 1, reaches yn,1=�h� ��cr� in the
chaotic model� it jumps down into the silent regime, below
x=�. This switches the phase plane of the second neuron to
the isolated mode, moving its fast nullclines rightwards and
either driving it into silence immediately �if yn,2	�h at that
moment, or yn,2	�cr in the chaotic case� or shortening its
distance to the homoclinic �or external crisis� bifurcation.

In the inhibitory case, the shifted nullclines are to the
right of the isolated nullclines. This favors antiphase syn-
chronization as follows �see Fig. 10�. Suppose that both neu-
rons are silent and moving rightward along the slow branch
Ns of the fast nullcline, with similar y values �Fig. 10�a��.
When the neuron with the higher value of y, say neuron 1,
reaches yn,1=�sn, it jumps up into the spiking regime, above
x=�. This switches the phase plane of the second neuron to
the shifted mode, moving its fast nullclines, and the saddle-
node bifurcation, rightwards. This will delay the bursting of
the second neuron. When the first neuron’s burst ends �Fig.
10�b�� by reaching yn,1=�h ��cr in the chaotic model� it
jumps down into the silent regime, below x=�. This switches
the phase plane of the second neuron to the isolated mode,
moving its fast nullclines leftwards. Now the second neuron
is beyond �sn and immediately begins spiking, precisely in
antiphase with the first.

Other scenarios of in-phase or antiphase synchrony exist
depending on neuron parameters. For example, in the an-
tiphase case, the alternation may be due to the silent neuron
reaching �sn� before the other one reaches �h or �cr �intrinsic
escape� instead of the other way around �intrinsic release�
�18�. For a more detailed discussion the reader is referred to
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FIG. 5. Time evolution of two
coupled neurons, with gc=0.1,
�=−1.25, and �=0 in all cases.
�a� Chaotic Rulkov neurons with
�=1 �excitatory�. �b� Chaotic
Rulkov neurons with �=−2 �in-
hibitory�. �c� Nonchaotic Rulkov
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Nonchaotic Rulkov neurons with
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BURSTING REGIMES IN MAP-BASED NEURON MODELS … PHYSICAL REVIEW E 77, 051918 �2008�

051918-5



�11,18�. It is easy to see that, in the �→0 limit and with �
above the saddle-node bifurcations but below the curves of
minimum iterates, in-phase synchronization is guaranteed if
�sn��sn� and �cr��cr� �or �h��h��. Conversely, antiphase
synchronization will set in if �sn	�sn� and �cr	�cr�
�or �h	�h��. In the next section we perform a systematic
parameter search to see what values of synaptic strength gc
and reversal potential � give rise to these conditions, and to
explore the less clear-cut and most relevant cases where this
is not the case, or where � is above the curve of minimum
iterates �min.

IV. EXHAUSTIVE EXPLORATION
OF PARAMETER SPACE

The biological relevance of a neuronal model depends
critically on the possibility of relating its variables and pa-
rameters to measurable properties of neurons. This is one
of the strengths of the fast threshold modulation mecha-

nism, which, despite its extreme simplicity, captures the
basic features of fast ionotropic synapses, such as alpha-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tor �AMPA� mediated, in the excitatory case, or type A
gamma-aminobutiric acide receptor �GABAA� mediated, in
the inhibitory case, in a few meaningful parameters. These
are gc, �, and �, and they should be chosen so as to mimic
the properties of the particular types of synapses to be mod-
eled. The biological correlate of gc is the total maximal con-
ductance of the postsynaptic receptor channels, while that of
� is their reversal potential. The dynamics of the system for
meaningful ranges of values of these parameters should be
explored. The threshold � is somewhat harder to interpret
because it blends together the voltage response and time con-
stant of the synaptic release mechanism. A higher � corre-
sponds both to a higher presynaptic voltage for neurotrans-
mitter release and to a shorter neurotransmitter binding time.
Conversely, low values of � presuppose longer binding times
and lower release thresholds. An exploration of the behavior
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FIG. 6. Simple characterizations of the synchronized dynamics of two chaotic Rulkov neurons. �a� Correlation dimension of the attractor
as coupling strength increases from gc=0, for excitatory ��=0.0� and inhibitory ��=−2.0� synapses. �b�–�d� Projection of the attractors on the
�xn,1 ,xn,2� plane for three different synaptic reversal potentials. Dashed lines mark the synaptic threshold ��=−1.4�. Maximal conductance is
gc=0.1 in the three cases.

IBARZ, CAO, AND SANJUÁN PHYSICAL REVIEW E 77, 051918 �2008�

051918-6



of the model for different values of � to assess its precise
meaning is also in order.

A. Role of synaptic conductance and reversal potential

Let us first evaluate the effects of different values of gc,
the synaptic conductance, and �, the reversal potential. In
what follows, we will fix the third synaptic parameter, the
threshold �, at �=−1.4 for the chaotic model and �=−1.1 for

the nonchaotic one. These values make the synapses active
along the whole length of the spikes of the presynaptic neu-
ron, and inactive whenever the presynaptic neuron is not
spiking. In the next section we will explore the effects of
raising the threshold to different levels of depolarization.

Figure 11 depicts, both for the chaotic and the nonchaotic
Rulkov models, the positions in the y axis of the saddle-node
��sn� � and external crisis ��cr� � or homoclinic ��h�� bifurcations
of the shifted fast subsystem of Eqs. �8� as a function of gc,
for three different values of �: one clearly excitatory, one
clearly inhibitory, and one in-between. The values of �sn, �cr,
and �h in the isolated system, which are independent of both
gc and �, are also depicted. We see that in the excitatory case
��=−0.5� both �sn� and �cr� ��h�� deviate to the left of �sn and
�cr ��h�, respectively. As discussed before, this guarantees
in-phase synchronization in the �→0 limit. The opposite
happens in the inhibitory case ��=−2�, resulting in antiphase
synchronization; but for the intermediate value ��=−1.4 in
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flected in the Lyapunov exponents because coupling affects local
behavior only very slightly. Other coupling parameters are �=−2
and �=−1.4 �results almost identical if �=0�. �b� Further evidence
that Lyapunov exponents are not good indicators of synchroniza-
tion. The exponents in this figure were obtained for two uncoupled
chaotic neurons �gc=0�. Changes in the exponents follow closely
the changes in burst duty cycle �dashed� due to variations in exci-
tation �. This happens because the system is expanding in the spik-
ing intervals, and thus the average expanding rates are higher when
spiking takes up a larger fraction of the total time, independently of
synchronization.
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the chaotic model, �=−1.2 in the nonchaotic one�, �sn� is to
the left of �sn, and thus burst initiation favors in-phase syn-
chronization, while �cr� ��h�� is to the right of �cr ��h�, and
burst ending favors antiphase synchronization. As a result,
the synchronization mode that in this case finally sets in will
be dependent on other parameters, such as � and �.

This opens up the interesting possibility of controlling the
mode of synchronization without changing the type of syn-
apses, that is, keeping a fixed value of � while modulating
either gc or �. This is of great importance in a biological
context, where the reversal potential of synaptic connections
is mostly fixed and network dynamics must be controlled by
modulating either synaptic conductance or background input
to neurons. Observe, for example, Fig. 12, which displays
one such case in the chaotic Rulkov model. With a reversal
potential �=−1.4 and synaptic strength gc=0.1, we see from

Fig. 11�a� that the saddle-node bifurcation favors in-phase
synchronization ��sn� 	�sn� but the external crisis bifurcation
favors antiphase synchronization ��cr� ��cr�. When external
excitation is high, with �=−1 as in Fig. 12�a�, the external
crisis dominates because, since it takes place in the spiking
regime, where x takes on high values, the difference
�xn,i−�� is smaller there and, according to the slow sub-
system of Eqs. �3�, the slow variable spends more time close
to that bifurcation than to the saddle-node. The result is
mostly antiphase synchronization, with occasional slips due
to the irregularity of bursts. On the contrary, when external
excitation is low, with �=−1.5 as in Fig. 12�b�, it is the
saddle-node bifurcation that dominates because, since it
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FIG. 9. In-phase synchronization through excitatory ��=1� FTM
synapses in the nonchaotic Rulkov model. �a� When neuron 1
�solid� reaches �sn, it begins to spike and drives neuron 2 �dashed�
into spiking. Thus burst initiation is synchronized. �b� When neuron
2 �dashed� reaches y=�h� it jumps down into silence, driving neuron
1 �solid� into silence at the same time by shifting its nullclines. Thus
burst ending is synchronized. Coupling parameters in this example
are gc=0.1 and �=−1.4. Excitation is �=−0.9. A similar mecha-
nism synchronizes bursts in the chaotic Rulkov model.

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

x

yγ
h

γ
sn

γ’
h

γ’
sn

a)

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

x

yγ
h

γ
sn

γ’
h

γ’
sn

b)

FIG. 10. Antiphase synchronization through inhibitory ��=−2�
FTM synapses in the nonchaotic Rulkov model. �a� When neuron 1
�solid� reaches �sn, it begins to spike and switches neuron 2
�dashed� to its shifted nullclines. Thus burst initiation of neuron 1
delays burst initiation of neuron 2, favoring antiphase synchroniza-
tion. �b� When neuron 1 �solid� reaches y=�h it jumps down into
silence; this switches neuron 2 �dashed� to its shifted nullclines and
thus immediately releases it for bursting. Therefore the end of burst-
ing in neuron 1 triggers the initiation of a burst in neuron 2. Cou-
pling parameters in this example are gc=0.1 and �=−1.4. Excitation
is �=−0.9. A similar mechanism synchronizes bursts in the chaotic
Rulkov model.
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takes place at the end of the stable branch of Ns, where x
takes on low values, the difference �xn,i−�� is smaller there
and, again according to the slow subsystem of Eqs. �3�, the
slow variable stays longer in this region. The result is mostly
in-phase synchronization.

Using intermediate synaptic reversal potentials as in the
example above is not a mere curiosity. GABAA receptor
channels, which are selective for chloride ions, have reversal
potentials that are, depending on the particular brain system
they are located, between �80 and �50 mV. In many cases
this potential is very close or slightly above the resting po-
tential of the neuron, and its effect, referred to as shunting
inhibition, may have a significant role in establishing brain
rhythms �23�. In the chaotic Rulkov model, a reversal poten-

tial �=−1.4, as in the above example, plays precisely the
same role, since �as can be seen, for example, in Fig. 3�a��
this value is barely above the resting potential defined by the
stable branch Ns of the fast nullcline.

Besides, the example above shows that an excitatory, in-
stantaneous synaptic connection may lead to antiphase syn-
chronization. This is contrary to the rule of thumb that exci-
tatory connections favor in-phase bursting while inhibitory
connections favor antiphase bursting. In order to explain this
further, we shall first state a criterion to classify synapses as
excitatory or inhibitory. A synapse is excitatory if it gathers
the following two conditions.

E.1. It should produce depolarizing excursions of voltage
�excitatory postsynaptic potentials �EPSPs�� upon a resting
postsynaptic neuron.

E.2. It should be able to elicit spiking or bursting in the
postsynaptic neuron if it is excitable enough �that is, if it is
resting but depolarized enough�.

Conversely, a synapse will be classified as inhibitory if
I.1. It produces hyperpolarizing excursions of voltage �in-

hibitory postsynaptic potentials �IPSPs�� upon a resting, suf-
ficiently depolarized postsynaptic neuron.

I.2. It is able to prevent or delay spiking or bursting in an
active postsynaptic neuron.

Conditions E.1 and I.1, in our model, depend on the rela-
tive position in the x axis of the fast nullcline stable branches
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FIG. 11. As a function of gc, and for three different values of
synaptic reversal potential �: �a� Saddle-node ��sn� � and external
crisis ��cr� � bifurcation curves of the shifted fast subsystem of Eqs.
�8� in the chaotic Rulkov model. Vertical dotted lines indicate the
position �sn and �cr of the isolated neuron bifurcations. �b� Saddle-
node ��sn� � and homoclinic ��h�� bifurcation curves of the shifted fast
subsystem of Eqs. �8� in the nonchaotic Rulkov model. Vertical
dotted lines indicate the position �sn and �h of the isolated neuron
bifurcations.
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Ns and Ns� of the isolated and shifted systems �see Fig. 8�.
Conditions E.2 and I.2 depend on their relative position in
the y axis. This is illustrated in Fig. 13. It shows the phase
plane diagram of resting neurons, since the values chosen for

� are always below the saddle-node bifurcation of the iso-
lated neuron. Synapses have maximal conductance gc=0.25,
and three different reversal potentials. In Fig. 13�a�, the re-
versal potential is �=−1.4. The arrows indicate the x excur-
sion that will happen �in the �→0 limit� when the synapse is
activated, at two different resting levels: at �1, close to the
saddle-node bifurcation, not only will the activation depolar-
ize the neuron �condition E.1�, but also a burst will be in-
duced �condition E.2� because the shifted fast nullcline is to
the left of the resting point; at �2, a depolarizing x excursion
happens �condition E.1�, but it is limited by Ns�. Anyway the
synapse is excitatory because it can generate a burst if the
neuron is not too hyperpolarized. On the other hand, in Fig.
13�b�, with �=−1.6, although Ns� is always above Ns and
therefore all PSPs are depolarizing �condition E.1�, no burst
can be elicited by the synapse because all x excursions are
limited, due to the horizontal position of Ns�, to the right of
Ns. Thus condition E.2 is not met and the synapse is not
excitatory, although it cannot be called inhibitory either �be-
ing unable to produce any IPSPs, it does not meet condition
I.1�. Finally, Fig. 13�c� shows a fully inhibitory synapse, with
�=−1.8. It produces hyperpolarizing PSPs in a resting, ex-
citable neuron �condition I.1�, and would prevent it from
bursting as long as its excitation � does not go beyond xsn�
�condition I.2�.

We can turn these observations analytical, at least in the
�→0 limit. First note that according to the fast subsystem
part of Eqs. �8�, and taking into account Eq. �6�, the fixed
points x� of the shifted fast subsystem satisfy

� = x� − f��x�� + gc�x� − �� . �9�

Since at the saddle-node the curve of fixed points in the �-x
plane is vertical, the x coordinate xsn� of the bifurcation point
must satisfy

� ��

�x��
xsn�

= 0 ⇒ f���xsn� � = 1 + gc, �10�

and, since in all cases, for there to exist a saddle-node bifur-
cation with growing y, f���x��0 around the saddle-node
point, it follows that xsn� grows strictly with gc. Therefore the
saddle-node of the shifted system is always above the saddle-
node of the isolated system in the x axis, independent of the
particular value of � or gc. This means that condition E.2 will
be met if and only if �sn� 	�sn, and it will automatically entail
E.1. This is a clear characterization of excitatoriness. For
example, we see from Fig. 11 that synapses with �=−1.2 are
excitatory for all values of gc in the nonchaotic model, as are
synapses with �=−1.4 in the chaotic one.

A boundary for excitatoriness may then be defined as the
value of � that makes the �sn� bifurcation curve in the gc-�
plane �see Fig. 11� vertical at gc=0, that is, the value of �
that satisfies

� ��sn� �gc,��
�gc

�
gc=0

= 0.

To obtain this boundary, note that according to Eq. �9�, the
fast nullcline satisfies
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FIG. 13. Effect of synapses on a chaotic Rulkov neuron depend-
ing on reversal potential: �a� �=−1.4; �b� �=−1.6; and �c� �=−1.8.
Two resting points O1 and O2, corresponding to �1=−1.7 �excitable
neuron� and �2=−2 �hyperpolarized neuron� are shown in each
case. The arrows indicate the jump experienced by the neuron in the
�→0 limit when the synapse is activated. In all cases, gc=0.25.
Labels for curves and bifurcation points are the same as in Fig. 8.
Similar diagrams result from the nonchaotic model.
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��

�gc
= �1 − f���x� + gc�

�x

�gc
+ �x − �� .

But at the saddle-node bifurcation, according to Eq. �10�, 1
− f���xsn� �+gc=0. Therefore denoting by xsn�gc ,�� the value of
x at the saddle-node bifurcation, we have that, for any value
of gc,

��sn� �gc,��
�gc

= xsn�gc,�� − � ,

and the �sn� curve will be vertical in the gc-� plane at the
point where xsn�gc ,��=�. Thus, finally, the boundary for ex-
citatoriness is

�exc = xsn,

where xsn is the value of x at the saddle-node bifurcation of
the isolated fast subsystem. In the particular case of the non-
chaotic Rulkov model, �exc=1−	�
−1.45 �for �=6�. In the
chaotic model, the algebraic expression of xsn as a function
of � is rather unwieldy; for �=4.15, �exc
−1.64. Whenever
�	�exc, synapses will not be excitatory for any value of gc.
For ���exc, synapses are excitatory at least for low values of
gc. At stronger synaptic conductances the �sn� curve may
bend rightwards �remember that it is vertical at the point
where xsn� =�� and cross the �sn vertical line. This change of
character with conductance is interesting, but its effect on
synchronization properties is mild as we shall see in the next
section, where we will compare it to the effect of varying the
synaptic threshold �.

Now that we can easily tell whether a synapse is excita-
tory, we turn to the issue of synchronization. We can see in
Fig. 12 that we cannot aspire to a strict discrimination be-
tween in-phase and antiphase behavior in the chaotic Rulkov
model, since phase fluctuates between bursts and slips along
any single simulation of our system. Even in the nonchaotic
model, and although for clear-cut situations such as that of
Figs. 5�c� and 5�d� we may find global attractors correspond-
ing to one of the two regimes, for the intermediate synaptic
values we are interested in, chaotic trajectories are the norm
and attractors seem extremely hard to analyze as a function
of parameters. We turn instead to numeric calculation of the
cross-correlation between the x trajectories of both neurons
for different initial conditions. A positive average cross-
correlation should indicate in-phase bursting and negative
antiphase. To verify this, we perform the calculation with
gc=0 �that is, two uncoupled neurons�; average cross-
correlation in this case is close to zero, and we obtain con-
fidence intervals around it to test for the significance of our
results.

Figure 14 shows the cross-correlations obtained with both
the chaotic and nonchaotic models as a function of external
excitation �, for fixed gc=0.2 and different values of � right
above the excitatory boundary �exc. As we predicted from the
bifurcation curves in Fig. 11 and phase-plane analysis of the
FTM mechanism, for a fixed reversal potential low values of
� favor in-phase synchronization �positive cross-correlation�
but, as � grows, the dephasing effect of burst ending gains
importance and the regime switches to antiphase �negative

cross-correlation values�. The switching is gradual in the
chaotic model, but may turn out to be rather sharp in the
nonchaotic one. For example, with �=−1.2 synchronization
changes abruptly at �
−0.92 when the speed along Ns� be-
comes fast enough to stabilize an antiphase orbit that never
falls onto Ns. We can thus control the regime of the system
with very small changes in external excitation. The reason
why cross-correlation grows again for very high � is that
bursts achieve duty cycles above 50%, producing overlaps
that drive the cross-correlation toward positive values even if
burst initiation continues to be alternating.

A graphical comparison of the modulating possibilities of
the two models can be seen in Fig. 15, where the cross-
correlation between xn,1 and xn,2 as a function of both � and
� is represented by means of contour plots. The thick contour
corresponds to zero cross-correlation and we can chart hori-
zontal �fixed �� lines to assess the variation of the synchro-
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FIG. 14. Average cross-correlation of xn,1 and xn,2 of 50 trials of
length nmax=50 000, as a function of excitation � for different val-
ues of synaptic threshold �. The dotted lines represent the 95%
confidence interval of significance against the null hypothesis of
uncoupled neurons. �a� Chaotic Rulkov model, with gc=0.2 and �
=−1.4. �b� Nonchaotic Rulkov model, with gc=0.2 and �=−1.1.
Note the sharp change in cross-correlation in the nonchaotic model
at �=−0.9 when �=−1.2.
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nization regime with external excitation �. Notice that rever-
sals of synchronization only occur in a well-defined range of
values of � above the excitation threshold �exc. Also note that
contours are tightly packed in the nonchaotic model, inidi-
cating a sharper transition.

B. Role of the synaptic threshold

We now turn to investigate the effects of varying �. As �
raises from below the spike reset level, the neurons switch
from remaining steadily coupled during bursts to an intermit-
tent coupling at the spiking frequency, to fully uncoupled
when � goes beyond the maximum x value of spikes. Thus
we may conjecture that increases in � will have an effect
similar to decreases in gc. This is indeed the case from the
point of view of burst synchronization, as shown in Fig. 16
for the chaotic Rulkov model. The mild ascending slope of

the zero cross-correlation contour in both the �-� and gc-�
diagrams indicates that, for reversal potentials between �1.5
and �1.4 �which, as we saw previously, may produce in-
phase or antiphase synchronization when modulated by ��,
weakening the synapses �that is, either increasing � or de-
creasing gc� has a very mild desynchronizing effect. More
noticeable is the fact that, while clearly excitatory ���−1�
or inhibitory ��	−1.7� synapses retain their synchronizing
power up to very low values of gc �contours remain mostly
parallel�, they turn ineffective very rapidly as � raises toward
the spike maximum �note the diverging contours in the
�−� plane as � grows; maximum spike x value is around
x=1.4�.

At any rate, the effect of gc and � in controlling burst
synchronization for a fixed � is very mild compared to the
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FIG. 15. Contours of constant cross-correlation of xn,1 and xn,2

in the �-� plane, for �a� the chaotic Rulkov model, and �b� for the
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FIG. 16. Contours of constant cross-correlation of xn,1 and xn,2

in �a� the �-� plane, with gc=0.1, and �b� the gc-� plane, with
�=0, for the chaotic Rulkov model. The contours were obtained
from averages of 50 trials of length nmax=50 000 in a grid of reso-
lution ��=0.04, ��=0.1, and �gc=0.01. In both figures �=−1.5.
The thick contour highlights zero cross-correlation. Notice that
the gc axis in �b� is inverted for easy comparison with the effects of
� in �a�.
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effect of �. This may strike one as surprising in the light of
the �sn� and �cr� curves of Fig. 11�a�, where we can see that
the distance in the y axis between the isolated and shifted
system bifurcations is strongly dependent on gc. But this af-
fects mostly the rate at which the system reaches the syn-
chronized regime �11�; whether this regime is synchronized
in-phase or antiphase depends rather on the dominance of
burst initiation over burst ending or vice versa, and this is
controlled by �.

In spite of their similar effects on burst synchronization,
there is a clear difference in the dynamics of coupling using
a weak gc or a high synaptic threshold �: in the latter case,
each neuron is subject to a pulsed perturbation at the spike
frequency during each of the bursts of the presynaptic neu-
ron, while in the former there is only one time scale for the
perturbation, namely the average burst period. The high fre-
quency perturbation does not affect burst synchronization be-
cause resonances responsible for burst initiation are domi-
nated by the slow subsystem �24� and burst response at the
spiking frequency is highly damped. For this reason we only
observe an average reduction in synaptic effectiveness com-
parable to a decrease in gc; but we shall presently see that the
high frequency perturbation does have an effect on spike
synchronization in the in-phase synchronized bursting re-
gime of the nonchaotic Rulkov model.

Figure 17�a� shows the cross-correlation between xn,1 and
xn,2 in the nonchaotic Rulkov model as a function of � and �.
It should be compared with Fig. 16�a�, which is its equiva-
lent in the chaotic model. We have chosen to use a gray level
diagram instead of contours here because the irregularity of
the nonchaotic case turns the contour plot unreadable. In-
deed, although the antiphase bursting region �below
�=−1.35, approximately� is rather uniform with values of
cross-correlation around �0.5, the in-phase bursting region
�above �=−1.25, approximately�, with average values of
cross-correlation around 0.5, is bespeckled with white spots
representing a cross-correlation of 1. In these spots, the neu-
rons synchronize not only their bursts but also their spikes:
they achieve complete synchronization. On the other hand, in
the gray region surrounding these spots, bursts are synchro-
nized in-phase, but spikes are antiphase, producing a signifi-
cantly positive but lower cross-correlation. The difference
between the two cases is shown in Figs. 17�b� and 17�c�. A
rather surprising fact is that tiny variations in the synaptic
threshold � �from �=0.30 to 0.33 in our example� are enough
to switch the system from one mode to the other. It is also
interesting to note that spike synchronization is relatively
rare: the white areas in Fig. 17�a� fill up a small portion of
parameter space. Let us briefly explain why.

Consider just the fast subsystem of Eqs. �2� along the
spiking orbits. We try to find, for fixed values �1 and �2, the
basin of attraction of the synchronized orbit in the �xn,1 ,xn,2�
plane. Since in the cases under study bursts are synchro-
nized, we will suppose �1=�2=� first; we will discuss after-
wards what happens when �1 and �2 differ. Because all
spikes take off from x=−1, it is enough to investigate
whether an orbit starting at �xn,1 ,xn,2�= �−1,x0�, with
−1	x0	�+�, will or will not end up in synchrony. Accord-
ing to the reset mechanism of Eq. �5�, synchrony will ensue
if, at some point, both neurons cross the threshold x=0 in the

same iteration; the expanding nature of the return map below
threshold forbids the possibility of synchronizing by gradual
contraction of the orbits. If no interaction existed, or, equiva-
lently, if ���+�, it is evident that the condition for syn-
chronization would be

− 1  x0 	 F �
−�n�−1��0,�� , �11�

where n�=min�n ;Fn�−1,���0�. In the other extreme case,
when �	−1, the same rule is valid using the shifted fast map
F�,shifted�x ,��=F��x ,��−gc�x−��. The basins are thus inter-
vals between �1 and some higher value. In the intermediate
cases where −1	�	�+� we cannot derive a simple for-
mula for the basin: depending on gc, �, and the position of
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FIG. 17. �a� Cross-correlation of xn,1 and xn,2 in the nonchaotic
Rulkov model as a function of � and �, for gc=0.25 and �=−1.
Values of cross-correlation were obtained from averages of 50 trials
of length nmax=50 000 in a grid of resolution ��=0.04 and
��=0.1. �b� Evolution of xn,1 �solid line� and xn,2 �dashed� at
�=−0.6, gc=0.25, �=−1, and �=0.33: bursting is in-phase, spiking
is antiphase inside each burst. �c� Same as in �b�, but for �=0.30:
both bursts and spikes are synchronized in-phase, corresponding to
a white spot of correlation 1 in �a�. The orbit of neuron 2 has been
shifted one sample in order to visualize it �otherwise, both orbits
would be coincident�.

BURSTING REGIMES IN MAP-BASED NEURON MODELS … PHYSICAL REVIEW E 77, 051918 �2008�

051918-13



the threshold, the orbit starting at x=−1 may even surpass
the orbit beginning at x=x0�−1 if at some point the first is
below threshold, the second is above, and � is higher than
both; thus the basin need not be an interval, and analytical
expressions become unwieldy. Numerical calculation instead
is easy, and we find indeed that for the values of gc and � of
interest �0gc	0.3,−1	�	1� basins continue to be inter-
vals, at least down to a precision of �x=0.0001. Figure 18
shows how the basins change with �, for different values of
� and �. The sawtooth-shaped basin profiles are to be ex-
pected from the form of Eq. �11�. For example, the discon-
tinuities of the �=−1 profile of Fig. 18�a� correspond to the
values of � where F�

n��0,��=0 and therefore the period of
the spike cycle changes in one unit. At those points, a period-
adding bifurcation takes place, and the basin becomes the
single point x=−1 because even the slightest difference in

the point of departure will translate into a different number
of iterations to return to x=−1 and will prevent synchroniza-
tion. With ��−1 profiles become more irregular and dented
due to further discontinuities introduced by the crossings of
the synaptic threshold. The dependence of the profiles on
parameters is complex and we just intend to highlight that
both � and � have a strong effect upon the position and shape
of the basins.

In the full system with synchronized bursts, synchroniza-
tion of spikes is decided at the beginning of the burst. Both
neurons shoot up into spiking somewhere past the saddle-
node y=�sn, which has been marked in Fig. 18. One of them
will spike first, and when it resets to xn,i=−1 �or after a few
spikes, if the other neuron lags significantly�, the other neu-
ron will be at some point along the spiking interval. For
spike synchronization to ensue, this point should be in the
basins depicted in Fig. 18. Note that the basins occupy a
small interval close to x=−1, and thus spike synchronization
is rare. It is further complicated by the effect of mismatches
between yn,1 and yn,2, which naturally arise along the orbits
of the full system. If �1��2, the discontinuities in the basins
prove fatal for synchronization of spikes because they corre-
spond, as we have explained, to changes in the spike period.
We can see this in Fig. 19�a�: in the first burst spikes have
synchronized and the system is very close to full synchroni-
zation, except for a slight mismatch in y; the second burst
begins with synchronized spikes, but halfway through it the
neurons switch to antiphase because one of them �that of the
solid line� adds one iteration to its spike cycle before the
other does. Just as we have depicted the basins of spike
synchronization for �1=�2, we can do the same for �2−�1
=���0 to observe the deletereous effect of � mismatch on
synchronization basins �Fig. 19�b��. When there is a mis-
match, the end of each tooth of the saw does not coincide
with the beginning of the next one, and there are whole in-
tervals of y along the burst where even if both neurons begin
at x=−1 at the same time they will not synchronize just due
to the fact that they have a different number of iterations per
spike.

Needless to say that the entry point of bursting along the
� line, which is determinant to decide whether spikes will
synchronize, is strongly dependent on the finite value of �
and on the position of the slow nullcline x=�. Thus, all in
all, spike synchronization is a complex process where all
parameters have a say. For our purposes it is enough to stress
that � can control spike synchronization independently of gc,
and in this regard raising or lowering the synaptic threshold
is not merely equivalent to weakening or strengthening the
synapse.

Spike synchronization is exclusive of the nonchaotic
model. In fact, we cannot even extrapolate the heuristic
analysis we have performed to continuous-time equivalents
of the Rulkov map: in continuous time, no period-adding
bifurcations take place and the basins for synchronization do
not have the characteristic sawtooth profile. In continuous-
time systems, the effects of synaptic threshold on spike syn-
chronization can be predicted by the well-known technique
of phase-response curves �25�.
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FIG. 18. Boundary of the basin of attraction of synchronized
spike orbits in the fast subsystem of the nonchaotic Rulkov model
as a function of �1=�2=�. The basins are intervals starting at
x=−1 and ending at the depicted profiles. �a� Dependence of the
basin on the synaptic threshold �. Other parameters are �=−0.6 and
gc=0.25. �b� Dependence of the basin on the synaptic reversal po-
tential �. Other parameters are �=−0.5 and gc=0.25. Note that the
solid line in �b� is the same as the dotted line in �a�.
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V. CONCLUSION AND DISCUSSION

In this paper we have investigated the synchronization
regimes of two map-based bursters coupled through fast
threshold modulation. We have examined how synchroniza-
tion depends on coupling parameters such as the reversal
potential of the synaptic channels, the maximal conductance
of the synapses and the synaptic threshold, and explained the
results with heuristic arguments based on examination of the
phase plane and fast-slow decomposition.

We have seen that changes in the synaptic threshold � are
mostly equivalent to changes in synaptic conductance be-
cause of the averaging effect of the slow process of bursting.

The only exception is for spike synchronization, which, at
any rate, is only an artifact of the discretization implied in
the map-based nonchaotic model and has no direct bearing
on realistic models. The interchangeability of � and gc is
good for modeling, since � is a phenomenological parameter,
hard to derive from biophysical measurements, while gc is
more easily identifiable.

More interestingly, we have found that the burst synchro-
nization regimes arising from synaptic connections with
mildly excitatory reversal potentials are sensitive to modula-
tory signals such as the steady external excitation of the neu-
rons. Two chaotic or nonchaotic Rulkov neurons bursting in
phase may be switched to antiphase synchronization by a
steady increase in �. It is interesting to see how this reflects
on the dynamics of a network of neurons. In Fig. 20 three
raster plots are presented with the bursting pattern of a ring
of N=32 nonchaotic Rulkov neurons. Each neuron in the
ring is coupled to its two nearest neighbors. To be precise,
the equations of the system are

xn+1,i = F��xn,i,yn,i + �n,i� ,

yn+1,i = yn,i − ��xn,i − �� ,

for i=0, . . . ,N−1, with

�n,i = − gc�H�xn,i−1 − ���xn,i−1 − �� + H�xn,i+1 − ���xn,i+1 − ��� ,

where indices i+1 and i−1 must be understood modulo N.
Each raster is made up of 20 000 iterations; along the first
half external modulation is �=−1.2, while in the second half
�=−0.8. In Fig. 20�a�, the reversal potential of the synapses
is �=0. These are fully excitatory synapses and regardless of
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FIG. 19. �a� Top: evolution of xn,1 �solid line� and xn,2 �dashed�;
bottom: evolution of yn,1 �solid line� and yn,2 �dashed�, along a
bursting orbit with �=−0.6, gc=0.25, �=−1, and �=0.5. In the first
burst spikes have synchronized and the system is close to full syn-
chronization, but during the second burst the slight mismatch be-
tween yn,1 and yn,2 is enough to destroy it. �b� Boundaries of the
basin of attraction of synchronized spike orbits in the fast sub-
system as a function of �1 for different values of ��=�2−�1 and
the same parameters as in �a�. When ���0, the teeth of the profile
are separated by gaps where spike synchronization is impossible.
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FIG. 20. Raster plots of the bursting patterns in a ring of
N=32 nonchaotic Rulkov neurons. In all cases �=6, �=0.002,
gc=0.1, and �=−1.1. External excitation � is �=−1.2 for
n=1, . . . ,10 000 and �=−0.8 for n=10 001, . . . ,20 000. �a� �=0.0,
in-phase burst synchronization. �b� �=−1.2, switch between in-
phase and antiphase synchronization. �c� �=−2.0, antiphase
synchronization.
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� the ring synchronizes in-phase; the higher � merely en-
larges the duty cycle of bursts. In Fig. 20�c�, �=−2 is fully
inhibitory and, again regardless of �, neurons synchronize in
antiphase; but at �=−1.2 which, just as with �=−1.4 in the
chaotic model, is only mildly excitatory, the change in exter-
nal excitation results in a full change of the network pattern,
from simultaneous to alternating bursts. This was to be pre-
dicted in the light of the cross-correlation profile of Fig.
14�b� for �=−1.2: a sharp change from positive to negative
correlation takes place at around �=−0.9; very small
changes in � can have a strong effect on network synchro-
nization if synapses are involved with reversal potentials
close to shunting.

In the case of the chaotic model the extrapolation from
two-neuron behavior to ring dynamics is not so obvious. As
we see in Fig. 21�a�, with fully excitatory synapses synchro-
nization is in-phase independently of external excitation, but
occasional readjustments with propagation of activity happen
unpredictably due to the irregularity of the individual bursts.
The readjustments seem to be more frequent when excitation
is higher. This can be explained by the fact that, as we know,
high � implies dominance of the external crisis bifurcation
over the saddle-node bifurcation in determining burst length.
Since, for bursts synchronized in-phase, the irregularity is
due exclusively to burst ending through the external crisis, a
higher � produces more irregular bursts and translates into
more frequent slips of synchronization in the network. In
Fig. 21�b� we see the case of a mildly excitatory synapse,
with �=−1.45. We gather from Fig. 14�a� that at this synaptic
level synchronization should be mostly in-phase for low ex-

citation and antiphase for high excitation. The pattern is not
as clear-cut as in the equivalent nonchaotic case of Fig.
20�b�, but indeed with low � bursts occur predominantly in
stripes, while an alternating, checkered pattern covers most
of the high � area of activity. Finally Fig. 20�c� shows the
interesting case of fully inhibitory synapses. As expected,
regardless of �, neighboring neurons will not burst in-phase,
but this does not entail antiphase synchronization: for low �,
propagating patterns appear. If we look at vertical cuts of
these patterns, we can see that they consist of neurons syn-
chronizing in-phase not with their next-nearest neighbor, as
antiphase synchronization would require, but with the neu-
rons located two positions away. In other words, the duty
cycle of bursts is low enough to accommodate three bursts in
sequence, and this produces the waves we see across the
ring. This phenomenon happens also, and due to the same
reasons, in the nonchaotic model for an excitation lower than
that of Fig. 20 �not shown�.

The simple map-based models of our choice have allowed
us to gain insight into their dynamics by means of phase
plane analysis, but the implications we have derived for burst
synchronization extend to elaborate burster models that share
a similar bursting mechanism. As an example Fig. 22 shows
the activity in a ring of bursters modeled with Hodgkin-
Huxley equations that include four different intrinsic currents
and GABAA synapses with first order dynamics �26�. By
switching the level of current injected into the neurons, with-
out any change in synaptic or intrinsic properties, the net-
work switches from an in-phase to an antiphase regime.
Similar effects may result from modulating signals or shifts
in background excitatory inputs, and shunting synapses may
thus provide a mechanism for rapid, flexible control of the
rhythms generated by networks.

We finish with a comment on the implications for general
network structures. The relationship between the topology of
a network of bursters and its patterns of activity is a topic of
interest for the understanding of systems as diverse as tha-
lamic neurons during periods of sleep or drowsiness �4�,
dopaminergic neurons in the midbrain �27�, pancreatic �
cells �3�, and central pattern generator neurons. In a recent
work we have shown �10� how for direct, linear inhibitory
coupling between neurons, the spectral properties of the net-
work graph correctly predict the bursting patterns. Here we
merely point out that, although we cannot extend the analyti-
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FIG. 21. Raster plots of the bursting patterns in a ring of
N=32 chaotic Rulkov neurons. In all cases, �=4.15, �=0.001,
gc=0.1, and �=−1.4. External excitation � is �=−1.4 for n
=1, . . . ,10 000 and �=−1.0 for n=10 001, . . . ,20 000. �a� �=0.0,
in-phase burst synchronization with occasional slips and propaga-
tion of activity. �b� �=−1.45, switch between predominantly in-
phase behavior �striped pattern� and predominantly antiphase be-
havior �checkered pattern�. �c� �=−2.0, antiphase propagation in the
first half and antiphase synchronization in the second.
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FIG. 22. Raster plot of the bursting patterns in a ring of N=32
neurons with Hodgkin-Huxley dynamics connected by shunting
�GABAA� synapses to their nearest neighbors. The model and
parameters are as in �26�, except that the GABAA synapses
have a reversal potential of �60 mV. External excitation is
I=0.05 �A /cm2 during the first half of the simulation and
I=0.35 �A /cm2 during the second half. The network switches
from a dominantly in-phase to a dominantly antiphase pattern.
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cal techniques used there to FTM coupling, the same prop-
erties, and to be precise, the components of the dominant
�most negative� eigenvalue of the adjacency matrix of the
network graph, determine the clusters of neurons that fire in
synchrony when coupling is such as to produce antiphase
bursting in two coupled neurons. This means that we can
control the pattern of activity in a general network by modu-
lation of �, just as we did in a ring. Figure 23�a� shows a
16-neuron symmetric random network of degree 6. The ras-
ter in Fig. 23�c� shows how an increase in � switches the
network from in-phase synchronization to a pattern of bursts
where two clusters of neurons that tend to fire in synchrony
can be determined that split the network along the same lines
as the sign of the dominant eigenvector of the adjacency
matrix. This is exactly what happens with direct, linear in-
hibitory coupling, although in that case one of the clusters

remains silent �10�. We can see that the synchrony is not
perfect and there are frequent slips of some neurons that
readjust the bursting pattern; the neurons that slip more fre-
quently are those with smallest eigenvector components �12,
13, 2, and 9�. A close-up of the bursts can be seen in Fig.
23�b�.
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