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In a region in phase space where there is a chaotic saddle, all initial conditions will escape from it after a
transient with the exception of a set of points of zero Lebesgue measure. The action of an external noise makes
all trajectories escape faster. Attempting to avoid those escapes by applying a control smaller than noise seems
to be an impossible task. Here we show, however, that this goal is indeed possible, based on a geometrical
property found typically in this situation: the existence of a horseshoe. The horseshoe implies that there exist
what we call safe sets, which assures that there is a general strategy that allows one to keep trajectories inside
that region with control smaller than noise. We call this type of control partial control of chaos.
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INTRODUCTION

It is easy to find situations in nonlinear dynamics charac-
terized by the presence of a nonattractive chaotic set in phase
space, a chaotic saddle. Trajectories starting close to this set
behave chaotically for a while, before diverging from it and
settling into a periodic attractor; a phenomenon known as
transient chaos. In different situations it is desirable to keep
the trajectories close to the chaotic saddle, so different tech-
niques to achieve this goal have been designed. This type of
control is known as control of transient chaos �1–5�, but also
as chaos maintenance �6� or chaos preservation �7�.

All of these control techniques face two main difficulties:
the nonattractive nature of the chaotic saddle and eventually
the presence of environmental noise. In these situations, the
system can be described by the map pn+1= f�pn� �that can
also be a Poincaré map of a flow�. This map has a region Q
in phase space from which nearly all trajectories escape un-
der iterations, except those starting in the zero measure cha-
otic saddle �or its stable manifold�. If we add noise to the
system, all trajectories escape from Q. In this case, we can
model the dynamics by the equation pn+1= f�pn�+un, where
un is a bounded random perturbation, �un � �u0�0, that
plays the role of noise. In this situation all trajectories will
escape from Q under iterations, diverging thus from the cha-
otic saddle. A strategy to avoid those escapes is to apply an
adequate control rn to each iteration, that we assume is also
bounded by a positive constant �rn � �r0, in such a way that
the global dynamics is given by

�qn+1 = f�pn� + un

pn+1 = qn+1 + rn
. �1�

In this situation, if r0�u0, it is not difficult to find a strategy
such that trajectories can be kept inside Q, and thus close to
the saddle. In order to achieve this goal with a control such
that r0=u0, some of the strategies given in �1,2,4–7� can be
used. However, none of these strategies allow one to keep
trajectories inside Q if the control is smaller than the noise,
that is, if r0�u0. Only �3� gives a strategy that achieves this
goal with r0�u0, but it is only applicable for unimodal one-
dimensional maps.

The aim of this paper is to show that in a wide variety of
situations it is possible to keep trajectories close to the cha-
otic saddle with r0�u0. To do this, we make explicit use of
the insight that chaotic saddles are often due to the existence
of a horseshoe map acting on the region Q. We are going to
show that this particular geometrical action implies that there
is a particular set of points inside Q, the safe set, with an
interesting structure that we use here to design an advanta-
geous control strategy by which trajectories can be kept in-
side Q if r0�u0. Our control technique, though, does not
determine exactly where the trajectory will go in Q. Thus,
we call this type of control partial control of the system.

We want to emphasize that the existence of a horseshoe is
a common situation by the celebrated Smale-Birkhoff ho-
moclinic theorem �8,9�. This theorem states that if a map has
a transverse homoclinic point, then there is a �topological�
square Q such that some iterate of the map acts like a horse-
shoe map, whose typical action is shown in Fig. 1, and from
which the existence of a chaotic saddle can be derived. This
has been found to be a common situation that arises in the
dynamical systems used to model different physical phenom-
ena �9–15�. In principle, our technique can be applied in
different situations of interest. As an example of application,
we show here that our strategy can be applied to a paradig-
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FIG. 1. The action of a horseshoe map. � denotes the minimum
distance between the top and bottom sides of Q and f�Q�.
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matic system: a three-disk open billiard �16�. Some practical
issues concerning our control method are discussed at the
end of this paper.

HORSESHOE MAP

We are going to focus on how to keep trajectories close to
the saddle when the system is described by Eq. �1� and f acts
like a horseshoe map on a certain �topological� square Q.
The typical geometrical action of a horseshoe on a square Q
is shown in Fig. 1, which implies �8� that all trajectories
escape from Q under iterations except a zero-measure set,
that behaves chaotically. This is the typical situation where
transient chaos arises.

We are going to use this simple model to describe our
control strategy. But first, we can use it to briefly show that
classical control strategies can keep trajectories inside Q
only if r0=u0. For example, an option would be to use rn to
steer the trajectories to points with long-lived chaotic tran-
sients �here, a Cantor set of vertical segments�, as in �2�. But
the presence of noise implies that trajectories will fall u0
away from these points �i.e., if pn falls in the leftmost seg-
ment�, so we need r0=u0 to make it work. Another possibil-
ity would be to try to stabilize the trajectory in one of the
saddle-type periodic orbits embedded in the chaotic saddle
�1�. This can be done by using rn to place the trajectory of
each iteration on the stable manifold �that can be locally
approximated by a segment� of the saddle periodic orbit se-
lected. But again, here the presence of noise makes this pos-
sible only if r0=u0. Thus, these strategies would fail if
r0�u0.

With our strategy, though, we can partially control this
system with r0�u0, because for each iteration we are going
to use rn to steer the trajectory to the closest point of a
certain set inside Q, the safe set, with an advantageous geo-
metrical structure.

SAFE SETS

In general, for our partial control strategy different safe
sets are needed for different values of u0. Thus, we generate
a family of safe sets �Sj� that will allow us to partially control
the system for all u0�0. In Fig. 2 we can see how the �Sj�
are built. Consider the vertical segment that divides the
square Q into two equal rectangles. We call this set of points
S0. It is easy to see that points in S0 fall out of Q under one
iteration of f. Consider now the preimage of S0 in Q, that we
call S1. The geometrical action of the map f−1 implies that S1

consists of two vertical segments as shown in Fig. 2. We can
now define S2 as the preimage in Q of S1. The geometrical
action of f−1 implies that it consists of four vertical segments,
as we can also see in Fig. 2. Following this procedure we can
generate the set Sk for an arbitrarily high k as the preimage of
Sk−1 in Q.

Thus, we can see that each safe set Sk� �Sj� has the fol-
lowing properties:

�i� Sk consists of 2k vertical curves.
�ii� Any vertical curve of Sk has two adjacent vertical

curves of Sk+1 closer to it than any other curve of Sk.

�iii� The maximum distance between any of the 2k curves
of Sk and its two adjacent curves of Sk+1, denoted as �k, goes
to zero as k→�.

For the horseshoe map shown in Fig. 2, the safe sets are
made of vertical segments. We shall see later that for more
general horseshoe maps the safe sets, built analogously, are
made of vertical curves with these properties. Before we do
that, we will use this horseshoe map to explain our partial
control strategy.

PARTIAL CONTROL STRATEGY

Once we have generated the family of safe sets, we can
describe the partial control strategy in further detail. For sim-
plicity, we consider here that u0��, where � is the mini-
mum distance between the top and bottom sides of Q and
f�Q�, as shown in Fig. 1 �although an analogous strategy can
be implemented for u0���. Considering this, and given the
value of the noise amplitude u0, the key idea is to place the
initial condition on an adequate safe set Sk. Then, we just
need to apply the needed correction rn to each iteration to
make the point pn+1, given by Eq. �1�, lie on Sk. The geo-
metrical structure of the set Sk makes this possible even if we
apply a correction that is always smaller than u0.

The reason is the following. The adequate safe set Sk,
where the initial condition p0 must be placed, corresponds to
the smaller k value such that �k−1�u0 �which always exists
no matter how small u0 is by property �iii��. After this, by
definition f�p0� belongs to a curve of Sk−1, which has two
adjacent curves of Sk. The deviation induced by noise u0 will

f−1

f−1

FIG. 2. The set S0 �thick line� consists of a vertical segment in
Q. Its preimage in Q consists of two vertical segments that form the
safe set S1 �black line�. If we take the preimage in Q of S1, we
obtain the safe set S2 �gray�. The arrow with the label f−1 indicates
that we take the inverse map, and the arrow with the label “�”
indicates that we take the intersection with the square Q. Both Q
and f−1�Q� are also shown � - - �.
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make q1= f�p0�+u0 lie either in the region between those two
curves of Sk or outside of it. In the former case, and by
definition of �k−1, a correction r0 smaller than or equal to
�k−1 �and thus smaller than u0� will put the trajectory on a
segment of Sk. In the latter case, a correction smaller than u0
can place it back on Sk, as we can see in Fig. 3. Following
this procedure, the new point of the trajectory p1=q1+r0
= f�p0�+u0+r0 will again lie on Sk. Using the same strategy
the point p2 will again lie on Sk, and this can be repeated
forever. Thus, using this strategy we can always find a posi-
tive constant r0 such that even if �rn � �r0�u0, the trajectory
pn lies always somewhere on Sk and the system is partially
controlled forever.

MAPS WITH SAFE SETS

Considering the geometrical action of f, it is clear that for
any map sufficiently similar to a horseshoe map, we can
generate a family of safe sets �Sj� with the same properties as
those obtained for the map illustrated in Fig. 1. In fact, the
map f needs to fulfill two conditions: First, f−1�Q��Q must
contain two vertical strips, V1 and V2, and f�Q��Q must
contain two horizontal strips, H1 and H2, that are mapped
among themselves in a horseshoelike way f�Vi�=Hi,
f−1�Hi�=Vi, i=1,2 �in the way specified by the Conley-
Moser conditions �17��. Second, it needs to fulfill ��0,
where � is the minimum distance between the two horizontal
strips H1 and H2 and the top and bottom sides of Q. Under
these conditions, taking as S0 a vertical curve lying between
the two vertical strips V1 and V2, the sets �Sj� generated
inductively as

Sk = f−1�Sk−1 � �H1 � H2�� �2�

fulfill properties �i�–�iii�, so trajectories can be partially con-
trolled here even if r0�u0 following our strategy.

CONTROL OF AN OPEN BILLIARD

As an example of the application of our partial control
technique, we are going to show that it can be applied to the
three-disk open billiard �Fig. 4�. This paradigmatic chaotic
scattering system �16� consists of three disks separated by a
distance d, that we set d=2 /9. It is clear that for this system
nearly all of the trajectories diverge to infinity, and a natural
aim here would be to avoid such divergences using the par-
tial control strategy.

To do this, note that each bounce against disk 1 is char-
acterized by two angles ��n ,�n�	pn. In fact, there is a one-
to-one relation between a bounce and the next, if any, that
can be written as pn+1= f�pn�. We model the presence of
noise by adding a perturbation un each time that there is one
such bounce, after which we apply the control rn in order to
keep trajectories partially controlled. Thus, this problem can
be modeled by an equation analogous to Eq. �1�.

In Fig. 5�a� we can see the action of the map f on a
�topological� square Q. It is sufficiently similar to a horse-
shoe map in the sense specified before so we can build the
safe sets �Sj� using Eq. �2�. The sets S0, S1, and S2 are shown
in Fig. 5�a�, and they have the expected structure so that we
apply our partial control strategy. As an example, a partially
controlled trajectory on S2 for u0=0.05	 is shown in Fig.
5�b�, and the control applied to each bounce against ball 1 is
shown in Fig. 5�c�, which is clearly smaller than u0=0.05	.

PRACTICAL ISSUES

The detection of safe sets is an important issue. To do this,
a two-step procedure is needed: First, detect Q such that f�Q�
acts like a horseshoe map. After this, locate S0 and, using
either the explicit form of f when known or a �sufficiently
big� number of �conveniently denoised� time series, approxi-
mate the preimages needed to use Eq. �2� and compute the
safe sets. To locate the square Q, we can use two strategies
that will be detailed elsewhere: First, we need to experimen-
tally detect a saddle periodic orbit, experimentally approxi-
mate �18� its stable and unstable manifolds, and try to repro-
duce the Smale-Birkhoff theorem picture. The other option is
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FIG. 3. The partial control strategy, illustrated by zooming on Q.
The bounds of f�Q� �thick gray line� and of Q �dashed line� are
shown for the sake of clarity. We put the initial condition p0 in any
of the 2k vertical curves of the safe set Sk �light gray line� such that
u0��k−1. Then it is mapped to f�p0�, marked with a black dot,
belonging to a curve of Sk−1 �gray line�. The noise action can either
deviate it to a point between the two adjacent vertical curves of Sk

�gray dot�, or outside this region �light gray dot�. In both cases the
trajectory can be placed again on the safe set Sk by applying a
perturbation �r0 � �r0�u0, and this can be repeated forever.
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FIG. 4. The three-disk scattering problem. There is a one-to-one
relation between the angles of a collision ��n ,�n� against disk 1 and
those of the next, if any.
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to detect the chaotic saddle �using, i.e., the method proposed
in �19�� and use time series to approximate a square Q en-
closing it such that f�Q� acts like a horseshoe.

In any case �especially in experimental situations� safe
sets will only be detected with limited accuracy. On the other
hand, typically there will be some noise in the control ap-
plied rn each iteration. From our point of view, these two
situations are somehow equivalent and they can be modeled
by considering that for each iteration we apply a control rn�
+�rn, where ��rn � ��r0 is a random perturbation that plays
the role of “control noise.” But in this situation it is still
possible to keep trajectories bounded even when the control
applied is smaller than noise �provided that �r0 is small�.
Assume that for a given u0, for �r0=0, trajectories can be
partially controlled with r0�u0 on the safe set Sk. Assume
that our trajectory starts in pn, a point that is at most �r0
away from the adequate safe set Sk. Due to the noise action
and to the error in the control, qn+1= f�pn�+un is at most
u0+C�r0 away from Sk−1, where C�1 is a constant that
depends on the map f. Using a strategy analogous to the one
illustrated by Fig. 3, we can see that an accurate correction rn�
such that �rn� � �r0�	r0+C�r0 will be enough to place the
new point of the trajectory pn+1=qn+1+rn�+�rn at most �r0
away from the adequate safe set, and this can be repeated
forever. If �r0 is sufficiently small, r0� is smaller than u0, as
claimed.

CONCLUSIONS

In this paper we have outlined a technique to partially
control a chaotic system. This technique allows one to keep
trajectories in a region of the phase space containing a cha-
otic saddle, even if the control applied is smaller than the
noise amplitude. The main reason for this counterintuitive
situation is the existence of a geometrical structure, the safe
sets, which are used to keep trajectories inside the prescribed
region.
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FIG. 5. Square Q �dashed�, its image under f �gray�, and the sets
S0 �thick black�, S1 �black�, and S2 �gray� for the three-disk scatter-
ing problem �a�. A partially controlled trajectory when u0=0.05	
�b� and the control applied �rn� each bounce against the disk 1 �c�,
which clearly verifies �rn � �u0 �dashed line� as expected.
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