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In this paper we study how to avoid escapes in open dynamical systems in the presence of dissipation and
forcing, as it occurs in realistic physical situations. We use as a prototype model the Helmholtz oscillator,
which is the simplest nonlinear oscillator with escapes. For some parameter values, this oscillator presents a
critical value of the forcing for which all particles escape from its single well. By using the phase control
technique, weakly changing the shape of the potential via a periodic perturbation of suitable phase �, we avoid
the escapes in different regions of the phase space. We provide numerical evidence, heuristic arguments, and an
experimental implementation in an electronic circuit of this phenomenon. Finally, we expect that this method
might be useful for avoiding escapes in more complicated physical situations.
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I. INTRODUCTION

Open dynamical systems are typical in nature. In an open
dynamical system, there is a region in phase space where
nearly all the trajectories diverge asymptotically to infinity.
They have attracted a great deal of attention in the context of
transient chaos �1� and, particularly, in chaotic scattering
problems �2–5�, among others. The widespread nature of this
type of dynamical systems suggests that there are situations
in which we might be interested in avoiding these diver-
gences to infinity, that we refer to as escapes. In order to
define what is an escape we can imagine the following sce-
nario. We suppose that a particle is under the influence of
some potential or massive object. Under this situation, we
say that a dynamical system has an escape whenever this
particle crosses a certain boundary and never comes back �6�.

Since the pioneering work on controlling chaos due to
Ott, Grebogi, and Yorke �OGY� �7�, different control
schemes have been proposed that allow one to obtain a de-
sired response from a dynamical system by applying some
small but accurately chosen perturbations. In this context,
some techniques that allow avoiding escapes in open dy-
namical systems presenting transient chaos have been pro-
posed, with applications to many different situations in phys-
ics and engineering �see Ref. �8�, and references therein�.

The methods stated to control chaos can be classified in
feedback and nonfeedback methods �9�, depending on how
they interact with the system. Feedback methods of chaos
control, as the celebrated OGY �7�, stabilize one of the un-
stable orbits that lie in the chaotic attractor by using small
state-dependent perturbations into the system. However, in
experimental implementations, the fast response that these
methods require cannot usually be provided. For these situ-
ations, nonfeedback methods are more useful. Nonfeedback
methods have been mainly used to suppress chaos in periodi-

cally driven dynamical systems. Among them a broad class
is represented by the classical nonlinear oscillators whose
general equation reads

ẍ + �ẋ +
dV

dx
= F cos��t� , �1�

where � is the damping coefficient, V�x� is the potential
function responsible for the restoring force acting on the sys-
tem, and F cos��t� is an external periodic forcing. Obvi-
ously, depending on the potential V�x� we have different
kinds of oscillators.

The main idea of these nonfeedback methods is to apply a
harmonic perturbation either to some of the parameters of the
system or as an additional forcing, being its effectiveness
shown numerically and experimentally in different works
�10,11�. In Ref. �11�, it was observed that the phase differ-
ence � between the periodic forcing and the perturbation had
certain influence on the dynamical behavior of the system.
Furthermore, in Ref. �12�, the authors have shown that �
plays a crucial role on the global dynamics of the system.
This control technique, where � acts as a fixed control pa-
rameter, is called “phase control of chaos” and it has been
used in Refs. �13,14�.

Our aim in this paper is to show that the phase control
method can be applied to prevent escapes in open dynamical
systems, as well. We use the Helmholtz oscillator as a para-
digm of this type of systems, and we show here that the
phase control method is also a powerful tool to control and
avoid escapes. The authors focused on the transient chaos
and its lifetime using practical Lyapunov exponents. Other
works on the study of both escapes in a potential barrier and
the estimation of the average escape times in a driven model
in a noisy environment are described in Refs. �15,16�. In Ref.
�15� the authors focused on the influence of noise on the
escapes in potential barriers studying both instantaneous and
average escape times by using path-integral methods. Fi-
nally, Ref. �16� is oriented in the analysis of the distribution
of escape times out of a metastable well for a stochastic
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model driven by a large-amplitude sinusoidal time-dependent
field. These last two works are related with our paper since
they study escapes from a potential barrier but they are not in
the control framework.

This paper is organized as follows. In Sec. II we present
the Helmholtz oscillator and we give a description of our
implementation of the phase control. Section III presents nu-
merical simulations showing that the phase control can avoid
escapes in many different situations. Some heuristic argu-
ments explaining how this method can tame the escapes in
this system are given in Sec. IV. Finally, we give experimen-
tal evidence of the validity and robustness of this method by
implementing it on an electronic circuit, as described in Sec.
V. Conclusions and discussions of the results are presented in
Sec. VI.

II. MODEL DESCRIPTION

A paradigmatic example of a dynamical system with es-
capes is the Helmholtz oscillator. This is the simplest way to
model physical phenomena that present the ability to escape
from a potential well. This nonlinear oscillator describes the
motion of a unit mass particle in a cubic potential V�x�
=ax2 /2+bx3 /3, which eventually can be externally per-
turbed by a sinusoidal driving. By adding a linear dissipative
force, the equation of motion is

ẍ + �ẋ + ax + bx2 = F cos��t� , �2�

where � represents the damping coefficient, F the forcing
amplitude, � the forcing frequency, and a and b determine
the shape of the potential.

We fix the parameters all throughout this paper to be �
=0.1, �=1, and a=b=−1, for which the potential reads

V�x� = −
x2

2
−

x3

3
. �3�

This potential has a maximum at x=0 and a minimum at x
=−1 as shown in Fig. 1. For this choice of parameter values
the equation of motion is

ẍ + 0.1ẋ − x − x2 = F cos t . �4�

Note that the only free parameter is the forcing amplitude F.
This simple system has been studied previously in several
works. For instance, a thorough analysis about its dynamics
can be found in Ref. �19�. and work on the integrability and
symmetry breaking of this oscillator is presented in Refs.
�20,21�.

This system presents different behaviors depending on the
value of the forcing amplitude F. For example, we can see a
plot of the basins of attraction for this system for F=0.12
and F=0.21 in Fig. 2. In Fig. 2�b�, which corresponds to the
basin of attraction for F=0.12, a bounded attractor �inside
the cyan �pale gray� region� coexists with escaping orbits
�blue �cyan� dots�. The attractor corresponds to a bounded
orbit, which can be seen in Fig. 3. However, if we take an
initial condition from any point of the basin of attraction of
Fig. 2�a�, the resulting trajectory diverges to infinity, or it
simply escapes. In general, a trajectory escapes from the well
when it crosses with positive velocity the maximum of the
potential situated at x=0 �see Fig. 1� and never comes back.
The time spent by a certain particle which is situated inside
the well until crossing the maximum of the potential is called
the escape time T.

The basins of attraction for F=0.21, shown in Fig. 2�a�,
show that for this value of the forcing all trajectories escape.
This is the situation that we want to control, and this is the
value of the forcing F that we consider in the remainder of
this paper. Our main goal here is to avoid escapes for the
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FIG. 1. Plot of the cubic potential V�x�=− x2
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FIG. 2. �Color online� �a� Basin of attraction of the Helmholtz
oscillator ẍ+0.1ẋ−x−x2=0.21 cos t. We denote blue �black� dots as
the set of points that escape from the potential well, and cyan �pale
gray� dots as the points that fall into the attractor�s�. Note that in
this picture all initial conditions escape after some period of time.
�b� Basin of attraction of the Helmholtz oscillator ẍ+0.1ẋ−x−x2

=0.12 cos t. Here the basins in phase space have a fractal structure
where cyan points �pale gray� denote the set of points falling into
the attractors �23�.
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FIG. 3. �Color online� This figure shows the phase space trajec-
tory of the Helmholtz oscillator ẍ+0.1ẋ−x−x2=0.12 cos t with an
initial condition at the point �x0 , ẋ0�= �−0.5,−0.1�, indicated by a
cross. The dark color indicates the attractor. �Notice that y= ẋ.�
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largest number of initial conditions using the phase control
method.

There are different ways to implement the phase control:
either by adding a second periodic forcing �12� or by per-
turbing harmonically one of the parameters of the system
�13�. After this, we just need to vary the phase � in search of
the desired dynamical behavior. Now we introduce some ar-
guments in order to understand better what is the best strat-
egy in our case.

Suppose we have particles oscillating inside a potential
well and an external forcing is acting. These particles can
remain inside the well or escape from it depending on the
amplitude forcing. A suitable way to modify the dynamical
behavior of the particles inside the well is by modifying the
shape of the potential well. Following this reasoning, we
introduce, as in Ref. �13�, a parametric perturbation in the
quadratic term of the equation of motion

ẍ + 0.1ẋ − x − �1 + � cos�t + ���x2 = F cos��t� , �5�

where � is the modulation amplitude and � is the phase
difference with the forcing that we simply call the phase.
Note that we are using for the parametric perturbation a reso-
nant frequency with the forcing amplitude, which is a com-
mon assumption for this type of nonfeedback control meth-
ods. The effects of a frequency mismatch, which might
appear in some experimental situations, will be discussed in
Sec. V.

The modulation term �1+� cos�t+��� can be interpreted
as a modulation of the potential of the system, which can be
rewritten as Vpert�x , t�=−x2 /2− �1+� cos�t+���x3 /3. In fact,
this perturbed potential has a maximum on x=0, for which
Vpert�0, t�=0. The potential is also zero for xzero�t�
=− 3

2�1+� cos�t+��� , so the width of the potential is ��xzero�t��
= 3

2�1+� cos�t+��� . This perturbed potential presents an oscillat-
ing minimum on xmin�t�=− 1

1+� cos�t+�� , for which the value of
this perturbed potential is �Vmin�t�=− 1

6�1+� cos�t+���2 , so it

oscillates around the unperturbed value V�−1�=−1 /6.

III. NUMERICAL EVIDENCE TO AVOID ESCAPES
USING PHASE CONTROL

In this section we provide numerical evidence showing
that by using an adequate value of � and �, we can avoid
escapes for this system. A first numerical evidence about the
effect of the control in the system can be observed in Fig. 4.
Figure 4�a� shows a typical escaping trajectory for F=0.21
with initial condition at �x0 , ẋ0�= �−0.5,−0.1�, in the absence
of control. If we introduce the control, say �=0.05, and a
value of phase �=� the particle does not escape from the
well, as is observed in Fig. 4�b�.

We have explored this phenomenon in detail numerically.
To do this, we have performed a numerical integration of
trajectories whose initial conditions belong to a 60�60 grid
in the phase space region x� �−1.5,0.5�, ẋ� �−0.7,0.7� for
different combinations of � and �, and observed which of
them escape. In the diagrams plotted in Figs. 5�a�–5�c� the
rates of particles that do not escape as a function of � and �
are shown. Note that in some regions of these diagrams, for

example for ��0.1 and �=�, more than 50% of the par-
ticles are kept bounded. This is quite surprising since a value
of � of this order has a very small effect on the shape of the
well. However, if we take another value of the phase �, such
as �=0, nearly all trajectories escape. Thus the role of the
phase � is crucial if we want to keep the trajectories
bounded.

This modulation can be quantified as follows. Assuming
that we set cos�t+��=1, the depth of the well becomes �V
= 1

6�1+��2 and the width �x= 3
2�1+�� . Note that the width of the

potential �see Fig. 1� is the distance between the local maxi-
mum xmax and the point xmin=− 3

2�1+�� . The effect of the
modulation in these quantities is summarized in Table I. We
observe that by changing only a little bit the shape of the
potential we can control escapes in some specific regions of
phase space.

The typical basins of attraction of the Helmholtz oscillator
after having applied the phase control for F=0.21, �=� and
modulation amplitudes �=0.05, �=0.055, �=0.1, and �
=0.15, respectively, are plotted in Fig. 6. Observe the strong
effects of this term � and the phase � on the basin of attrac-
tion of bounded orbits, whose area grows drastically with �
once we choose a suitable value of the phase �=�. This is
due to the underlying phenomenon consisting in a bifurca-
tion in the basins of attraction from fractal to nonfractal due
to the strong effect of the attractor�s� when the modulation
amplitude � increases. As we show in Fig. 7�a� this phenom-
enon takes place for a value of �=�c�0.05 and this transi-
tion occurs between Fig. 6 �top left� and Fig. 6 �top right�.
This means that for the value �c a rapid decrease in the
fractal dimension is expected and also an increase of the area
of the basin of attraction �marked in cyan �pale gray��. To
explain this, notice that as � increases, following the argu-
ments that will be given in Sec. IV, the effect is analogous to
have a deeper potential, so the system loses its unpredictabil-
ity because most of the particles are trapped in the well �17�.
This loss of unpredictability implies that the basin bound-
aries become smoother and therefore a decrease in the fractal
dimension causes this bifurcation. Besides, this phenomenon
occurs because the strong effect of the attractor�s� once � is
above its critical value �c. This produces a ratio of particles
that falls as the attractor�s� increase�s� and therefore the area
of the basin of attraction, as shown clearly in Fig. 6 �top right
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FIG. 4. �Color online� �a� Single trajectory for the Helmholtz
oscillator ẍ+0.1ẋ−x−x2=0.21 cos t, with initial condition at the
point �x0 , ẋ0�= �−0.5,−0.1� as indicated by the cross. The particle
escapes after a lapse of time. �b� Single trajectory �as in Fig. 4�a��
for the Helmholtz oscillator with control, ẍ+0.1ẋ−x− �1
+0.05 cos�t+���x2=0.21 cos t. The perturbation keeps the particle
in the well forever. �Notice that y= ẋ.�
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and top left�. Considering this, we speculate that this phe-
nomenon might be related with a basin boundary metamor-
phosis �18�. However, to elucidate this point, which might
not be trivial due to the coexistence of more than two attrac-
tors, is out of the scope of the present work. From a purely
control point of view, considering that our aim in this work is
to prevent escapes of the trajectories, we want to emphasize
that the important feature that these calculations reveal is
that, for �c, there is a sudden increase in the area of the
basins of attraction corresponding to bounded orbits. This is
important in this context as long as it implies that the fraction
of initial conditions that will not escape for this system also
increases drastically for ���c. A similar phenomenon of the
Helmholtz oscillator produced when we vary the dissipation
parameter instead of the modulation amplitude is thoroughly
studied in Ref. �19�.

In order to complete our numerical study we have esti-
mated the escape times of the particles for different initial
conditions fixing the modulation amplitude � and the phase
� separately. Notice that a certain percentage of the particles
never escapes, having infinite escape times. Since it is not
possible to numerically compute most of the escape times,
the times of integration have been bounded. For this purpose,
we have stopped the integration times to 3�104 time units
because it is large enough to suppose that the particles are
kept forever inside the well and never escape from it. We
have plotted in Figs. 7�a� and 7�b� the behavior of the aver-
age escape times T for 100 different initial conditions chosen
in the region x� �−1.5,0� and for ẋ=0. In Fig. 7�a� we fixed
the phase to �=� increasing the value of � from 0 to 0.1.
Here, we can observe some fluctuations in the escape times
for small values of � that do not obey any scaling law be-
tween T and �. This fact is due to the effects of the appear-
ance and disappearance of different attractors in the system
as shown in Fig. 6. Once the modulation amplitude � reaches
a critical value �c�0.05 �this is clearly shown in Fig. 7�a��,
T has a steep increase limited by the integration time tmax.
This result is in agreement with the basin bifurcation phe-
nomenon explained in the previous paragraph and shown in
Figs. 6�a� and 6�b�. On the other hand, we have tested that, as
tmax is set above 300 time units �by testing different integra-
tion times up to 3�104� the plot of T versus � is unmodified.
This means that for �	�c, only a fraction of the initial con-
ditions yields confined trajectories and the complementary
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FIG. 5. �Color online� Color plot of the fraction of trajectories with initial conditions in the region �−1.5,0�� �−0.7,0.7� that escape to
infinity for different values of � and �. Note that an adequate choice of the phase � is critical if we are interested in avoiding escapes, and
that apparently the optimal values of the phase for this purpose are located around �=�.

TABLE I. Variation of the width �x and depth �V of the well as
a function of �. The percentages %�x and %�V indicate the per-
centage variation in the width and the depth of the potential well for
the chosen values of �.

� �x �V %�x %�V

0 1.50 0.16 0 0

0.05 1.43 0.15 4.5 9.5

0.10 1.36 0.14 8.8 15

0.15 1.31 0.13 11.6 21
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fraction has escaped at various times less than tmax. Thus, T
results as a weighted sum, where the confined fraction enters
with the value tmax. Note that, in Fig. 7�a�, for �
�c, about
90% of the initial conditions yield confined trajectories and
only 10% escape at times less than tmax and, for �	�c, the
irregular T versus � profile is due to the fractal structure of
the basins, as shown in Fig. 6 �top left�. Figure 7�b� shows,
for �=0.1, the crucial role of the phase � in the escape times

showing clearly that its optimal value takes place at �opt

��, where the confined trajectories are clustered around the
optimal value �opt. Finally, we have to indicate that the ar-
guments given in the last two figures provide more numerical
support and robustness to the results obtained during this
section.
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FIG. 6. �Color online� Basins of attraction of the perturbed Helmholtz oscillator ẍ+0.1ẋ−x− �1+� cos�t+���x2=0.21 cos t, with modu-
lation amplitudes �=0.05 �top left�, �=0.055 �top right�, �=0.1 �bottom left�, and �=0.15 �bottom right�, respectively. Blue �black� dots
denote the points that escape from the potential well and cyan �pale gray� dots the points that fall into the attractor�s� �23�.
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FIG. 7. �a� Plot of the average escape times T versus the modulation amplitude � for a fixed value of the phase �=� and 100 different
initial conditions chosen in the region x� �−1.5,0� and ẋ=0. In this figure we can observe some fluctuations of the average escape times for
low values of � and a rapid increasing to infinity �the integration time� for the escape times once that � is large enough �above its critical
value �c�0.05�. �b� Plot of the average escape times T versus the phase � for a fixed value of the modulation amplitude �=0.1 and 100
different initial conditions chosen in the region x� �−1.5,0� and ẋ=0. The role of the phase is crucial to avoid escapes since in the region
of values of phase ��� the escape times are the highest.
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IV. HEURISTIC ARGUMENTS FOR THE CONTROL
OF ESCAPES

We have shown numerically that the harmonic modulation
of the potential well with a suitable value of the phase � are
crucial to avoid escapes now. Now we provide a heuristic
theory to explain the role of the phase � in the control of
escapes. We have seen that the effect of the perturbation in
this system is analogous to applying a perturbation on the
potential. In fact, the width of the perturbed potential well
oscillates in time as ��xzero�t��=

3
2�1+� cos�t+��� , and the depth

of this perturbed potential well also oscillates around the
unperturbed value, according to the expression �Vmin�t�
=− 1

6�1+� cos�t+���2 .

The maximum value of the forcing in the positive direc-
tion of the x axis corresponds to t=0, for which the value of
the forcing is F�t�=Fmax cos �t, being F=Fmax. For this
value F=Fmax, the deeper the potential well is, the more
difficult is for the particles to escape. It takes place when
�=� for which the minimum of the potential reaches its
minimum value and the depth of the potential is maximum,
��V�= 1

6�1−��2 . Furthermore, for this situation, the width of the
potential reaches its maximum value ��xzero�=

3
2�1−�� and it

makes as a consequence the possibility to escape more diffi-
cult. Summarizing, these simple arguments in which �=�
show that the potential well reaches the maximum values of
both, depth and width, becoming more difficult for the par-
ticles to escape from the well and even keeping them inside
it and they can never escape.

Note that this heuristic argument agrees well with the op-
timal value of the phase found numerically. This idea is also
confirmed by the experiments shown in next section, where
this control method has been implemented in an electronic
circuit that mimics the dynamics of our system.

V. EXPERIMENTAL EVIDENCE USING
AN ELECTRONIC CIRCUIT

In this section our goal is to test our control technique in
a laboratory system, and to confirm what we have observed
numerically, i.e., that an adequate value of the phase differ-
ence � between the main driving and the controlling pertur-
bation can avoid escapes in the system. With this purpose we
have designed and built the electronic circuit sketched in Fig.
8. This circuit mimics the dynamics of the Helmholtz oscil-
lator. A similar circuit was used in Ref. �22�. Our circuit
consists of an electronic analog simulator implemented using
commercial semiconductor devices. Vd is the driving voltage
amplitude, applied by means of the generator Gd, while Vc is
the control voltage amplitude applied by means of an arbi-
trary function generator TABOR 8024. The two sinusoidal
signals Vd and Vc have the same frequency and the value of
the phase � is fixed for t=0, so it is constant in the experi-
ment. Thus, following the main idea of the phase control
scheme, once the phase � is chosen no further adjustment of
its value needs to be done during the experiment. The inte-
grators I1 and I2 have been implemented using Linear Tech-
nology LT1114CN four quadrant operational amplifiers,
while the multipliers are Analog Devices MLT04. The acqui-

sition of the experimental data has been performed by means
of a TEKTRONIX TDS 7104 digital oscilloscope connected
to a personal computer. Under suitable time scale normaliza-
tion the dynamics of this circuit is governed by Eq. �5�,
where the parameters are �=0.1, F=0.2, and �=1, and the
amplitude of the applied control is ��0.03. The voltages of
the circuit Vx and Vy can be associated to x and ẋ, respec-
tively.

Different trajectories in phase space observed experimen-
tally, corresponding to different values of the main driving
amplitude Vd, are shown in Fig. 9. The chaotic attractor that
can be observed for sufficiently low values of Vd is shown in
Fig. 9�a�. A diverging trajectory can be seen in Fig. 9�b�.
Finally, a periodic orbit observed for smaller values of the
driving amplitude Vd smaller than the one leading to chaotic
motion is shown in Fig. 9�c�.

In order to test the validity of the control technique, we
have performed different bifurcation diagrams of the system
for different values of the amplitude of the perturbation � and
for a fixed value of the phase �. In these bifurcation dia-
grams we capture the dynamics of the system for different
values of the amplitude of the main forcing Vd. These dia-
grams have been performed by slowly varying the value of

FIG. 8. �Color online� Layout of the electronic circuit. I: inte-
grators; R: resistors; C: capacitors; X: multipliers; Vd: sinusoidal
driving signal; Vc: sinusoidal control signal. Under a suitable time
normalization, the dynamics is ruled by the equation ẍ+0.1ẋ−x
− �1+� cos�t+���x2=0.21 cos t, where x�Vx and ẋ�Vy. The pa-
rameters � ,� are fixed by the arbitrary wave form generator Vc. The
numerical values are R1=100 K, R2=1 M, R3=2 K, R4

=5 K, and C1=10 nF.
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the forcing and by reporting the maxima of the resulting long
time series. This way we can see the behavior of the system
for different values of the forcing amplitude. In Fig. 10�a� we
can see the experimental bifurcation diagram in the absence
of any external perturbations ��=0�. This diagram clearly
shows a transition to chaos through a period-doubling cas-
cade, after which there is a boundary crisis by which the
chaotic attractor disappears and the particles escape to the

infinity. The situation changes if we apply a perturbation
with the suitable fixed value of the phase �=�. The resulting
bifurcation diagram, which is shown in Fig. 10�b�, shows
that the boundary crisis and the divergence of the trajectories
takes place for a value of the driving amplitude that is higher
than in the unperturbed case. This implies that trajectories
that would typically diverge to infinity are kept bounded for
this value of �.

Thus, our experiment confirms that an adequate choice of
the phase � becomes crucial as well in this experiment. In
Fig. 10�c� we can see that with fixed value of the phase �
=0 the attractor is destroyed for a value of the main driving
Vd sensibly smaller than the one reported in the unperturbed
case. Thus, we can see once more that the value of � plays a
key role in the global dynamics of the system.

From an experimental point of view, it is interesting to
consider which would be the effect of a mismatch between
the frequency of the main driving and the frequency of the
controlling perturbation, a situation that may arise in some
experimental implementations. Considering that mismatch,
the controlling perturbation applied to the system can be
written as � cos���+���t+�opt�, where ���1 would be the
value of the frequency mismatch. This perturbation can be
rewritten as � cos��t+��t��, where ��t���opt+��t is the
new phase difference that slowly varies in time. However, as
long as the phase ��t� remains in the interval for which
trajectories remain bounded �detected numerically in Sec.
III� divergences are not expected, and the smaller �� is the
longer our phase control method will keep the trajectories
bounded. Thus, in the presence of a frequency mismatch our
scheme allows us to keep trajectories bounded for a period of

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

b)

EXIT

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

c)

FIG. 9. Single trajectories in the experimental electronic circuit
simulating the Helmholtz oscillator where we can find different
dynamics. �a� Chaotic attractor. �b� Escaping trajectory. �c� Periodic
orbit. �Notice that y= ẋ.�
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FIG. 10. Experimental bifurca-
tion diagrams obtained from the
circuit. These diagrams represent
the variable x against the driving
voltage Vd. We can observe differ-
ent boundary crises: �a� without
control, �b� for �=0.05 and �=�,
�c� for �=0.05 and �=0. In every
figure we can test that the modu-
lation amplitude � and an accurate
value of the phase �=� are fun-
damental for the control of es-
capes. Observe that in all figures
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control, the point in the bifurca-
tion diagram in which the bound-
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time that scales as 1 /��. This feature is shared by most
control methods based on the application of a small har-
monic perturbation to the system.

Finally, we want to emphasize that the implementation of
our control scheme on an electronic circuit provides more
evidence about its robustness. For example, we have to no-
tice that imperfections in the circuit’s multipliers imply that
the potential that we obtain is not exactly a cubic potential
like the one that we have analyzed numerically. On the other
hand, environmental noise is present in the circuit, as in most
realistic experimental situations. But, in spite of all this, we
have observed that most of the important features of our
control scheme that were observed numerically have been
recovered in its implementation on the circuit. This makes us
think that the phase control method is a versatile technique
that can be applied to avoid escapes in a wide variety of
situations.

VI. CONCLUSIONS AND DISCUSSION

In conclusion, by using as a prototype model the Helm-
holtz oscillator and the phase control technique, we have
shown that an adequate parametric perturbation in the qua-
dratic term of the equation of motion of this oscillator can
avoid escapes in some regions in phase space. We provide
numerical support and heuristic arguments for which we con-

trol the orbits in the well, avoiding the escapes from it by
simply changing slightly the depth and width of the well and
by using a suitable value of the phase �. We have shown the
robustness and the general nature of this method in the sense
that the experimental implementation of a circuit confirms
the same results. In the context of physical situations, the
problems with escapes are typical in chaotic scattering prob-
lems, which have applications in many fields in physics. We
expect this work to be useful for a better understanding of
systems with escapes because our system is a paradigmatic
one-dimensional system and the results can be, in principle,
generalized for higher dimensional problems and any open
dynamical system.
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