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Control of Transient Chaos Using Safe Sets in
Simple Dynamical Systems

Samuel Zambrano and Miguel A. F. Sanjuán

Abstract. Transient chaos is nearly as ubiquitous as chaos itself, and it is a
manifestation of the existence of a nonattractive chaotic set: a chaotic saddle.
In some situations it might be desirable to keep the trajectories of a dynamical
system with transient chaos far from the attractor and close to this set but its
nonattractive nature, the complex dynamics associated with it and eventually
the presence of noise may difficult this task. Assume, as an extra difficulty,
that our action on the system is bounded and smaller than the action of noise.
In such a situation this might seem impossible. However, we will show that in
a variety of one dimensional maps this is possible indeed. The control strategy
is based on the existence of a set, the safe set, with interesting properties that
are due to the same conditions that imply the existence of a chaotic saddle
in the system. An example of application of our control technique with the
logistic map and some numerical simulations confirming our results are also
presented in this work.
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1. Introduction

Some dynamical systems are not chaotic but they present a nonattractive invariant
set where the dynamics is chaotic. A manifestation of the existence of that set,
usually referred to as chaotic saddle, is the observation of chaotic transients: short
periods of time in which the dynamics of a trajectory is chaotic, before it settles
to an attractor [2]. Transient chaos is nearly as ubiquitous as chaos itself, and in
different contexts [3] it might be desirable to keep the system close to the chaotic
saddle in order to avoid the attractor.

Different techniques have been proposed in recent years to achieve this goal.
A method inspired in the OGY chaos control scheme [5], based on stabilization of
the system around one of the unstable periodic orbits that lie in the chaotic saddle,
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has shown its effectiveness [8]. Other authors have proposed a method based on
applying small perturbations to the return map [3] of continuous-time dynamical
systems.

The nonattracting nature of the chaotic saddle, and the erratic behavior of
the trajectories that pass nearby, is the main difficulty for the control task. If
the system is also affected by noise, staying close to the chaotic saddle might
be even more difficult. Imagine, as an extra difficulty, that our action on the
system is limited to be smaller than the action of noise. Then, it would seem that
it is impossible to remain close to the nonattracting chaotic set. However, in a
recent paper Aguirre et al. [1] showed that this is indeed possible for the simpler
dynamical system with a chaotic saddle and escapes to infinity: the slope three
tent map.

The aim of this work is to generalize the results obtained in [1] to a more
general class of one dimensional maps presenting a chaotic saddle. We are going to
show that, as in [1], paradoxically the same geometry giving rise to the existence
of a chaotic saddle will help us to design a strategy to keep the trajectory close to
the nonattracting chaotic set by using a control smaller than noise.

The structure of the paper is the following. In Section 2 we state the problem
in a precise way and we enounce the main result of this work as a theorem. In
Section 3 we present this particular set of points that will help us to design our
control strategy, the safe set, and we give as a proposition its main properties.
Once we have defined this set and its properties, in Section 4 we prove our main
result. Finally, in Section 5 we show an example of application of our technique
with the well known logistic map and in Section 6 we draw the main conclusions
of our work.

2. Problem statement and main result

First we will define in a precise way the class of dynamical systems that we deal
with. We consider one dimensional maps xn+1 = f(xn) where f : R → R is a map
that satisfies the following conditions.

(i) There is an interval I = [a, b] such that I ⊂ f(I). The interval I can be
divided in three subintervals A1 = [a, x−], A0 = (x−, x+), and A2 = [x+, b]
such that f(A1) = f(A2) = I and f(A0) 6∈ I.

(ii) The map f is continuous and differentiable in A1∪A2 and for all x0 ∈ A1∪A2,
|f ′(x0)| > 1.

(iii) For all x0 6∈ I, |fn(x0)| → ∞ as n → ∞.

From conditions (i)–(iii) it can be proved (see [6]) that there is a nonattractive
Cantor-like set Λ ⊂ A1 ∪ A2 where the dynamics is topologically equivalent to a
shift on two symbols, that is, there is a chaotic saddle. We must point out that
condition (ii) is not a necessary condition for the existence of a chaotic saddle.
However it makes both the proof of the existence of Λ (see [6]) and the calculations
needed in this paper much easier. Note that the slope three tent map xn+1 =
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Figure 1. Four possible configurations of a map xn+1 = f(xn)
satisfiying conditions (i)–(iii). Note that each point in I has just
one preimage in A1 and other in A2

3(1 − |xn|) − 1 studied in [1] satisfies these conditions. For this particular case,
Λ is like the classical middle-third Cantor set constructed using as the starting
segment the [−1, 1] interval.

On the other hand, condition (iii) does also imply that for all x0 6∈ Λ
|fk(x0)| → ∞ for k → ∞. If we would have established that all trajectories
starting out of I settle to any other type of attractor out of I the existence of a
chaotic saddle Λ in A1 ∪ A2 could be established in the same manner. However,
we have opted to fix condition (iii) both for simplicity and to make a certain anal-
ogy with some chaotic scattering problems, a context in which control of transient
chaos is important. For this kind of problems it is well-known [9] that all trajec-
tories except those starting either on a zero-measure invariant set or in its stable
manifold diverge from the scattering region to infinity. The same thing applies to
the system that we are dealing with: in absence of control only the trajectories
starting in Λ will not diverge to infinity under iterations of f .
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Once we have defined the type of dynamical system that we will deal with
in this letter, we can define in a more precise way the type of situation that
we want to control. When controlling a certain dynamical system, specially a
physical system, there are two main ingredients that must be considered: first,
the deterministic component of its dynamics, and second the eventual presence
of a random deviation from the expected deterministic dynamics (the noise). We
consider here systems where the deterministic part of the dynamics is modeled by
a map f : R → R that satisfies conditions (i)–(iii), so we are considering a system
that presents transient chaos. Thus, starting from a point xn the dynamics of the
system takes it to

x′ = f(xn) .

Now we introduce in our model an additive perturbation playing the role of
noise, un, that deviates the trajectory from its deterministic path, taking it to

x′′ = x′ + un = f(xn) + un .

We assume that un is a random number such that |un| ≤ u0, where u0 > 0.
As we said before, in the system considered nearly all the trajectories (except

those lying in Λ) will diverge to infinity in absence of noise. With noise, it is clear
that all the trajectories will diverge to infinity. Our objective here is to avoid
such divergence to infinity. To do this, we can apply a small perturbation rn each
iteration to control the system’s dynamics. Thus, the final state of the system is
the result of the action of the deterministic dynamics, modeled by f , of noise,
modeled by un, and of the small control applied to the system, modeled by rn.
The control rn is also bounded by a positive constant r0, so |rn| < r0 for all n.
Thus, each time step, the evolution of the system is given by

xn+1 = x′′ + rn = f(xn) + un + rn . (2.1)

Our aim here is to show that, contrary to what intuition may say, there is a way to
keep the trajectories in A1∪A2 (or “close” to the chaotic saddle Λ) even if r0 < u0.
Or, speaking in physical terms, if the control is smaller than noise. To do this, the
only thing that we need is to fix the initial condition x0 accurately. After this,
by applying a wisely chosen perturbation rn each time step, with |rn| < r0 < u0

trajectories can be kept bounded ad infinitum. This is the main result of this work
and it can be stated as follows:

Theorem 2.1 (Main result). For a dynamical system like the one given by eq. (2.1),
where f satisfies conditions (i)–(iii), for all u0 > 0 there is a 0 < r0 < u0 such

that xn ∈ A1 ∪ A2 for all n.

This theorem was proved in the particular case of f(x) being the slope three
tent map in [1]. Here we prove this theorem for a wider class of one-dimensional
maps. As in [1], the key element for this control strategy is the existence of a set
with very interesting properties: the safe set. In the next section we will define this
set and we will show that its properties can be derived from the same conditions
(i)–(iii) that implied the existence of a chaotic saddle. Thus, the main idea of this
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work is that, contrarily to what intuition might say, the existence of a chaotic
saddle does not add an extra degree of difficulty but, instead, it can be of great
help for the control task.

3. The safe set and its structure

In this section we define the safe set and explain and prove its main properties.
We first define the following maps:

Definition 3.1. Let f be a map satisfying conditions (i)–(iii). Then Fi ≡ f−1(x)∩Ai

for i = 1, 2.

These two maps have a first essential property that will allow us to define
the safe sets:

Proposition 3.2. The map Fi : I → Ai is a one-to-one map for i = 1, 2.

Proof. From conditions (i) and (ii) it is clear that f is invertible both in A1 and
in A2, so Fi : I → Ai is one to one. In other words, any point in I has just one
preimage in A1 and just one preimage in A2. This can be clearly observed in the
examples shown in Fig. 1. ¤

Thus, given a point z ∈ I, its preimage in A1 is F1(z), and its preimage in
A2 is F2(z). We can now define the safe sets of order k.

Definition 3.3. Let x0
1 be the middle point of A0, that will be called the safe point

of order 0. Thus, we can define inductively the safe points of order k, {xk
i }2

k

i=1 as:

{

xk
i

}2
k

i=1
≡ f−k

(

x0
1

)

∩ I = ∪2
k−1

i=1 ∪2
j=1 Fj

(

xk−1

i

)

(3.1)

The set of safe points of order k is called the safe set of order k. The sub index

i ∈ {1...2k} of xk
i is assigned in such a way that i < j ↔ xk

i < xk
j .

From the definition given above, it might seem paradoxical to call these sets
the “safe sets” of order k, as long as it is clear from eq. (3.1) that all the elements
of this set fall out of I after k+1 iterations, after which they will diverge to infinity.
However, we will show now that the properties of this set justify this denomination.

A first main property of this set, that can be easily deduced from this defini-
tion, is the following: given a point z that belongs to the safe set of order k, then
f(z) will belong to a safe set of order k − 1. This simple property, together with
the two following ones, that will be presented as a proposition, are the properties
that make these sets of points play a key role for our control strategy.

Proposition 3.4. Consider the safe sets of order k of a map f satisfying conditions

(i)–(iii). Then, for all k ≥ 0 and for all i, 1 ≤ i ≤ 2k:

– The safe points of order k and the safe points of order k + 1 satisfy:

xk+1

2i−1
< xk

i < xk+1

2i . (3.2)
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– Consider the maximum and minimum distance between a safe point of order

k and the two adjacent safe points of order k + 1:

δk
max = max

i

{

|xk
i − xk+1

2i−1
|, |xk

i − xk+1

2i |
}

(3.3)

δk
min = min

i

{

|xk
i − xk+1

2i−1
|, |xk

i − xk+1

2i |
}

, (3.4)

then

lim
k→∞

δk
max = lim

k→∞

δk
min = 0 . (3.5)

Proof. First we must remember that in the definition of f we assumed that the
interval A1 is to the left of the interval A2. Thus, for those xk+1

i with i = 1, ..., 2k

and certain j that will depend on i, xk+1

i = Fi(x
k
j ). Analogously, for those xk+1

i

with i = 2k + 1, ..., 2k+1 and certain j′ that will depend on i, xk+1

i = Fi(x
k
j′). On

the other hand we proved that both F1 and F2 are monotonous in I. The type of
monotonicity will depend on whether f is an increasing or a decreasing function
in A1 and in A2. In this proof we will assume that given two points z1, z2 ∈ I such
that z1 < z2, then F1(z1) < F1(z2) and F2(z1) > F2(z2). This is the case of a map
as the one shown in Fig. 1 (a). For the remaining configurations of the map shown
in Fig. 1, the proof of this proposition is analogous.

The key observation now is that the only relation between the safe points of
order k +1 and those of order k that holds with our assumptions is xk+1

i = F1(x
k
i )

for i = 1, ..., 2k and xk+1

i = F2(x
k
2k+1+1−i

) for i = 2k + 1, ..., 2k+1. Considering
these relations, the proof of this proposition is easy.

We first prove eq. (3.2) inductively. The k = 0 case is simple as long as A1

is to the left of A2 and A0 is between these intervals. Thus, x1
1 = F1(x

0
1) < x0

1 <
F2(x

0
1) = x1

2. Assuming that the eq. (3.2) is true for k, we will show that it is true
for k + 1. All we need is to apply F1 and F2 to this equation. Equation 3.2 and
our assumption on F1 implies that F1(x

k+1

2i−1
) < F1(x

k
i ) < F1(x

k+1

2i ) for i = 1, ..., 2k

so, considering the relation given between the safe points of order k and those of
order k + 1, this means that xk+2

2i−1
< xk+1

i < xk+2

2i for i = 1, ..., 2k.

Analogously, to complete the proof of eq. (3.2) we apply F2 to eq. (3.2)

and we have that F2(x
k+1

2i−1
) > F2(x

k
i ) > F2(x

k+1

2i ) for i = 1, ..., 2k. Considering

our observation, this is equivalent to xk+2

2k+2
−2i+2

> xk+1

2k+1+1−i
> xk+2

2k+2+1−2i
and, by

making the change of index j = 2k+1+1−i, it is equivalent to xk+2

2j−1
< xk+1

j < xk+2

2j

with j = 2k + 1, ...2k+1. This completes the proof of eq. (3.2).

The proof of eq. (3.5) is also quite simple. We assumed that for all x0 ∈
A1 ∪ A2, |f ′(x0)| > 1. Thus there are two positive constants Lmax > 1, Lmin > 1
such that Lmin ≤ |f ′(x0)| ≤ Lmax. Then:

δk
max = max

i

{

|xk
i − xk+1

2i−1
|, |xk

i − xk+1

2i

}

= max
{

|Fn(xk−1

j ) − Fn(xk
2j−1)|, |Fn(xk−1

j ) − Fn(xk
2j)|

}
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for certain j and for certain n = 1, 2. Thus, using the mean value theorem and the
bound of the derivative given above:

δk
max = max

{

|Fn(xk−1

j ) − Fn(xk
2j−1)|, |Fn(xk−1

j ) − Fn(xk
2j)|

}

≤ 1

Lmin

max
{

|xk−1

j − xk
2j−1|, |xk−1

j − xk
2j |

}

≤ δk−1
max

Lmin

,

so δk
max ≤ δ0

max

(Lmin)k
and eq. (3.5) follows. ¤

Remark 3.5. According to equation 3.2, a safe point of order k has two adjacent
safe points of order k +1 that are closer to it than any other safe point of order k.
Thus, a trajectory lying in a safe point of order k + 1 is mapped to a point that
has a safe point of order k+1 to its left and another one to its right. This property
is probably the most important one of the safe sets, and it will play a key role in
our control strategy.

Once that we have given the key properties of the safe sets, we can now
explain our control strategy, which completes the proof of Theorem 2.1.

4. Proof of the main result

Considering the properties given above, we can now give a demonstration of our
main result.

Proof of the main result. The only thing that we have to do to control the system
with r0 < u0 is to put the initial condition on a safe point of an accurately chosen
order. To find it, we first have to chose k in such a way that u0 > δk

max which, by
eq. (3.5) is always possible if k is sufficiently big.

Considering this, we just have to put the initial condition on a safe point of
order k + 1. After this, f maps this point to a safe point of order k, say xk

i . Then
noise acts, and there are two possibilities, according to eq. (3.2):

– That xk
i + un is to the left of xk+1

2i−1
or to the right of xk+1

2i . In this case,
considering that the minimum distance between a safe point of order k and
the two adjacent safe points of order k + 1 is δk

min, a correction rn such that
|rn| ≤ u0 − δk

min will make xk
i + un + rn lie on a safe point of order k + 1.

– That xk
i + un is between xk

i and xk+1

2i−1
or between xk

i and xk+1

2i . In this case,
considering that the maximum distance between a safe point of order k and
the two adjacent safe points of order k + 1 is δk

max, a correction rn such that
|rn| ≤ δk

max will make xk
i + un + rn lie on a safe point of order k + 1.

Thus, even if the perturbations rn are bounded by r0 = max{u0−δk
min, δk

max} < u0,
trajectories starting on a safe point of order k + 1 can always be placed on a safe
point of order k + 1. This procedure can be repeated forever, which completes our
proof. ¤
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Figure 2. The safe points of order 2 (‘o’) and of order 1 (‘×’)
plotted in the xn axis together with the curve of the logistic map
xn+1 = 5xn(1 − xn). A trajectory controlled with u0 = 0.25,
which is always kept in the safe points of order 2 (marked by ‘o’
in the xn axis) (b). The correction applied each iteration, which
is always smaller than the maximum perturbation applied u0 =
0.25, marked with a dashed line (c)
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Figure 3. The ratio r0/u0 obtained for different values of u0

numerically (‘ · ·’) and from the analytical expressions (‘—’). Note
that this ratio is always smaller than 1

Remark 4.1. This theorem does not say a word about which is the optimal k that
allows to minimize the ratio r0/u0. It is a simple exercise to show that the optimal
ratios are bounded by the following quantities:

– The ratio
r0

u0

≤ u0 − δk
min

u0

if u0 ∈ (δk
max + δk

min, δk−1
max + δk

min] .

– The ratio
r0

u0

≤ δk
max

u0

if u0 ∈ (δk
max + δk+1

min, δk
max + δk

min] .

Thus, we have shown that in a variety of dynamical systems the same geo-
metrical conditions giving rise to transient chaos have allowed us to define a set,
the safe set, with some very interesting properties which, on the other hand, al-
low to keep the trajectories in the vicinity of the chaotic saddle even if control is
smaller than noise. In next section we are going to give an example of application
of our control technique using the well-known logistic map.

5. An example of application:
Control of transient chaos for the logistic map

In this section we are going to explore our technique in a simple situation, using
the well known logistic map xn+1 = µxn(1 − xn). Although it is well known
that for µ > 4 this map presents a chaotic saddle [4], which is formed after a
boundary crisis, in [6] it is proved that this map satisfies conditions (i)–(iii) just

for µ ≥ 2 +
√

5. In the numerical simulations carried out here we will focus on the
µ = 5 case.

For this map, x− =
1

2
−

√

µ2 − 4µ

2µ
and x+ =

1

2
+

√

µ2 − 4µ

2µ
and thus x1

0 =
1

2
.
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As an example, assume first that we perturb the system with a random
perturbation that is bounded by u0 = 0.25. We must first find a k such that
u0 ≥ δk

max. We observe numerically that with k = 1, this condition is fulfilled. The
safe points of order 2 and those of order 1 are shown in Fig. 2 (a), and we can
appreciate how they present the expected structure: each safe point of order 1 has
two adjacent safe points of order 2.

In Fig. 2 (b) we can observe a controlled trajectory. As we said, the idea is to
adjust rn in such a way that the resulting xn+1 = f(xn) + un + rn lies always on
a safe point of order two. The trajectory is kept bounded in 75 iterations and it
could be bounded forever. Note that, in absence of perturbations (even of noise),
considering that the initial condition lies on a safe point of order two, after three
iterations the trajectory would lie out of [0, 1], and then go to infinity. In Fig. 2
(c) we also show the value of the correction applied each iteration, showing that
the main result obtained in this paper is observed in this example, as expected.
The correction applied in these iterations is always smaller than u0 = 0.25. In
fact, we observe that max

n
(|rn|)/u0 ≈ 0.15/0.25 = 0.6, so with a control that is

approximately 60 % of the noise the trajectories are kept bounded.
Finally, in Fig. 3 we have shown the bounds of the optimal ratios r0/u0 that

allow to keep the trajectories bounded ad infinitum, obtained analytically from
the expressions given in Remark 4.1, and their numerical estimations, which were
obtained by computing the maximum |rn| necessary to control a trajectory of
10000 time steps. Note that these ratios are always smaller than one, but their
value depend on the value of u0.

6. Conclusions

In this paper we have shown a way to control transient chaos in one dynamical
systems using a very particular set of points: the safe sets. A main advantage of
this type of control is that, by accurately choosing the initial condition, we can
stabilize the system applying perturbations even smaller than the perturbation on
the dynamics induced by the presence of noise.

This is due to the very interesting properties of these sets, which themselves
can be derived from the same mathematical conditions from which the existence
of the chaotic saddle in the dynamical system can be inferred. These conditions
are intimately related with the typical “stretching and folding” processes associ-
ated with chaotic dynamics and transient chaos. It is well known that this type
of process is also present in higher dimensional dynamical systems, like in the
paradigmatic Smale horseshoe map [6] and we have recently proved [7] that safe
sets also arise in this kind of structures, which are themselves present in a vari-
ety of situations. All this makes us think that considering the global geometrical
properties of a dynamical system can be useful from a control point of view, not
only to control transient chaos but also to control other dynamical situations that
involve this type of “stretching and folding” of the phase space.
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