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Turbo-Like Structures for Chaos Encoding and Decoding
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Abstract—In this paper, we explain how to build a turbo-like
structure with binary inputs and chaotic outputs for efficient
coding and decoding in additive white Gaussian noise (AWGN).
We analyze the convergence of the decoding algorithm, the
performance in the error floor region and explain minimum
distance properties of the resulting codes.

Index Terms—Channel coding, chaos, concatenated coding,
modulation coding, error analysis.

I. INTRODUCTION

THE possibility of using chaotic signals to carry informa-
tion was first proposed in 1993 [1]. The interest in chaotic

communications was related to the supposed good properties
of the signals produced by chaotic systems from the point of
view of secure or broadband multiple access systems, but they
were not so successful as encoding or modulation systems.
However, the proposal of chaos based coded modulations [2],
which allow a convolutional coder point of view, opened a
road to evaluate such kind of encoders when introduced in very
efficient concatenated encoding systems, as is the case with
parallel concatenation of channel codes [3]. It can be expected
that new systems built under the same principles would lead to
comparable results. Another advantage of designing systems
under the similarities brought up by these new proposals
is that we can use well established tools borrowed from
communication theory, and apply them to chaos based systems
without the need of an approach based on complex chaos
theory. As a consequence, we address here the design of
parallel concatenated encoding and decoding systems includ-
ing two chaotic encoders with real-valued outputs linked by
means of a binary interleaver. We will show that we can get
results comparable to standard binary turbocodes, and that
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conventional analysis tools adapted to this new framework can
give valuable insight into the main features of these promising
parallel concatenated systems.

II. SYSTEM DESCRIPTION

The concatenated encoder consists of two rate 1 chaotic-
like encoders fed with a binary input {bn} and its interleaved
image {cn} [3]. The interleaving is performed with permu-
tations over bit blocks of size N , b = {b1, b2, · · · , bN},
and produces an interleaved word c = {c1, c2, · · · , cN}. The
outputs x = {x1, x2, · · · , x2N} are codewords of size 2N ,
which are formed by taking alternatively values from both
encoders. The resulting rate is R = 1/2. The main difference
with respect to the previous state of art in turbocodes is the
presence of chaotic systems as encoders on each branch. These
chaotic encoders are in fact chaotic maps controlled by small
perturbations as presented in [2]. They are described by a
recursion in the form

zn = f (zn−1, bn) + g (zn−1, bn) 2−(Q+1), (1)

where both applications f (·, 0) and f (·, 1) leave the interval
[0, 1] invariant. In addition, they are piecewise linear with
slope ±2 wherever it is defined. The natural number Q + 1
indicates the number of bits to represent zn. g (zn−1, bn)
is the binary function g (zn−1, bn) = bn if zn−1 < 1/2,
and g (zn−1, bn) = bn if zn−1 > 1/2. This function is
responsible for the small perturbation of the chaotic sequence,
and is equivalent to a recursive precoder needed for any outer
encoder in a parallel concatenated scheme in order to get inter-
leaver gain [3]. The recursion (1) leaves a finite set invariant,
and therefore we can restrict it to SQ = {m · 2Q+1 − 1|m =
0, 1, · · · , 2−(Q+1)}. When Q → ∞, equation (1) becomes
simply the recursion by the chaotic maps f (·, 0) and f (·, 1),
depending on the value of bn (cn for the second chaotic
encoder). The chaotic samples zn are normalized to [−1, 1]
as xn = 2zn − 1 before sending them to the channel. Note
that these chaotic encoders are intrinsically non-systematic.

In this paper, we will consider different pairs of applications
f (·, 0) and f (·, 1):

1) Tent map (TM):

f(z, 0) = f(z, 1) = 1 − |2z − 1|. (2)

2) A shifted and replicated version of Bernoulli shift map,
which we will call multi-BSM (mBSM):

f(z, 0) = 2z mod 1,

f(z, 1) = 2z + 1/2 mod 1. (3)

0090-6778/09$25.00 c© 2009 IEEE



598 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 3, MARCH 2009

3) Multi-tent map (mTM):

f(z, 0) = 1 − |2z − 1|,
f(z, 1) = 3/2 − |2z − 1| mod 1. (4)

The systems described by (1) can be represented by means
of a recursive convolutional encoder and a mapping to the
signal constellation given by SQ. Thus, the system is in fact
equivalent to a trellis coded modulation (TCM) [3], and we
will call it a chaos coded modulation system [2]. Therefore, the
turboencoder system derived from the concatenation of these
chaotic encoders will be very similar to a turbo-TCM system.
The equivalent finite-state recursive convolutional encoder is
given by

vn
Q+1 = u1v

n−1
Q+1 ⊕ u2v

n−1
Q ⊕ u3bn,

vn
i = u4v

n−1
i−1 ⊕ u5v

n−1
Q+1, i = Q, · · · , 2,

vn
1 = u6v

n−1
Q+1 ⊕ u7bn. (5)

where vn
i are contents of the memory positions i at time n,

and u = (u1, u2, · · · , u7) is a binary vector. The mapping to
the signal constellation is given by zn =

∑Q+1
i=1 2−(Q+2−i)vi.

For u = [1, 1, 0, 1, 1, 1, 1], u = [1, 1, 1, 1, 1, 1, 1] and u =
[0, 1, 1, 1, 0, 1, 1], the system is equivalent to TM, mTM and
mBSM respectively.

Based on the same principles, we can consider inverse
chaotic dynamics for the chaos coded modulated codewords,
instead of forward dynamics. A form of inverse dynamics with
a multi-tent map (ImTM) is given by:

zn = fQ
BSM (zn−1) +

(
1 − 4

(
fQ

BSM (zn−1)
)) zn−1

2
+

+
g (zn−1, bn)

2
, (6)

where fQ
BSM (zn−1) is the Q-th iteration of the Bernoulli

shift map, fBSM (zn) = 2zn−1 mod 1. For this system,
u = [1, 1, 0, 1, 1, 1, 1] and the signal constellation is zn =∑Q+1

i=1 2−ivi.
The interleaver used in our examples will be either an

S-random interleaver, with a minimum output separation of
S positions between contiguous input bits, or a standard
Cdma2000 interleaver [3]. With respect to the decoder, it
will be an iterative decoding system based on soft-input soft-
output (SISO) modules [3], but adapted to the chaos based
coded modulations. These SISO modules accept as input
the distorted values from the channel and a set of a priori
binary log-likelihood ratios (LLR’s), and give as output the
corresponding a posteriori binary LLR’s. These modules are
based on the known log-MAP decoding algorithm for binary
turbocodes, but with the needed arrangements for chaos coded
output symbols [4]. The complexity of the MAP algorithm is
proportional to 2Q.

III. CONVERGENCE ANALYSIS

In this Section we will explore the turbo-like chaotic system
by analyzing the iterative decoding algorithm. A powerful tool
to perform this task is the so called Extrinsic Information
Transfer (EXIT) chart [3]. The EXIT charts are based on the
computation of the mutual information (MI) of the LLR’s at
the output of each SISO module, as a function of the MI of the

(a)

(b)

Fig. 1. (a) EXIT charts for different turbo-like chaos based encoding systems
with Q = 4 as a function of channel noise Upper curve: first SISO. Lower
curve: second SISO. (b) EXIT chart and average trajectory of MI for the
ImTM system with Q = 4.

input LLR’s. The MI is normalized between 0 and 1, and, the
closer the MI to 1, the higher the probability to decode without
error [3]. For a particular signal to noise ration (Eb/N0) in
the channel, each of the SISO decoders will be characterized
by an MI plot, as seen in Fig. 1(a). If the MI plots for both
SISO intersect in one point before (1, 1), then the decoding
algorithm does not fully converge, the MI interchange on
iterative decoding gets stuck on this fixed point, and the
resulting bit error rate (BER) is high. As Eb/N0 grows, the MI
move progressively apart, and finally a clearance between both
MI plots appears. Thus, we have reached the waterfall region,
where the MI interchange can proceed to the (1, 1) point
and the BER usually drops dramatically. From this threshold
Eb/N0 value and on, we will be in the error floor region,
where the BER of the turbo system often goes down smoothly
again.

We have computed the EXIT charts as functions of Eb/N0

for the SISO decoders associated to the coded modulation
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systems, so that we can give an estimation of the location of
the waterfall region. In Fig. 1(a) we have depicted several
examples for Q = 4. According to them, we can predict
that the sudden BER slope descent will be located around 1.3
dB for the ImTM system, around 1.1 dB for mBSM, around
1.5 dB for mTM, and around 2.7 dB for TM (not depicted).
Note how the plots separate as Eb/N0 grows (mBSM for 1.9
dB). Though not shown, the results for other values of the
quantization parameter (Q = 3, 5, 6) practically coincide. This
means that the convergence in decoding is mainly linked to the
underlying chaotic system, and not to the finite-state machine
implementation. The invariance with respect to Q is a desired
property in this kind of systems, because it means we can use
in practice a system with Q as low as possible (and thus with
limited complexity), while being able to analyze it as a chaotic
system with Q → ∞.

These predictions will be validated by simulation. We will
see though that the threshold Eb/N0 values are located a bit
before the predicted ones. In Fig. 1(b), we have depicted,
together with the theoretical EXIT charts for the concatenation
of two ImTM encoders, some examples of the average MI
trajectory on iterative decoding with an S-random interleaver
with N = 10000 and S = 23. We see that there is a
progressive mismatch between average values and theoretical
plots, mainly in the central zone where the bottleneck between
MI plots usually takes place. As a consequence, convergence
will happen a few tenths of dB earlier, near 0.8 dB for
ImTM (see Fig. 1(b)). The disagreement appears because the
EXIT charts have been built under the assumption of Gaussian
distributed LLR’s (which is not exactly true) and under the
assumption of independent LLR’s between SISO modules
(which only becomes true for infinite size interleavers) [3].

IV. MINIMUM DISTANCE ANALYSIS

In parallel concatenation, the minimum distance of the
resulting parallel concatenated code or coded modulation is
usually employed to provide a bound on the error floor region
[3]. An accurate description of the BER at the error floor
region is a very important issue, since it gives an estimation
of the code behavior in a zone often difficult to reach by
simulation. The chaos based coded modulations described here
are not linear, and they do not comply in general with the
uniform error property [5]. Therefore, the analysis in search
of minimum distance codewords could result in unfeasible
calculations. However, we will see that, with the help of the
interleaver structure, the task to find the minimum distance
can be addressed. Let us define the simple binary input error
event e = b⊕b′, where e has w(e) nonzero bits that produce
an error loop of length L. This error event, in association with
all possible input words b, induces a set of possible output
squared Euclidean distances between the resulting codewords
x and x′ (associated to input words b and b′ respectively),
defined as d2

E = d2(x,x′) =
∑m+L−2

n=m (xn − x′
n)2. The

corresponding error loop in x and x′ has length L − 1. Note
that this distance depends on e and b, and not only on e as
in linear codes. In general, this value will also depend on Q,
though the dependence is small [2].

Each chaos based coded modulation of the kind described
has a characteristic binary error event which, in combination

with a particular value of input word b, leads to the absolute
minimum output squared Euclidean distance of the chaos
coded modulation [2]. However, in parallel concatenation with
linear codes and interleavers, we are normally interested in
weight 2 binary error events as major candidates for minimum
distance [3]. In fact, due to the presence of the mentioned
recursive precoding to ensure the interleaver gain, all the
described chaos based coded modulations allow an input
binary error event of minimum weight w(e) = 2 and length
Lo = Q + a (a = 2 for mBSM, and a = 3 for TM, ImTM
and mTM) which leads to low output squared Euclidean
distances1. Let us denote the minimum squared Euclidean
distance associated to these events as d2

Lo,min. Binary error
events of length L = p(Lo − 1)+ 1, p ∈ N, are also possible,
but the associated output squared Euclidean distances will be
basically the same as with the minimal loop Lo, but scaled by
p. Though d2

Lo,min depends on b, due to the finite memory
of the equivalent finite-state encoding machine, there are only
2Q+L0 possibilities to evaluate (2Q+1 possible values for the
starting state, and 2L0−1 possible input bits in b till the states
merge again).

Therefore, if the interleaver takes two bits separated in b by
Lo

1 positions and maps them at the output as two bits separated
by Lo

2 positions2, the minimum distance can be easily given
as the sum of the minimum distances for each chaos coded
modulation, d2

E,min = d2
Lo

1,min + d2
Lo

2,min. If the interleaver
structure is such that two input bits separated by Lo

1 positions
are mapped at least 3Lo

2 positions apart at the output, the
most probable e will have weight 4 and will consist in the
concatenation of two error events in b of the Lo

1 kind that
lead in c to other two error events of the Lo

2 kind (provided
that the interleaver allows this concatenation of error events).
In this case, the minimum squared Euclidean distance will be
d2

E,min = 2d2
Lo

1,min + 2d2
Lo

2,min. If the interleaver is built in
such a way that two input bits separated by Lo

1 positions are
always mapped at least 2Lo

2 positions apart, but not necessarily
more than 3Lo

2, the candidate minimum squared Euclidean
distance will be like d2

E,min = d2
Lo

1,min + 2d2
Lo

2,min for e with
w(e) = 2. For example, for ImTM with Q = 4, Lo = 7
and d2

Lo,min ≈ 1.335938, so that, if we have an S-random
interleaver with S > 3Lo = 21, the dominant e will consist
on the mentioned composition of two weight 2 binary error
events, and the parallel concatenation of two ImTM modules
will have d2

E,min = 4d2
Lo,min ≈ 5.343752. For mBSM with

Q = 5, Lo = 7 and d2
Lo,min ≈ 1.271484, so that, in the same

situation, d2
E,min = 4d2

Lo,min ≈ 5.085936.
Once we have the minimum squared Euclidean distance,

the bound for the error floor can be given as [3]

Pbfloor ≈
wminNmin

2N
erfc

⎛
⎝

√
d2

E,min

4P
R

Eb

N0

⎞
⎠ , (7)

where wmin is 2 of 4 depending on the kind of binary error
event under consideration, Nmin is the number of possible

1These error events are not necessarily those leading to the absolute d2
E,min

for each chaos coded modulation. But they are normally the most probable
ones in concatenation, since the events with w(e) > 2 are usually prevented
to happen in both encoders due to the interleaving.

2Lo
i , i = 1, 2, is the w(e) = 2 minimal error event loop length for the

first and second chaos coded modulations, respectively.
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(a)

(b)

Fig. 2. (a) BER of systems TC1 and TC2 with Cdma2000 interleavers
with N = 6138 and N = 12282, compared with several turbo-like chaotic
systems with S-random interleavers and Q = 4 in all the cases. (b) BER and
bounds for several turbo-like chaotic systems.

mappings Lo
1 → Lo

2, Lo
1 → 2Lo

2 (wmin = 2), or Lo
1, L

o
1 →

Lo
2, L

o
2 (wmin = 4) allowed by the interleaver structure,

P ≈ 1/3 is the average power of the chaos coded modulated
sequence3, and R = 1/2 is the code rate. Note that this
bound will be somewhat conservative, since (7) assumes that
all the error events in the error floor region correspond to the
predicted d2

E,min. This will not be in general true due to the
nonlinear structure of the chaos coded modulations. However,
it can still give valuable insight into the asymptotic behavior
of the error floor.

V. SIMULATION RESULTS

We have included for comparison the results for two rate
1/2 binary turbocodes. The first one (TC1) is the rate 1/2
punctured turbocode of Cdma2000 standard consisting on two

3This is only exact for Q → ∞ [2]. For Q ≥ 4, the difference can be
considered negligible.

rate 1/2 and memory 3 recursive and systematic convolutional
(RSC) encoders [3]. The second one (TC2) is also a rate 1/2
punctured turbocode containing two rate 1/2 and memory 4
RSC encoders with generator polynomials 33 (feedback) and
31 (feedforward) [3]. In Fig. 2(a), we compare these TC1,
TC2 systems and the resulting turbo-like chaotic systems.
The results are for 20 decoding iterations. The complexity
is proportional to 23 for TC1, to 24 for TC2 and to 24 for
the chaos based systems. Systems combining 2 ImTM or 2
mBSM blocks with N = 10000 S-random interleavers with
S > 3Lo have waterfall regions near the predicted thresholds,
even improving the results of TC1 and TC2. As a tradeoff, the
error floor is very high. The exception is the ImTM case with
N = 100000, where the error floor decreases with 1/N as
expected for this kind of concatenation [3]. Note that the slope
in the error floor is the same, indicating that the minimum
distance is really the same as with N = 10000. The concate-
nation of 2 mTM or 2 TM blocks lead to low error floors
(< 10−8 for mTM), but their waterfall thresholds are above
the zone of interest, where TC1 and TC2 are located. Note
how the inverse dynamics of ImTM improves the waterfall
threshold of mTM, but provides a worse error floor. One
way of overcoming this lies in combining two systems, for
example an ImTM encoder with good convergence threshold
and an mTM encoder with extremely low error floor. The
result confirms that, in fact, we can still get a system with
waterfall region near Eb/N0 = 1.0 dB, and an error floor
below 10−6. Therefore, for similar complexity, we can get
results comparable to binary turbocodes, though turbo TCM
schemes will slightly outperform these chaos based schemes
[3]. Note also how the error floors of TC1 and TC2 are almost
always lower than the rest of cases, making it clear that the
minimum distances of TC1 and TC2 are higher, with exception
of the mTM system (TC2 and mTM have both error floors
below 10−9).

In Fig. 2(b), we compare the results with different inter-
leavers and different Q and S factors. We verify how the
influence of Q is small, affecting a little the Eb/N0 threshold
for the waterfall region and keeping the same error floor. As
S = 23 > 3Lo, we have provided the bound with wmin = 4
and, though not very tight, it is still accurate enough. The
case with the Cdma2000 N = 12822 interleaver is much
worse since the multiplicity of the wmin = 4 errors goes from
Nmin = 4 for the S-random interleaver to Nmin = 491 for
this kind of interleaver designed with a rich structure intended
for the Cdma2000 convolutional code. The ImTM results for
the N = 1000, S = 12 < 3Lo S-random interleaver fit well
with the expected behavior of a poorer minimum distance (like
3d2

Lo,min) and a higher multiplicity of the related wmin = 2
errors (Nmin = 45). Finally, we can also see the bound for the
ImTM+mTM case. Now the error floor is not upper bounded
as in the rest of cases, meaning that there will be other
important error events apart form the mentioned wmin = 4
ones, though the BER slope yields still a good approximation.

VI. CONCLUSIONS

In this paper, we have proposed a turbo-like framework
containing chaos based coding and decoding systems. We
have shown that the performance can be comparable with
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standard turbocodes and that, with the help of adapted known
tools, we can locate the waterfall region and the error floor
region in the BER plots with enough accuracy. We have also
seen that the nonlinearity of these systems, together with a
good combination of different chaotic modulations, may help
to improve the final result. This is made possible because
these systems push further the principle for turbocodes that
their success lies in combating multiplicities rather than just
increasing minimum distance [3]. All this makes this kind
of turbo-like chaotic systems of potential interest in digital
communications.
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