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Abstract A system consisting of two Rulkov map-based

neurons coupled through reciprocal electrical synapses as a

simple phenomenological example is discussed. When the

electrical coupling is excitatory, the square-wave bursting

can be well predicted by the bifurcation analysis of a

comparatively simple low-dimensional subsystem embed-

ded in the invariant manifold. While, when the synapses

are inhibitory due to the artificial electrical coupling, a

fast–slow analysis is carried out by treating the two slow

variables as two different bifurcation parameters. The main

result of this paper is to present a mechanism for the

occurrence of a kind of special elliptic bursting. The

mechanism for this kind of elliptic-like bursting is due to

the interaction between two chaotic oscillations with dif-

ferent amplitudes. Moreover, the generation of antiphase

synchronization of networks lies in the different switching

orders between two pairs of different chaotic oscillations

corresponding to the first neuron and the second neuron,

respectively.
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Introduction

Map-based neuron models and map-based neuron networks

(Gerstner and Kistler 1999; Nozawa 1992; Chialvo 1995;

Rulkov et al. 2004; Rulkov 2001; de Vries 2001; Tanaka

et al. 2006; Izhikevich 2007; Ibarz et al. 2007b), as a

simplification of ordinary differential equations (ODE),

have received much attention over the past years, espe-

cially when the collective behavior of large-scale networks

of neurons is involved.

However, there are still some unclear problems, espe-

cially in the context of the analysis of the fast–slow dynamics

corresponding to the fast subsystem of map-based models.

For example, a very common method to study the dynamics

of neuron networks consists of decomposing the fast and the

slow subsystems, independently on being modeled as an

ODE-based system or as a map-based system. As Rinzel

(1987), Sherman (1996), Rulkov (2001, 2004), Shilnikov

and Rulkov (2004), de Vries (2001), Izhikevich (2000) and

many other researchers (Tanaka et al. 2006; Ibarz et al.

2007b; Casado 2003; Casado et al. 2004; Cao et al. 2007;

Ibarz et al. 2007c; Ibarz et al. 2007a) have done before, slow

variables are usually treated as a single bifurcation parameter

in the fast subsystem. By doing so, the fast subsystem can be

reduced into a much simpler low-dimensional system. Much

progress has been made by using this kind of reduction

techniques to predict the mechanism for bursting when some

neuron networks are considered.

It is well known that there exist multiple slow variables

besides the fast variables in the real neuron models

(Izhikevich 2007). These slow variables are responsible for

the transitions between the fast variables. Much attention has

been paid on treating different slow variables as different

bifurcation parameters in ODE-based neuron networks (Best

et al. 2005). Nevertheless, less attention has been paid on
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treating slow variables as different bifurcation parameters in

the fast–slow analysis for the fast subsystem of map-based

neuron networks. Therefore, it is natural to wonder whether

these slow variables of map-based neuron models can only

be treated as a single bifurcation parameter.

Here, we take two identical Rulkov neurons (Rulkov

et al. 2004) coupled by excitatory or inhibitory electrical

synapses as a simple phenomenological example. The main

goal of this paper is to show that even in this ensemble of

two identical neurons, their two slow variables are unequal

in most cases. It seems to be much more reasonable and

predictable to use two different bifurcation parameters

rather than to use only one, when bifurcation theory and

geometric singular perturbation theory are applied.

Most spiking neurons can produce bursting phenomena

if a current is stimulated so that the current slowly drives

the neuron above and below the firing threshold. Such a

current could be injected via an electrode or generated by

the synaptic input. Neuronal spiking and bursting can play

important roles in communication between neurons. In

particular, bursting neurons are important for motor pattern

generation and synchronization (Izhikevich 2007).

The numerical simulations at first show that there exist

two types of bursting. One is the square-wave bursting

resulting from a periodic transition between the silent phase

corresponding to a steady state and the active phase corre-

sponding to a chaotic oscillation. The mechanism for

square-wave bursting is mainly due to bistability. And the

other one is the elliptic-like bursting, which is characterized

by an abrupt periodic switching between a small amplitude

chaotic oscillation corresponding to the silent phase and a

large amplitude chaotic oscillation corresponding to the

active phase. In this case, there is no longer bistability in the

fast subsystem. It is hard to explain and predict the occur-

rence of elliptic-like bursting if only a slow variable as a

unique bifurcation is concerned. In addition, there exist

many kinds of regular cooperative behaviors such as

in-phase and antiphase synchronizations of bursts. Although

the antiphase synchronization of bursts is made artificially

under the effect of inhibitory electrical synapses, this is

reasonable because this is motivated by an experimental

result shown in Elson et al. (1998). In what we are really

interested here is the mechanism of the generation and

synchronization of bursts, since to the best of our knowl-

edge, it does not seem to be fully well understood.

Second, we will investigate under what conditions, the

two slow variables of Rulkov map-based networks assume

equal or unequal values at any given time. We have found

that corresponding to moderate excitatory or inhibitory

electrical coupling strength, the two slow variables are

usually unequal.

One of our main results demonstrates that when the

excitatory electrical coupling is applied, there coexist

multiple stable branches of on-diagonal and off-diagonal

fixed points of the fast subsystem. The key to predict the

bursting and synchronization lies in the dynamical behaviors

occurring on the invariant manifold. Due to the existence of

an invariant manifold, much more complicated systems can

be reduced into a comparatively simple low-dimensional

subsystem by embedding them into the invariant manifold.

The multiple stable branches of off-diagonal fixed points are

only helpful in shaping the square-wave bursting, and

besides that they have no other essential consequences for

the prediction of the square-wave bursting.

The main novelty of this paper is to propose a mechanism

for the occurrence of elliptic-like bursting when the elec-

trical coupling is inhibitory. In this case, the fast subsystem

includes two different slow variables no matter how small

the coupling strength is. In this case, there coexist still two

chaotic attractors. The elliptic-like bursting oscillation is due

to the interaction between two chaotic oscillations with

different amplitudes. Moreover, the generation of antiphase

synchronization of networks lies in the different switching

orders between two pairs of different chaotic oscillations of

the first neuron and the second neuron. The mechanism is in

agreement with experimental studies where two coupled

neurons are coupled by an artificial dynamical current clamp

device (Elson et al. 1998).

The layout of this paper is as follows. In ‘‘Description of

the coupled map-based neuron system’’, we give a

description and its wave forms of two identical Rulkov

map-based neurons coupled by excitatory or inhibitory

electrical synapses, respectively. Corresponding to two

kinds of different synaptic couplings, the bifurcation phe-

nomena are examined by using one and two different

bifurcation parameters of the fast subsystem in ‘‘Excitatory

electrical coupling’’ and ‘‘Inhibitory electrical coupling’’.

Finally, we sum up our results with some comments in

‘‘Conclusion and discussion’’.

Description of the coupled map-based neuron system

We consider here a simple neuron network composed of

two identical Rulkov map-based neurons (Rulkov 2001)

coupled through electrical or gap-junctional coupling

xnþ1;1 ¼
a

1þ x2
n;1

þ yn;1 þ eðxn;2 � xn;1Þ;

ynþ1;1 ¼ yn;1 � gðxn;1 � rÞ;

xnþ1;2 ¼
a

1þ x2
n;2

þ yn;2 þ eðxn;1 � xn;2Þ;

ynþ1;2 ¼ yn;2 � gðxn;2 � rÞ;

ð1Þ

where a, e, g, and r are parameters. When g is very small,

then the evolution of yn, i (i = 1, 2) is much slower than
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that of xn, i (i = 1, 2). Thus, we refer to xn,i as the fast

variables and yn,i as the slow variables, and the parameter e
denotes the electrical synaptic coupling strength. The full

system of Eqs. (1) can be divided into the two following

subsystems:

xnþ1;1 ¼
a

1þ x2
n;1

þ yn;1 þ eðxn;2 � xn;1Þ;

xnþ1;2 ¼
a

1þ x2
n;2

þ yn;2 þ eðxn;1 � xn;2Þ;
ð2Þ

and

ynþ1;1 ¼ yn;1 � gðxn;1 � rÞ;
ynþ1;2 ¼ yn;2 � gðxn;2 � rÞ:

ð3Þ

For convenience we call Eqs. (2) the fast subsystem, and

Eqs. (3) the slow subsystem.

The detailed dynamics of the Rulkov map-based net-

work before and after coupling through the mean field has

been analyzed by Rulkov (2001) and de Vries (2001) by

means of bifurcation theory and geometric singular per-

turbation theory. The two slow variables yn,1 and yn,2 are

treated as a single bifurcation parameter c in those works.

Therefore, the behavior of a single neuron can be well

predicted by studying the one-dimensional fast subsystem

xn+1 = a/(1 + xn
2) + c (Rulkov 2001). Also, for a popu-

lation of two identical neurons coupled by the mean field,

bursting as an emergent phenomenon can also be approx-

imately predicted by the dynamics of the other one-

dimensional fast subsystem xn+1 = a/(1 + xn
2) + c + e xn

(Rulkov 2001; de Vries 2001). Their studies demonstrate

that there are two key ingredients for bursting: (1) one is

the bistability, which can be defined by a saddle-node

bifurcation csn and an external crisis bifurcation cec. When

cec \ c\ csn, there coexist active and silent phases. During

the silent phase the state of the neuron runs g-close to the

stable branch of the curve of fixed points, while in the

active phase, the state of the neuron exhibits rapid chaotic

oscillations; (2) the other one is the nullcline xn,1 = r.

When xn,1 = r, the slow variables yn,i do not change; when

xn,1 [ r, the slow variables yn,i are decreasing; when

xn,1 \ r, the slow variables yn,i are increasing.

If the electrical coupling strength e is positive or nega-

tive, corresponding to excitatory or inhibitory couplings,

then the wave forms of the full system, Eqs. (1), are shown

5000 6000 7000 8000 9000 10000
−2

0
2

x n,
1

5000 6000 7000 8000 9000 10000
−2.85
−2.8

−2.75

y n,
1

5000 6000 7000 8000 9000 10000
−2

0
2

x n,
2

5000 6000 7000 8000 9000 10000
−2.85
−2.8

−2.75

y n,
2

n

5000 6000 7000 8000 9000 10000
−2.85
−2.8

−2.75

y n,
2 a

nd
 y

n,
1

n

(a)

5000 6000 7000 8000 9000 10000

−2

0

2

x n,
1

5000 6000 7000 8000 9000 10000

−2

0

2

n

x n,
2

(b)

5000 6000 7000 8000 9000 10000
−2

0
2

x n,
1

5000 6000 7000 8000 9000 10000

−2.8

−2.6

y n,
1

5000 6000 7000 8000 9000 10000
−2

0
2

x n,
2

5000 6000 7000 8000 9000 10000

−2.8

−2.6

y n,
2

n

5000 6000 7000 8000 9000 10000

−2.8

−2.6

y n,
2 a

nd
 y

n,
1

n

(c)

5000 6000 7000 8000 9000 10000

−2

0

2

x n,
1

5000 6000 7000 8000 9000 10000

−2

0

2

n

x n,
2

(d)

Fig. 1 Wave forms of Eqs. (1) coupled by the excitatory or inhibitory electrical synapses, respectively. a e = 0.1; b a blow-up for xn,1 and xn,2

versus n of a; c e = -0.1; d a blow-up for xn,1 and xn,2 versus n of c
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in Fig. 1. We set the following parameters all throughout

the paper to be a = 4.15, m = -2.5, g = 0.0001, and

particularly, the value of the nullcline is fixed at r = -1.

A few typical wave forms of Eqs. (1) are shown in

Fig. 1, and note that there exist two kinds of different

synchronized patterns and two types of bursting oscilla-

tions. When the coupling is excitatory (e = 0.1), the wave

forms are in the state of in-phase synchronization, see

Fig. 1a. However when the coupling is inhibitory

(e = -0.1), the wave forms are in the state of antiphase

synchronization, see Fig. 1c. In addition, Fig. 1a display a

type of square-wave bursting. This type of bursting oscil-

lation is characterized by a periodic switching between the

silent phase and the active phase of repetitive firings.

Figure 1b shows a blow-up of the two fast variables

xn,i (i = 1,2) versus n shown in Fig. 1a, in which the fast

variables sit on a curve of fixed points during the silent

phase. Afterwards, the fast variables go to a chaotic

oscillation during the active phase. Figure 1c show a type

of elliptic-like bursting, in which a kind of particular

bursting occurs between the silent phase with a small

amplitude oscillation and the active phase with a large

amplitude oscillation. In contrast to the above case in the

square-wave bursting, Fig. 1d provides a blow-up of the

two fast variables xn,i versus n shown in Fig. 1c, where

during the silent phase in the elliptic-like bursting, the fast

variables sit on a small chaotic attractor with small

amplitudes, and subsequently the fast variables move to the

other chaotic attractor with comparative large amplitudes.

It is obvious to observe that from Fig. 1a and c, the two

slow variables yn,1 and yn,2 are unequal. In addition, the

difference between the two slow variables yn,1 and yn,2

will increase as the absolute value of the coupling strength

e increases. So, how the two slow variables make any

difference in the case that they are treated as two different

bifurcation parameters or in the case that there is only

one?

Excitatory electrical coupling

In this section, the electrical coupling strength e is sup-

posed to be positive, so we have an excitatory electrical

coupling. In this situation we have two different possibil-

ities. When both slow variables are equal, we have a single

bifurcation parameter and when they are unequal we have

two bifurcation parameters.

yn,1 = yn,2 = c

When e is a small enough parameter, the two slow vari-

ables of Eqs. (1) are approximately equal. Consequently,

the two slow variables yn,1 and yn,2 might be treated as a

single bifurcation parameter c, and then the corresponding

fast subsystem becomes:

xnþ1;1 ¼
a

1þ x2
n;1

þ cþ eðxn;2 � xn;1Þ;

xnþ1;2 ¼
a

1þ x2
n;2

þ cþ eðxn;1 � xn;2Þ:
ð4Þ

When e = 0.1, the corresponding curves of fixed points of

Eqs. (4) are presented in the (c, xn,1) plane. As shown in

Fig. 2a, there coexist three S-shaped curves of fixed points

which are S1, S2, and S3. In particular, the points on S1

correspond to the on-diagonal fixed points satisfying

the condition xn,1 = xn,2, while the points on S2 and S3

correspond to the off-diagonal fixed points satisfying

the condition xn,1 = xn,2. Here, the solid blue points

correspond to stable fixed points, and the red dashed points

correspond to the unstable fixed points. The square stands for

a Hopf bifurcation, and the triangle denotes a saddle-node

bifurcation. There coexist multiple stable branches of fixed

points of Eqs. (4) on the three S-shaped curves, for example,

on S1, there coexist S11, S12, and S13 corresponding to on-

diagonal fixed points, on S2 and S3, there coexist S21 and S31

corresponding to off-diagonal fixed points, respectively. The

lower left part of Fig. 2a can be seen clearly by observing a

magnified version shown in Fig. 2b.

We are interested in multiple stable branches of off-

diagonal fixed points of Eqs. (4). This is because the stable

branches help us to know the silent phase of bursting. So in

the following part of this section, the main goal is to

analyze how the off-diagonal fixed points affect the gen-

eration of bursting.

By numerical simulations, three different bifurcation

diagrams are shown in Fig. 2c–e, starting from different

initial points situated on different stable branches of fixed

points of Eqs. (4), respectively. Figure 2c shows the

bifurcation diagram starting from an on-diagonal initial

point on S12, while Fig. 2d–e shows the bifurcation dia-

grams when the initial points are chosen from the off-

diagonal fixed points on the stable branches S31, and S21,

respectively. Note that when the bifurcation parameter c
reaches the leftmost external crisis bifurcation, corre-

sponding to different initial conditions shown in Fig. 2c–e,

the iterates of Eqs. (4) drop suddenly down onto the same

bottom stable branch S11, which corresponds to on-diago-

nal fixed points of Eqs. (4). That is to say, corresponding to

three different initial conditions, when the bifurcation

parameter c reaches the rightmost external crisis bifurca-

tion, all three types of iterates drop suddenly down onto the

same bottom stable branch on S11. Therefore, we refer to

the bottom stable branch on S11 as the invariant manifold.

The subsequent iterates are almost similar as we see from

Fig. 2c–e. There exist some minor differences between

Fig. 2c and d, e, which depends on the different initial
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conditions. For example, starting from off-diagonal fixed

points on S31 and S21, the subsequent chaotic oscillation is

of a larger amplitude than that in Fig. 2c, and the bound-

aries of the chaotic oscillations are not much smoother than

that in Fig. 2c. In view of these differences, we refer to the

bursting resulting from the stable branches of on-diagonal

fixed points shown in Fig. 2c as the smooth bursting since

(xn,1 = xn,2), and the bursting resulting from the stable

branches of off-diagonal fixed points shown in Fig. 2d–e as

the non-smooth bursting since (xn,1 = xn,2).

Due to the existence of an invariant manifold on S11, the

mechanism for bursting is similar to the one described by

Fig. 2 These curves of fixed points and bifurcation diagrams

correspond to the Eqs. (4) when yn,1 = yn,2 = c, and e = 0.1. a
Three S-shaped curves of fixed points; b a blow-up of a; c–e

bifurcation diagrams are plotted with different initial conditions

located on S12, S31, and S21, respectively

Cogn Process (2009) 10 (Suppl 1):S23–S31 S27
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Rulkov (2001) and de Vries (2001). That is, the mechanism

leading to bursting still lies in the bistability region. In

addition, there are multiple coexisting chaotic attractors

depending on the different initial conditions. If the initial

conditions are chosen from the multiple stable branches of

off-diagonal fixed points of Eqs. (4), then the bifurcation

diagrams of the fast subsystem Eq. (4) can predict the non-

smooth square-wave bursting of the full system Eq. (1). If

the initial conditions are chosen from the multiple stable

branches of on-diagonal fixed points of Eqs. (4), then the

bifurcation diagrams of the fast subsystem Eq. (4) can

predict the regular smooth square-wave bursting of the full

system Eq. (1).

Thus, the invariant manifold can play a very important

role to study the dynamical behaviors of Eqs. (4). Due to

the existence of an invariant manifold, much more com-

plicated systems can be reduced into a comparatively

simple low-dimensional subsystem by embedding them

into the invariant manifold.

yn,1 = yn,2

In this case, we suppose that yn,1 = c1 and yn,2 = c2, so that

the corresponding fast subsystem is

xnþ1;1 ¼
a

1þ x2
n;1

þ c1 þ eðxn;2 � xn;1Þ;

xnþ1;2 ¼
a

1þ x2
n;2

þ c2 þ eðxn;1 � xn;2Þ:
ð5Þ

Note that Eqs. (5) are invariant (that is, are symmetric)

under the transformation of xn,1 ? xn,2 and c1 ? c2, and

then the bifurcation diagram of xn,1 versus c1 is the same as

that of xn,2 versus c2.

For simplicity, we fix e = 0.1 and c2 = -2.7, and we let

c1 be a free parameter. The curves of fixed points of xn,1

and xn,2 versus the bifurcation parameter c1 are plotted

together in a (c1, xn,1 (xn,2)) plane shown in Fig. 3a. The

purpose is to compare the similarity and differences

between them, simultaneously. Here and afterwards, the

thin lines stand for the curves of fixed points of xn,1, while

the thick lines stand for the curves of fixed points of xn,2.

Note that on both the bottom curves of fixed points of

xn,1 and xn,2, there coexist stable branches of fixed points,

simultaneously. Moreover, the stability of both bottom

stable branches of fixed points of xn,1 and xn,2 ends at the

rightmost saddle-node bifurcation.

Two bifurcation diagrams are presented in Fig. 3b–c

starting from different initial points located on the stable

branches of fixed points of xn,1 and xn,2. In Fig. 3b, the initial

point is chosen from the bottom stable branch of fixed points

of xn,1. When the iterates of xn,1 are below the nullcline at

xn,1 = -1, the slow variables yn,1 will increase. Once the

iterate attains the rightmost saddle-node bifurcation, the

silent phase ends and the active phase begins. When the

iterates of xn,1 exceed the nullcline xn,1 = -1, then the slow

variable yn,1 will decrease until c1 reaches the rightmost

external crisis bifurcation. Subsequently, the iterate sud-

denly drops down onto the bottom stable branch of fixed

points of xn,1. Thus, a periodic transition between the silent

phase and the active phase occurs, which corresponds to the

so-called square-wave bursting.

Concerning the bifurcation diagram of xn,2 versus c1

shown in Fig. 3c, the basic mechanism leading to bursting

is similar to the one discussed above. However, it is nec-

essary to point out that the transition between the silent

phase and the active phase for both neurons are almost

synchronized. This result can be seen clearly if we plot the

aforementioned two bifurcation diagrams together as

shown in Fig. 3d. In addition, seen from both Fig. 3b–d,

there exist some transient periodic windows around

c1 = -4. This is because the stability of the fixed points on

the both upper branches shown in Fig. 3b–c changes at a

Hopf bifurcations (denoted by squares). After the Hopf

bifurcation, a route since the period-2 cycles to period-4

cycles, period-8 cycles, ..., and even period-n cycles or

transient chaotic windows can be observed.

Thus, these results demonstrate that if we use two dif-

ferent bifurcation parameters to study the dynamics of a

two-dimensional fast subsystem, then the fast subsystem is

coexisting multiple coexisting synchronized attractors,

which is useful to explain the in-phase synchronization of

square-wave bursting of the full system Eq. (1).

Inhibitory electrical coupling

When the electrical coupling is inhibitory, the wave forms

shown in Fig. 1c–d show that the two slow variables yn,1

and yn,2 are totally different even if the electrical coupling

strength e is small enough. Thus, in this section, the two

different slow variables can only be treated as two different

bifurcation parameters. We suppose that yn,1 = c1 and

yn,2 = c2, and we fix e = -0.1 and c2 = -2.7, while c1 is

a free parameter.

The detailed curves of fixed points for xn,1 and xn,2

versus c1 are plotted together in Fig. 4a. There still coexist

multiple stable branches of fixed points in this case. For

example, concerning the curve of fixed points of xn,1, there

coexist two stable branches S11 and S12. Concerning the

curve of fixed points of xn,2, there coexist three stable

branches S21, S22, and S23. But, in this case, there is no

longer bistability.

Next, two different bifurcation diagrams corresponding to

the first neuron and the second neuron, are plotted simulta-

neously. In Fig. 4b, once an initial point is chosen on S11, the

iterates of xn,1 will undergo a two-period circle, four-period
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123



circle, ..., and then the chaotic motion. When c1 reaches the

leftmost external crisis bifurcation value at -3.582, the

iterate suddenly drops down onto the bottom unstable branch

of fixed points of xn,1. Then the iterates drop down onto the

bottom chaotic attractor with small amplitude. That is to say,

when -3.582 B c1 B -3.0018, seen from Fig. 4b, there

exist a chaotic oscillation A11 with a comparatively small

amplitude, here the parameter value of c1 at -3.0018 cor-

responds to the rightmost external crisis bifurcation. After

the rightmost external crisis bifurcation, the iterate suddenly

jumps up and a subsequent chaotic oscillation A12 occurs

with a comparatively large amplitude.

Thus, the occurrence of chaotic attractor A11 can be

predicted by the rightmost and the leftmost external crisis

bifurcation values, while the second chaotic attractor A12

can be predicted by the leftmost external crisis bifurcation

and the leftmost saddle-node bifurcation. Of course, as

pointed out by Rulkov (2001) and de Vries (2001), because

the occurrence of the attractor surrounding the unstable

fixed points is chaotic when the bifurcation parameter c1 is

near the external crisis bifurcation. The actual transition

from the active to the silent phase can be delayed.

Because the position of the bottom chaotic oscillation

A11 is always below the nullcline at xn,1 = -1, the slow

variable yn,1 is increasing. As what concerns the upper

chaotic oscillation A12, when the iterate of xn,1 exceeds the

nullcline at xn,1 = -1, the slow variable yn,1 is decreasing.

Therefore, once the chaotic oscillation A12 occurs, the

iterate of xn,1 will return to the bottom chaotic oscillation

A11. If the transient process of iteration is removed, then a

kind of special transition in the order of A11 ?
A12 ? A11 occurs between the two chaotic oscillations

A11 and A12 in a periodic fashion.

The mechanism described above can also explain the

occurrence of elliptic-like bursting of the second neuron.

However, in contrast to the order of elliptic-like bursting of

the first neuron, the transition between the other two cha-

otic oscillations is in the order of A21 ? A22 ? A21. If we

plotted the above two bifurcation diagrams together, seen

from Fig. 4d, when the first neuron produces the chaotic

oscillation A11 with a small amplitude, the second neuron

produces the chaotic oscillation A21 with a large amplitude;

while when the first neuron produces the chaotic oscillation

A12 with a large amplitude, the second neuron produces the
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Fig. 3 These curves of fixed points and bifurcation diagrams

correspond to the Eqs. (5) when yn,1 = c1, yn,2 = c2, e = 0.1, and

c2 = -2.7. a Curves of fixed points; b–c bifurcation diagrams with

different initial conditions are plotted from the bottom stable branches

of fixed points of x1 and x2, respectively; d bifurcation diagrams of x1

and x2 are plotted together in the same figure
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chaotic oscillation A22 with a small amplitude. Thus, the

synchronized pattern between the first neuron and the

second neuron is always in the state of antiphase.

Conclusion and discussion

In this paper, in view of the different consequences of

considering excitatory or inhibitory electrical synaptic

couplings, we have thoroughly analyzed the generation and

synchronization of bursts of a network composed of two

identical Rulkov map-based neurons. The emphasis of this

paper is placed on the analysis of the fast–slow dynamics

for a two-dimensional fast subsystem by either treating the

two slow variables as a single bifurcation or two different

bifurcation parameters, respectively.

Our results show that when the electrical synaptic cou-

pling is excitatory, the invariant manifold of on-diagonal

fixed points and the stability of the coexisting multiple

stable branches of the off-diagonal fixed points can explain

and predict the generation of the in-phase and antiphase

synchronization.

In contrast to this previous case, when the electrical

coupling is inhibitory, the fast subsystem includes two dif-

ferent slow variables no matter how small the coupling

strength is. In this case, the dynamical behaviors of the fast

subsystem of the full system can be well predicted by using

two different bifurcation parameters. By using this method,

we obtain a mechanism for the occurrence of elliptic-like

bursting, which is due to the interaction between two pair of

chaotic attractors with different amplitudes. Furthermore,

the generation of antiphase synchronization of networks lies

in the different switching orders between two pairs of cha-

otic attractors of the first neuron and the second neuron.

The result obtained in this paper demonstrates that, if a

two-dimensional fast subsystem is simplified into a one-

dimensional fast subsystem after treating the two slow

variables as a single bifurcation parameter, this simplifica-

tion is only suitable for some specific coupling forms. While

when the inhibitory synapses are considered, our analysis

Fig. 4 These curves of fixed points and bifurcation diagrams

correspond to Eqs. (5) when yn,1 = c1, yn,2 = c2, e = -0.1, and

c2 = -2.7. a Curves of fixed points; b–c bifurcation diagrams with

different initial conditions are plotted from the bottom stable branches

of fixed points of x1 and x2, respectively; d bifurcation diagrams of x1

and x2 are plotted together in the same figure

S30 Cogn Process (2009) 10 (Suppl 1):S23–S31

123



shows that, even for a comparatively simple map-based

network represented in this paper, the two slow variables can

not be treated by using a single bifurcation parameter.

Otherwise, some important information could be missed or

even fail to predict the bursting oscillations. The results

shown in this paper strongly suggest, as a consequence, that

much attention should be paid on the different slow variables

of neuron networks when bifurcation analysis and geometric

singular perturbation method are used.
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