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Abstract

We examine the chaotic behavior of an extended Rayleigh oscillator in a three-well potential under additive para-
metric and external periodic forcing for a specific parameter choice. By applying Melnikov method, we obtain the con-
dition for the existence of homoclinic and heteroclinic chaos. The numerical solution of the system using a fourth-order
Runge–Kutta method confirms the analytical predictions and shows that the transition from regular to chaotic motion
is often associated with increasing the energy of an oscillator. An analysis of the basins of attraction showing fractal
patterns is also carried out.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with the appearance of homoclinic and heteroclinic instabilities and chaos in a triple-well
oscillator studied by Li and Moon [1]. Many problems in physics, chemistry, biology, etc., are related to nonlinear
self-excited oscillators [2]. For example, the self-excited oscillations in bridges and airplane wings, the beating of a heart,
and the nonlinear model of a machine tool chatter [6]. A self-excited oscillator is a system which has some external
source of energy upon which it can be drawn. Self-excited systems have a long history in the field of mechanics
[7,8]. One of its most prominent features is the existence of stable limit cycles in phase space, emerging from a balance
between the energy gain and the dissipation. Another feature is their instabilities. Recently, self-excited systems have
been proposed as fundamental tools for control and reduction of friction [9–11]. The possible influence of self-excited
dynamics on friction force is based on the idea that when a limit cycle is established, then limited changes of external
conditions cannot destroy it and the system persists on its frictionless oscillating motion.

Parametric perturbations are characterized by parameters periodically in time changing and they are described by
homogeneous differential equations of motion. Many works on self-excited, parametrically and externally excited are
well known and deeply investigated in the literature separately. Minorski [12] is one of the first authors considering
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the interaction between two different types of perturbations. Warminski [14] emphasizes the differences in modelling
ideal and non-ideal systems for a chosen class of self-excited, parametric and externally excited vibrations. Many of
those studies lead to the parametric excitation combined with self-excited system and subjected to an external force
which quite often take the form
€xþ gðx; _xÞ _xþ ð1� l cos 2xtÞðxþ ax3Þ ¼ F cos xt; ð1Þ
where ðx; _xÞ is a nonlinear damping function. The effect of nonlinear damping on a nonlinear oscillator was investigated
previously in Ref. [13], showing among other things how it affected the evolution of fractalization of phase space. The
effect of nonlinear dissipation on the boundaries of basin of attraction in a two-well Rayleigh–Duffing oscillator was
also analyzed in detail in Ref. [26]. Eq. (1) can be seen as a model describing the dynamics of a mass-spring damper
system with the nonlinear damping and where the restoring force is an anharmonic function in which the parameters
vary with time. This model have been studied intensively in Refs. [14–17], where new dynamical phenomena have been
found; for example, interactions between parametric and self-excited vibrations lead to quasi-periodic motion. How-
ever, in the neighborhood of parametric resonances, the system synchronizes, and after the inverse secondary Hopf’s
bifurcation, the motion becomes periodic. Even though most perturbations applied to the system are harmonic, the ef-
fect of considering non-harmonic perturbations was also considered in [28,29]. In 1965, an interesting paper appeared
where Wehrmann [18] was able to suppress turbulence behind a cylinder in a moving fluid. The basic idea was to put the
cylinder in vibration with a suitable feed-back using the same fluctuations presented in the turbulent fluid. A complete
laminarization was obtained. Turbulence is a kind of phenomenon related to a system with infinite degrees of freedom
and it is natural to wonder if parametric perturbations can modify the onset of chaos in low dimensional system as well.
The authors in Refs. [19,20] showed with a rigorous theoretical consideration that the resonant parametric perturbation
can remove chaos in low dimensional systems. They confirmed this prediction with numerical simulations. Further-
more, Cicogna [21] showed, using the Melnikov analysis [22], how to modify the threshold of chaos by resonant para-
metric modulation. Another good example is constituted by the generalized perturbed pendulum [31].

In contrast to the Rayleigh–Duffing oscillator (see Eq. (1)), the investigation of Eq. (1) including fifth nonlinearities
in the restoring forced has not received much attention. Nevertheless, some attention has deserved the analysis of a
three-well potential and the Rayleigh oscillator itself quite recently [3–5]. It is interesting to note that there is a situation
analyzed in [27], where Melnikov analysis is applied to a nonlinear oscillator which can behave as a one-well oscillator
or a two-well oscillator by simply modifying one of its parameters, which acts as a symmetry-breaking mechanism.
Therefore, the chaotic behavior using the parametric perturbation in the modified Rayleigh–Duffing oscillator with a
three-well potential still needs to be investigated further. The model Eq. (1), which includes the cubic (x3) and quintic
(x5) terms, and in the absence of parametric excitation (i.e. l ¼ 0) was used to study the motions of the platform of a
ski-simulator [23].

In the present work we focus our attention on the study of the effects of parametric periodic excitation on the fractal
basin boundaries of a three-well potential of an extended Rayleigh–Duffing oscillator possessing both homoclinic and
heteroclinic orbit.

The rest of the paper is organized as follows. In Section 2, we briefly give the description of the model and we find the
local bifurcation of the unperturbed system. In Section 3, the conditions of existence of Melnikov’s chaos under para-
metric perturbation resulting from the homoclinic and heteroclinic bifurcation are performed. Finally in Section 4, a
convenient demonstration of the accuracy of the method is obtained from the fractal basin boundaries. We end in Sec-
tion 5 with conclusions.
2. Description of the model and analysis of the unperturbed system

2.1. Description of the model

In this paper, we examine the dynamical transitions in parametric and periodically forced self-oscillating systems
containing the cubic and quintic terms in the restoring force as follows:
_x ¼ y; _y ¼ �ð�aþ b _x2Þ _x� ð1� l cos 2xtÞðxþ ax3 þ bx5Þ þ F cos xt; ð2Þ
where a, b, l, a, b, F and x are parameters. Physically, a and b represent respectively linear and nonlinear damping
coefficient terms, l and F are the amplitudes of the parametric and external periodic forcing, and x is the corresponding
frequency. Moreover a and b characterizes the intensity of the nonlinearity. The equation describes self-excited oscil-
lations for a > 0 and b > 0. This equation is a mixed type of Rayleigh and the modified Duffing oscillator.
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2.2. Analysis of the unperturbed system

In this subsection, we derive the fixed points and the phase portrait corresponding to the system Eq. (2) when it is
unperturbed. If we let a ¼ b ¼ l ¼ F ¼ 0, Eq. (2) is considered as an unperturbed system and can be rewritten as
a

Fig. 1.
three-w
_x ¼ y; _y ¼ �x� ax3 � bx5: ð3Þ
The system of Eq. (3) corresponds to an integrable Hamiltonian system with a potential function
V ðxÞ ¼ 1
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and the associated Hamiltonian function is given by
Hðx; yÞ ¼ 1
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From Eqs. (3) and (5), we can compute the fixed points and analyze their stabilities.

(i) For a2 < 4b, there is one fixed point ð0; 0Þ which is a center. If b > 0, the potential given by Eq. (4) has only a
single-well. If b < 0, it has only a single-well symmetric potential.

(ii) For a > 0; b < 0, with a2 > 4b, there are three fixed points: two saddles connected by two heteroclinic orbits and
one center.
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(a) Three-well potential function given by V ðxÞ ¼ 0:5x2 � 0:15x4 þ 1=120x6. (b) Corresponding phase portraits. (c) Shape of
ell potential function V ðxÞ ¼ 0:5x2 � 0:15x4 þ b=6x6 for different values of b.
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(iii) For a < 0; b > 0, with a2 > 4b, there are five fixed points: two saddles connected by two heteroclinic orbits, and
the two saddle points are connected to themselves by one homoclinic orbit. In addition, there are three centers.

Since we are interested in the case of a three-well potential, this corresponds to the case (iii), and then we fix the
parameter values to be a ¼ �0:6, b ¼ 0:05 throughout this paper. The phase portrait and the potential function of
the system given by Eq. (3) are shown in Fig. 1a and b, respectively. In Fig. 1c it can be observed how the shape of
the potential function varies for different values of b.
3. Horseshoe chaos for damped and periodic perturbation

We now suppose that the unperturbed system discussed in the previous section is perturbed by a combination of
dissipative ð�aþ b _x2Þ _x, periodic ðF cos xtÞ forces, and parametric forces ðl cos 2xtÞ and take a, b, l, and F to be small
parameters where l, and F � 1. We will investigate theoretically the condition for the onset of homoclinic and hetero-
clinic behavior by applying the Holmes–Melnikov method to Eq. (2). A transformation of a! ea, b! eb, l! el,
F ! eF is done in order to apply the e first-order perturbation of e of the Holmes–Melnikov method. Hence, the horse-
shoe chaos for our model equation is analyzed by transforming Eq. (2) into a system of the first-order differential equa-
tion of the following form
_x ¼ y;

_y ¼ �x� ax3 � bx5 � e ð�aþ b _x2Þ _x� lðxþ ax3 þ bx5Þ cos /1 � F cos /2ð Þ;
_/1 ¼ 2x;
_/2 ¼ x:

8>>><
>>>:

ð6Þ
The unperturbed system for system Eq. (6) (i.e. e ¼ 0) has two homoclinic orbits and one heteroclinic orbit as shown
in Fig. 1b. When the perturbations are added, the closed homoclinic or heteroclinic orbits break, and may have trans-
verse homoclinic or heteroclinic orbits. By using the Smale–Birkhoff Theorem [30], the existence of such orbits results in
chaotic dynamics. As is well-known, the Melnikov method provides the estimates in parameter space for the appearance
of homoclinic (and heteroclinic) bifurcations, and hence for transient chaos. This means that in most cases only the
necessary conditions for steady chaos (strange chaotic attractor) are obtained from the method. Therefore, one may
always get sufficient conditions for the inhibition of even transient chaos (frustration of homoclinic/heteroclinic bifur-
cation) and, a fortiori, for the inhibition of the steady chaos that ultimately arises from such a homoclinic/heteroclinic
bifurcation. In their previous work, Siewe et al. [24,25] has showed that when e ¼ 0, the system Eq. (6) is a Hamiltonian
system with a pair of heteroclinic orbits defined as follows:
ðx�h ; ðyhÞ
�Þ ¼ �

x1

ffiffiffi
2
p

sinh T 1t
2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nþ coshðT 1tÞ

p ;�
T 1x1

ffiffiffi
2
p
ð1� nÞ cosh T 1 t

2

� �
2ð�nþ coshðT 1tÞÞ3=2

 !
ð7Þ
and possesses a pair of symmetric homoclinic trajectories connecting each unstable point to itself given by
ðx�h ; ðyhÞ
�Þ ¼ �
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where T 1 ¼ x2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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2ðh
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According to Eq. (7) and (8), the signs refer to the right and left half planes. Both solutions determine the separatrix
orbit, since it separates two types of orbits in phase space þ refers to the hetero/homoclinic trajectory with x > 0 and �
refers to the hetero/homoclinic trajectory with x < 0. We therefore apply the Melnikov method to system Eqs. (6) for
finding the criteria of the existence of homoclinic or heteroclinic bifurcation and chaos.
M�ðt0Þ ¼ a
Z

y2
h dt � b

Z
y4

h dt � l
Z

xhyh cos 2xðt � t0Þdt þ F 0

Z
yh cos xðt � t0Þdt þ la

Z
x3

hyh cos 2xðt � t0Þdt

þ lb
Z

x5
hyh cos 2xðt � t0Þdt; ð9Þ
where t0 is the cross-section time of the Poincaré map and t0 can be interpreted as the initial time of the forcing term.
This Melnikov expression comprises in a compact way a lot of particular results that can be found in the literature.
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3.1. Heteroclinic bifurcation

Let us first consider the case of heteroclinic orbit. It has been shown that three singular points, given by x�1 which are
saddles, and x0 ¼ ð0; 0Þ which is a center. The zero solution bifurcates into a family of limit cycles which are stable.
Inside the left and right region of Fig. 1b, there exist two limit cycles. Substituting the heteroclinic solution given by
Eq. (7) into the Melnikov function given by Eq. (9) which need to be evaluated, it appears that the Melnikov function
for the heteroclinic orbits is given by
Fig. 2.
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It follows from the Melnikov theory that, to keep the heteroclinic loop preserved under a perturbation, it is neces-
sary and sufficient that Mþðt0Þ � 0 and dM�

dt –0 at t ¼ t0. Thus, a bifurcation curve for the heteroclinic bifurcation can be
solved from Eq. (10) as
l P lhe ¼ 1� R1

R3

� �
R

����
����; ð11Þ
which implies that if e > 0 is sufficiently small, the reduced Eq. (6) has transverse heteroclinic orbits resulting in the
possible chaotic dynamic.

By Melnikov analysis given by Eq. (10), Fig. 2 shows the critical values for heteroclinic bifurcation lhe as functions
of frequency x under the action of a harmonic excitation. One can see that when the value of the harmonic excitation F

increases, the thresholds of lhe increase. It is also found that for a fixed value of the harmonic excitation, there are two
(a) Bifurcation diagram of the equation €xþ ð�0:012þ 0:0002_x2Þ _xþ ð1� 0:85 cos 1:5tÞðx� 0:6x3 þ 0:05x5Þ ¼ 0:01 cos 0:75t in
xÞ plane for x 2 ½0; 1� with ðx0; _x0Þ ¼ ð0:1; 0:5Þ. (b) Maximum Lyapunov exponent corresponding to (a). (c) Bifurcation diagram

equation €xþ ð�0:012þ 0:0002 _x2Þ _xþ ð1� 0:85 cos 1:5tÞðx� 0:6x3 þ 0:05x5Þ ¼ 0:01 cos 0:75t for x 2 ½0:52; 0:8� showing the
ion from chaos to the period doubling and to the period-one. (d) Maximum Lyapunov exponent corresponding to (b) showing
nsition from chaos to the periodic region.



778 M.S. Siewe et al. / Chaos, Solitons and Fractals 41 (2009) 772–782
critical values under which heteroclinic bifurcation may occur. This can be due to the effect of the strongly nonlinearities
in our model Eq. (2)

3.2. Homoclinic bifurcation

Now consider the case of homoclinic orbit and substituting Eq. (8) into Eq. (9) and evaluating the integral, we obtain
the Melnikov function
Fig. 5
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Since the Melnikov function theory measures the distance between the perturbed stable and unstable manifolds in the
Poincaré section, to preserve the homoclinic loops under a perturbation requires that at t0, if Mðt0Þ� has a simple zero,
then a homoclinic bifurcation occurs, signifying the possibility of chaotic behavior. This means that only necessary con-
ditions for the appearance of chaos are obtained from Poincaré–Melnikov–Arnold analysis, and therefore one always
has the chance of finding sufficient conditions for the elimination of even transient chaos. The necessary condition for
which the invariant manifolds intersect is given by
l P lho ¼ 1� K1

K3

� �
K

����
����; ð13Þ
which implies that if e > 0 is sufficiently small, the reduced Eq. (5) has transverse homoclinic orbits resulting in the pos-
sible chaotic dynamics.
. Basin of attraction inside the right-hand potential well: (a) lho ¼ 0:01, (b) lho ¼ 0:09, (c) lho ¼ 0:13 and (d) lho ¼ 0:3, the
parameters are: F ¼ 0:01, x ¼ 1.
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Fig. 3 depicts the threshold curves lho for homoclinic orbits covering the range 0 < x < 1:6 for different values of F.
As it can be observed from this figure, as F increases the threshold lho for the onset of chaos obtained by the Melnikov
technique increases for a frequency range 0 < x < 1:3.
4. Numerical simulations and analysis

In order to see the effect of the nonlinear damping in the dynamics of a particle moving in the three-well potential of
our model, we have plotted the bifurcation diagram of the system Eq. (2) in the ðx; bÞ plane for F ¼ 0:01, l ¼ 0:85,
x ¼ 0:75 with ðx0; _x0Þ ¼ ð0:1; 0:5Þ (see Fig. 4a and b). The main tool used in this investigation was a fourth-order Run-
ge–Kutta algorithm allowing the numerical integration of model Eq. (2). The corresponding maximum Lyapunov expo-
nent is also plotted as showed in Fig. 4c and d. From Fig. 4a, we observe that there are two different chaotic regions
with period windows. Fig. 4b show the transition to chaotic region, period doubling bifurcations and period one.

The computations made to depict the complex behavior of the basin boundaries of the attraction for Eq. (2) concen-
trate mainly on two situations: homoclinic and heteroclinic orbits. These were done in order to support the theoretical
results obtained in the previous sections. In the case of homoclinic orbit, By performing a scan of a grid 1333� 833 of the
initial conditions in the ðx0; dx0=dtÞ plane for various values of the control parameter l. For fixed parameters F ¼ 0:01
and x ¼ 1, we find that analytical homoclinic threshold is given by l 	 0:04 while numerical one is l 	 0:01. The basins
of attraction are regular (see Fig. 5a). As this control parameter increases above this critical value, the regular shape of
basin of attraction is destroyed and the fractal behavior becomes more and more visible (see Fig. 5b–d). Such fractal
boundaries indicate that whether the system is attracted to one or the other periodic attractor may be very sensitive
to initial conditions. It is also found that even if l is increased beyond the analytical critical value for the homoclinic
bifurcation, it is still possible that the final steady motion could be periodic rather than chaotic. This is due to the fact
that we have used the first-order approximation of Melnikov function. In the case of heteroclinic orbit, for fixing param-
eters F ¼ 0:01 and x ¼ 0:7, we find that analytical heteroclinic threshold is given by l 	 0:2 while numerical one is
l 	 0:07. When l is less than the heteroclinic critical value, the basins of attraction are regular (see Fig. 6a and b).
Fig. 6. Basin of attraction inside the medium potential well: (a) lhe ¼ 0:07, (b) lhe ¼ 0:2, (c) lhe ¼ 0:35 and (d) lhe ¼ 0:7, the others
parameters are; F ¼ 0:01, x ¼ 0:7.
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As l increases, the regular shape of basin of attraction is destroyed and the fractal behavior becomes more and more
visible (see Fig. 6c and d).
5. Conclusions

In this paper, the dynamics of a parametrically driven Extended Rayleigh Oscillator with a three-well potential has
been studied. The Melnikov method has been applied when the system is perturbed to determine the threshold of homo-
clinic and heteroclinic bifurcations which are the ‘‘precursors” of the chaotic behaviors in the dynamical systems.
Through the basin boundaries, bifurcation diagrams obtained from the direct numerical integration of the equation
motion, a good agreement between the analytical estimates and the numerical observations is observed. Moreover,
the effect of using the parametric perturbation on the erosion of the fractal basin boundaries has been studied. By fixing
all the parameters of the system and varying only the amplitude of the parametric excitation above the critical value, the
increasing amplitude of the parametric excitation provokes a rapid erosion of the basin boundaries of attraction.
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Appendix A

The parameters used in the case of the heteroclinic orbit are defined as follows:
Che ¼
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Appendix B

The parameters used in the case of the homoclinic orbit are defined as followed
Cho ¼
6n5 þ 42n4 þ 603n3 þ 561n2 þ 566nþ 112

n� 1
;

Dho ¼
320n4 þ 400n3 þ 765n2 þ 315nþ 90

n� 1
;
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T 2
1

� �
1þ x2

T 2
1

� �
ð1� nÞ2 þ 10ð1� n2Þ 1þ 4x2

T 2
1

� �
þ 15ð1þ nÞ2;

K1 ¼
x2

1T 1

4ð1þ nÞ2
aðn2 þ 3n� 2Þ þ bx2

1T 2
1Cho

240ð1þ nÞ2
þ

arcsin n� p
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p anð3n� 1Þ þ bx2

1T 2
1Dho

240ð1þ nÞ2

" #" #
; ð18Þ

K2 ¼
2plx2

1x

T 1 sinh 2px
T 1

sinh 2x
T 1

arccos n
� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p þ 4ax2
1xð1� nÞg3

3T 1ð1þ nÞ2
þ 4bxx4

1ð1� nÞg4

15T 1ð1þ nÞ3

2
4

3
5; ð19Þ

K3 ¼
2Fx1

T 1

sin
2x
T 1

; ð20Þ

K ¼
F sin 2x

T 1
sinh 2px

T 1

px1x
sinh 2x

T 1
arccos n

� 	
ffiffiffiffiffiffiffi
1�n2
p þ 4ax2

1
xð1�nÞg3

3T 1ð1þnÞ2 þ
4bxq4

1
ð1�nÞg4

15T 1ð1þnÞ3

2
4

3
5
: ð21Þ
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