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In this paper we make a thorough exploration of the technique of partial control of chaotic systems. This
control technique allows one to keep the trajectories of a dynamical system close to a chaotic saddle even if the
control applied is smaller than the effects of environmental noise in the system, provided that the chaotic
saddle is due to the existence of a horseshoelike mapping in phase space. We state this here in a mathematically
precise way using the Conley-Moser conditions, and we prove that they imply that our partial control strategy
can be applied. We also give an upper bound of the control-noise ratio needed to achieve this goal, and we
describe how this technique can be applied for large noise values. Finally, we study in detail the effect of
imperfect targeting in our control technique. All these results are illustrated numerically with the paradigmatic
Hénon map.
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I. INTRODUCTION

In recent years, control of chaotic dynamical systems �1�
has attracted growing attention due to the ubiquity of this
kind of systems in nature and its potential applications in
science and engineering �2�. A feature shared by most control
techniques is that they attempt to obtain a desired behavior
from a dynamical system by applying small and accurately
chosen perturbations. To do this, it is often needed to use
appropriately some of the properties of the dynamical system
under consideration. A paradigmatic example of this ap-
proach is the seminal paper by Ott, Grebogi, and Yorke �3�,
where the properties of the chaotic attractor are used to sta-
bilize the trajectories of the system onto a desired periodic
orbit embedded within it.

But permanent chaos is just one among many dynamical
phenomena that can be observed in nonlinear dynamical sys-
tems. Transient chaos �4� is also widespread. This phenom-
enon is due to the existence of a nonattractive chaotic set in
phase space, the so-called chaotic saddle: Trajectories that
start close to a chaotic saddle will behave chaotically for a
while before settling into another �possibly periodic� attrac-
tor. For this reason, there are situations where it is preferable
to keep the trajectories close to the chaotic saddle, so differ-
ent techniques to achieve this goal have been proposed
�5–11�, referred to typically as the control of transient chaos.

Because the chaotic saddle is a zero-measure repelling set
in phase space, in order to keep the trajectories nearby, it will
be necessary to apply repeated corrections to the trajectories
of the system considered, i.e., a control. But this is not the
only difficulty that must be faced when trying to achieve this
goal: Typically, most real systems are affected by the pres-
ence of environmental noise.

In most realistic situations, the control that can be applied
on the system’s trajectories is bounded. Thus, we must con-
sider different scenarios. If the control that can be applied on
the system’s trajectories is larger than the amplitude of the
noise, we might presumably easily find a control strategy to
keep the trajectories close to the chaotic saddle. On the other
hand, if the control that can be applied on the system is equal
to the amplitude of the noise, the strategies cited above allow

one to keep the trajectories close to the chaotic saddle. But
there is another possibility: It might well happen that the
control that can be applied on the system is smaller than the
amplitude of the noise. In this situation, due to the intrinsic
instability of the chaotic saddle and the effect of noise, the
control of transient chaos might seem impossible to achieve.

However, in a recent paper �12� we sketched a technique
that allows one to keep the trajectories close to the chaotic
saddle even in this complicated scenario. As in other control
techniques, our control technique makes use of the particular
characteristics of the dynamics that give rise to this type of
behavior. The technique that we proposed made use of the
fact that typically chaotic saddles arise due to the existence
of a horseshoe map �13� in phase space. The particular geo-
metrical action of this map is known to imply the existence
of transient chaos on the system considered. However, we
showed that precisely this geometrical action also implied
the existence of certain sets, the safe sets, that can be used to
keep the trajectories close to the saddle even if the correc-
tions applied are smaller than the amplitude of the noise.
Those sets lie in the vicinity of the chaotic saddle, and they
turn out to have a structure such that trajectories can be kept
on them even if the control applied is smaller than the effect
of noise, which is a major advantage when compared with
other control schemes. Among the cited references, only Ref.
�9� gives a strategy that achieves an analogous result, that
can be applied to a family of one-dimensional maps.

Our control scheme, though, does not say where the tra-
jectories will exactly go in the vicinity of the chaotic saddle,
so we call our technique partial control of a chaotic system.
It is important to note that partial control has potential appli-
cations in many different contexts in physics, due to the
ubiquity of horseshoelike maps in nonlinear dynamical sys-
tems. Since the pioneering work of Smale �14�, horseshoe
maps have played an important role in understanding chaotic
dynamics, and they are known to be present in the dynamical
systems used to model different physical phenomena: A par-
ticle bouncing on an oscillating table �15�, a driven laser
�16�, a family of nonlinear oscillators �17�, an atom-field
interaction �18�, a bistable optical system �19�, a Josephson
junction �20�, and in fluid advection �21�, just to cite some
examples.
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The aim of this paper is to prove some of the results stated
in Ref. �12�, in order to make it clear that the technique
described there can be applied to a wide class of dynamical
systems with a chaotic saddle. On the other hand, we give
some results that enlighten different aspects of our partial
control technique, such as an upper bound of the control
needed and the effect of imperfect targeting of the safe sets.
Our ideas are illustrated with the paradigmatic Hénon map,
that we also use to verify numerically the validity of our
results.

The structure of this paper is the following: First, we will
state in a mathematically precise way our problem in Sec. II,
formulating the existence of a horseshoelike mapping on
phase space in terms of the Conley-Moser conditions �22�. In
Sec. III we prove that these quite general conditions imply
necessarily the existence of safe sets, and thus our partial
control technique can be applied. In Sec. IV we briefly de-
scribe our partial control technique and use it to give an
upper bound of the control-noise ratio needed to keep trajec-
tories bounded, and we show that it is always smaller than
one. We discuss in Sec. V the effects of imperfect targeting,
and finally in Sec. VI the main results of this paper are sum-
marized.

II. PROBLEM STATEMENT

We start by stating our problem in a mathematically pre-
cise way. We consider here that the dynamics of the unper-
turbed system that we want to control is given by the two-
dimensional map pn+1= f�pn�. The main properties of the
maps considered here will be given later, but they can be
characterized by having a chaotic saddle on a square Q in
phase space, in such a way that nearly all the trajectories
�except a zero measure set� will escape from Q after a finite
number of iterations. We can also consider that, as in most
physical systems, this dynamical system is affected by envi-
ronmental noise. The noise here can be modeled by adding a
random perturbation un each iteration, such that 0� �un�
�u0. Thus, the dynamics of the system that we want to con-
trol can be modeled by the equation pn+1= f�pn�+un.

As we said, our aim is to keep the trajectories close to the
chaotic saddle, and thus inside Q, by applying an accurately
chosen and bounded control rn, that is, 0� �rn��r0. We as-
sume that this control can be applied upon each iteration on
the system’s trajectory, so the global dynamics of the system
is given by the following equation:

qn+1 = f�pn� + un,

pn+1 = qn+1 + rn�qn+1� . �1�

These equations simply mean that, considering the posi-
tion pn, each iteration on the joint action of the map and the
noise would make the trajectory lie on qn+1. However, for
each iteration we apply a control that depends on qn+1,
rn�qn+1�, so that the next point of the trajectory pn+1 will be
close to the chaotic saddle.

In Ref. �12� we mention that if we wanted to apply our
partial control technique, the map f needed to be horseshoe-
like. This can be mathematically formulated by saying that

the map f satisfies a slight modification of the Conley-Moser
conditions as they can be found in Ref. �23�. In order to state
these conditions, some definitions are needed. For simplicity,
consider that the square Q is placed in the plane in such a
way that the top and bottom sides are parallel to the x axes,
and the left- and right-hand sides are parallel to the y axis.
We consider that a horizontal curve is a curve going from the
left-hand to the right-hand side of Q of the form �x ,g�x��.
Analogously, a vertical curve is a curve �h�y� ,y� going from
top to bottom of the square Q. A horizontal strip is the set of
points between two nonintersecting horizontal curves, and a
vertical strip is the set of points lying between two noninter-
secting vertical curves. The width of a horizontal strip H,
noted w�H�, is the maximum distance between any two
points of the bounding horizontal curves sharing the same x
coordinate. Analogously, the width of a vertical strip V,
noted w�V�, is the maximum distance between any two
points of the bounding vertical curves sharing the same y
coordinate.

Considering these definitions, the map f needs to satisfy
the following conditions:

�C1� For a certain square Q in the plane, f�Q��Q consists
of at least two disjoint horizontal strips H1 and H2 that are
separated from the upper and lower sides of Q by a distance
��0, and f−1�Q��Q consists of at least two vertical strips
V1 and V2. Moreover, f�Vi�=Hi homeomorphically and the
horizontal �vertical� bounds of Vi are mapped into horizontal
�vertical� bounds of Hi.

�C2� Given a horizontal strip H, then f�H��Hi for i
=1,2 is a horizontal strip satisfying

w�f�H� � Hi� � �w�H� with � � �0,1� .

For any vertical strip V, f−1�V��Vi for i=1,2 is also a
vertical strip satisfying

w�f−1�V� � �Vi�� � �w�V� with � � �0,1� .

These conditions are illustrated in Fig. 1. As the reader
will notice, they match with the intuitive notion of a horse-
shoelike mapping on Q, i.e., a mapping that stretches and
folds the square on phase space back into itself.

From C1 and C2 two facts can be derived �23�: First, that
there is a zero-measure set where the dynamics is chaotic,
the chaotic saddle. Second, that all trajectories starting in Q,
except a zero measure set, escape from it under a finite num-
ber of iterations. Thus, a map satisfying these conditions is a
good example of dynamical system with a chaotic saddle.
Furthermore, conditions similar to C1 and C2 can be derived
for any map with transverse homoclinic points by the Smale-
Birkhoff homoclinic theorem �15�, so we can say that maps
satisfying these conditions can be found in quite general situ-
ations. These are the dynamical systems that we want to
control: We shall show now that these conditions also imply
that trajectories can be kept inside Q, and thus can be par-
tially controlled, even if r0�u0.

An example of a map satisfying these conditions is the
well-known Hénon map xn+1=A−Byn−xn

2, yn+1=xn with A
=6, B=0.4. By adequately choosing a square Q in phase
space, this map looks like a horseshoe map, as shown in Fig.
2. By verifying that this map satisfies C1 and C2, it can be
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proved that there is a chaotic saddle inside Q �24�. On the
other hand, it can be shown that nearly all the trajectories
starting in Q, except a zero-measure set, diverge to infinity
after a number of iterations. Thus, by applying our control
technique to this system we will show that it is possible to
keep trajectories close to the saddle, and thus bounded, even
if the control applied is smaller than the amplitude of noise.

III. SAFE SETS

Now we are going to show that from the conditions C1
and C2 given in the preceding section, the existence of safe
sets—the key element of our partial control strategy—can be
inferred. In Ref. �12� we stated that if the map f acts like a
horseshoe map, and if we call S0 to the vertical curve lying

between the two vertical strips V1 and V2, the sets �Sj� gen-
erated inductively as

Sk = f−1�Sk−1 � �H1 � H2�� , �2�

are the safe sets and they fulfill the following properties �i�–
�iii�:

�i� Sk consists of 2k vertical curves.
�ii� Any vertical curve of Sk has two adjacent vertical

curves of Sk+1 closer to it than any other curve of Sk.
�iii� The maximum distance between any of the 2k curves

of Sk and its two adjacent curves of Sk+1, denoted as � max
k ,

goes to zero as k→�. The same applies to the minimum
distance, denoted � min

k−1.
In order to illustrate clearly these properties, we have cal-

culated the safe sets for the Hénon map, and they are shown
in Fig. 3. They clearly satisfy conditions �i�–�iii�, as ex-
pected. With this example in mind, we can prove now that
for any map f satisfying the conditions C1 and C2 the safe
sets calculated using Eq. �2� will also satisfy conditions �i�–
�iii�.

We start by proving condition �i�. Hypothesis C1 implies
that, given a vertical curve C, f−1�C��Vi is a vertical curve
for i=1,2. Thus, if S0 is a vertical curve that lies between V1
and V2, obviously S1 consists of two disjoint vertical curves,
one to its left and the other to its right. Considering that f−1 is
a homeomorphism from Hi to Vi, and that the curves in S1

are disjoint, S2= f−1�S1�� �V1�V2� consists of four disjoint
vertical curves. Reasoning inductively, it is clear that the set
Sk given by Eq. �2� consists of 2k disjoint vertical curves, as
we had for the Hénon map.

The proof of condition �ii� is analogous. Clearly, condi-
tion �ii� holds for k=0. Assume that �ii� holds for k. Then
each curve in Sk has two adjacent curves in Sk+1. Thus, each
of the 2k vertical curves of Sk is inside a vertical strip
bounded by those adjacent curves of Sk+1. If we apply the
map f−1 to each of these strips and see its intersection with
V1 and V2, by C2 we will have 2k+1 nonintersecting vertical
strips. Each of them will be bounded by two curves, which
by definition are curves of Sk+2. On the other hand, each strip

V V1 2

f H1

H2

f H1

H2

V1 V2

C2:

C1: ∆

FIG. 1. A pictorial representation of the conditions C1 and C2.
Condition C1 says that inside the square Q there are at least two
vertical strips V1 and V2 that are mapped to two horizontal strips H1

and H2, in such a way that horizontal bounds of Hi �gray� are
mapped into horizontal bounds �gray� of Vi, and the same applies to
vertical bounds �black� of Hi and Vi. The minimum distance be-
tween the top or the bottom of Q and the strips H1 and H2 is noted
�. Condition C2 says that if we apply the map f to a horizontal strip
H and we look at the intersection of f�H� with H1 and H2, we will
find two horizontal strips thinner than H. A similar phenomenon
occurs when we apply f−1 to a vertical strip V and we look at the
intersection of f−1�V� with V1 and V2.
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Q

FIG. 2. The action of the Hénon map xn+1=6−0.4yn−xn
2, yn+1

=xn in a square Q on the plane. This map satisfies conditions C1
and C2, so our technique can be applied.

x

y

FIG. 3. The safe sets for the Hénon map S0 �thick line�, S1

�black line�, S2 �gray line�, and S3 �light gray line�. The square Q
��� and its image under the map �thick gray� are also plotted for the
sake of clarity. Note that they fulfill properties �i�–�iii�: The set Sk

consists of 2k vertical curves, each of them having two adjacent
vertical curves of Sk+1 closer to it than any other curve of Sk, and
the distance with these adjacent curves decreases with k.
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will contain a curve that is a curve of Sk+1 by definition.
Thus, each curve of Sk+1 has two adjacent curves of Sk+2

closer to it than any other curve of Sk+1, due to the fact that
the strips constructed as described above cannot intersect.
Considering this, condition �ii� holds for k+1 and thus for all
k, as claimed.

Finally, condition �iii� can be proved by observing that the
maximum and the minimum distance between any curve of
Sk and its two adjacent curves of Sk+1 is bounded by the
width of the 2k strips that we described above, which clearly
by hypotheses C2 decreases as �k with k.

It is important to notice, however, that these conditions
imply the existence of safe sets for maps that do not neces-
sarily stretch and fold the square in a Smale-horseshoelike
way, as the Hénon map does. Condition C1 simply demands
that f�Q��Q and f−1�Q��Q consist of at least two horizon-
tal and vertical strips, respectively, that are mapped among
themselves in a suitable way. Thus, different maps can fulfill
this condition. An example of this is the map that is sketched
in Fig. 4. It can be shown �25� that if we consider a map f
that stretches and folds the square Q as shown there, in such
a way that points to the left and the right of Q under itera-
tions settle into the distant periodic attractors A1 and A2,
respectively, then fractal basin boundaries arise. However,
this kind of mapping also satisfies conditions C1 and C2 �we
have two strips H1 and H2 under which the map acts in the
prescribed way�, so safe sets can be found for this system
and trajectories could be kept inside Q, and thus away from
these attractors, forever with r0�u0, as we will see below.

On the other hand, horseshoes usually appear in settings
quite different to those discussed above. As we said in the
preceding section, the Smale-Birkhoff homoclinic theorem
�15� assures that close to a transverse homoclinic point, we
can find a topological square for which the action of the
considered map �or of a number of iterations of the consid-
ered map� is topologically equivalent to a horseshoe map.
Moreover, it can be shown that in those situations it is pos-
sible to find a �topological� square in this situation for which
the dynamical system considered acts on it in a way that is
topologically equivalent to the action of a map acting on a
square Q satisfying conditions C1 and C2. Considering this,
in these general settings it is possible to find safe sets that are

topologically equivalent to those described by properties �i�–
�iii�, so the set Sk is always “surrounded” by the set Sk+1.
From the control strategy that we will describe below, it will
be clear that this is the key property of those safe sets. Thus,
the results provided in this paper show that our control tech-
nique can be applied in a wide variety of situations.

In this context, an important problem is how those topo-
logical horseshoes can be detected. To our knowledge, there
is not a general approach to achieve this goal. Although this
goal is far from the scope of the present work, we consider
that there are two tools that can be used in order to detect
those horseshoes. The first one would be to detect the peri-
odic orbit with a transverse homoclinic point by detecting
and computing its stable and unstable manifolds, something
that can be done even experimentally �26�. Once this is done,
it must be possible to find a suitable topological square en-
closing it where the system will behave like a horseshoe
map. Another possible approach would be to use a method to
detect the chaotic saddle �for example, the one proposed in
�27�� and to observe the action of the map on an adequate
square enclosing it, which might allow us to observe a horse-
shoelike mapping.

Considering this, we have proved that the conditions C1
and C2 imply the existence of these advantageous safe sets.
With these ideas we can describe now how our partial con-
trol technique uses them. We will give later an upper bound
of the control-noise ratio needed for our partial control tech-
nique as a function of the noise amplitude u0.

IV. PARTIAL CONTROL STRATEGY: CONTROL-NOISE
RATIO

We consider first the case u0��, and we will treat the
less aesthetically appealing case u0	� later. The strategy
described in �12� was essentially the following: Given the
value of the noise amplitude u0, we must place the initial
condition of the system p0 on a suitable safe set Sk such that
�max

k−1 �u0 �which always exists no matter how small u0 is by
property �iii��. After this, considering that Sk is the preimage
of Sk−1 in the square Q, f�p0� will be on a curve of Sk−1,
which has two adjacent curves of Sk, by �ii�.

The deviation induced by noise can essentially have two
effects, that are summarized in Fig. 5. First, it can make the
perturbed trajectory q1= f�p0�+u0� lie in the region between
those two curves of Sk. Another possibility is that the per-
turbed trajectory will lie outside this region, in the point q1
= f�p0�+u0. In the previous case, and by definition of �max

k−1 , a
correction r0 smaller or equal to �max

k−1 �and thus smaller than
u0� will put the point of the trajectory back on a curve of Sk.
In the latter case, it is clear that a correction smaller than
u0−�min

k−1 can place it back on a curve of Sk, as we can see in
Fig. 5. Thus, using this strategy we can always find a r0
whose length is bounded �r0 � �r0�u0 in such a way that the
next point of the trajectory p1=q1+r0 will lie again on Sk,
and this can be repeated forever. This implies that using this
strategy we can always find a positive constant r0 such that
even if �rn � �r0�u0 the trajectory pn lies always some-
where on Sk, and the system is partially controlled forever.

In the example described before, we should search for the
point of Sk that is the closest to q1 and then compute r0, and

Q

f( )Q

To A

To A

2

1

H1

H2

FIG. 4. The action of the map f on the square Q �dashed line�. If
we assume that points to the right of the right-hand side of Q settle
after iterates into a periodic attractor A1, and that points to the left
of the left-hand side of Q settle after iterates into a periodic attractor
A2, it can be shown that this type of mapping implies the appear-
ance of fractal boundaries between the basins of attractions of those
attractors. But this type of geometrical action would also allow us to
build safe sets that can keep trajectories inside Q in the presence of
noise with r0�u0.
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repeat the same procedure for each iteration. In principle, we
will have only a limited number of points of Sk stored, but if
the number of such points is sufficiently big the technique
described above can be applied properly.

This type of control might face some difficulties in prac-
tical situations, though. The presence of inaccuracies in the
location of Sk or of imperfect targeting, i.e., of errors in the
applied control rn, might be an obstacle for this type of con-
trol, although we will show in the next section that they do
not have a dramatic effect if those inaccuracies are reason-
ably small. Another possible problem when applying this
technique would be that we will need to apply the correction
inmediatley upon each iteration, so that a given amount of
time will be needed to locate the point on Sk that lies closest
to qn. The search of such a point can be slow if we have a lot
of points stored as belonging to Sk, something that on the
other hand is necessary for a correct application of our con-
trol technique, as we said above. However, we know how the
points of Sk are mapped into points of Sk−1. For example, in
the description of the strategy above, provided the position
of p0, we know beforehand that q1 will be close to a particu-

lar point of Sk−1, namely f�p0�. Thus, using adequately this
information can reduce the search time drastically.

As an example of application of our technique, we can
apply it to the Hénon map. We consider the case in which the
system is affected by noise with amplitude u0=0.25��
�0.7. Numerical computations of the � max

k show that the
suitable safe set Sk for our control strategy is S3. In Fig. 6�a�,
we can see the trajectory resulting from applying our partial
control strategy in 1000 iterations. The points of the resulting
trajectory lie always somewhere on S3, and in Fig. 6�b� we
can see that the amplitude of the control applied each itera-
tion �rn��r0�0.18 is smaller than u0=0.25. Thus, diver-
gences from Q are avoided even if the correction applied for
each iteration is smaller than the noise amplitude. It is im-
portant to note that in absence of control and of noise, a
trajectory starting on S3 would typically escape from the
square Q after four iterations, and then diverge.

An important issue here is to consider which would be the
control-noise ratio r0 /u0 allowing to partially control the sys-
tem considered for different values of u0��. Considering
the strategy described above, that �min

k ��min
k−1 and that � max

k

��max
k−1 , it is straightforward to show that the control-noise

ratios needed for each value of u0�� are bounded by the
following expressions:

r0

u0
�

� max
k

u0
if u0 � �� max

k−1 + � min
k ,� max

k−1 + � min
k−1� ,

r0

u0
�

u0 − �min
k−1

u0
if u0 � �� max

k−1 + � min
k−1,� max

k−2 + � min
k−1� .

Obviously these expressions give upper bounds of the ratios
that are smaller than 1, and they depend on the value of the
noise u0 considered. These expression also give us an indi-
cation of the safe set Sk that allows one to minimize the ratio
r0 /u0, given the value of u0. The lower bound of these ratios
is r0 /u0=1 /2, which means that in some cases the system
considered can be partially controlled with a control that is
50% of the noise. This fact, though, will depend on the value
of u0 and on the size of the �’s, whose value depend on the
map f.

x

y
f( x)

f( x)+ u
a

f( x)+ u
b

r
b

r
a

H
1

V
1

f(p )+u0

f(p )0

r0f(p )+u’0 0

0

r’0

FIG. 5. A trajectory starting in p0 belonging to S3 �light gray
line� is mapped to f�p0�, that belongs to S2 �gray line�. The noise
action can either deviate it to the region between the two adjacent
curves belonging to S3, as u0�, or take it outside this region, as u0. In
any case, trajectories can be placed again on S3 by applying a per-
turbation �either r0� or r0� bounded by a r0 such that r0�u0, and this
can be repeated forever.
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FIG. 6. Example of application of our strategy to the Hénon map for u0=0.25. �a� A plot of 1000 points or the orbit, that lie on S3, the
suitable safe set for this value of noise. The square Q and its image under the map �dashed line� are also plotted for the sake of clarity. The
inset plot shows a zoom of the square, showing that the points of the trajectory always fall on the curves of S3. �b� The value of the control
applied for each iteration is to keep the trajectories on S3 and thus on Q. Note that it is always smaller than u0=0.25 �marked with a dashed
line�, as expected.
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In order to verify the validity of these bounds, we have
computed them numerically for the Hénon map by taking a
series of 1000 time steps for different values of u0, and we
have numerically estimated the ratio of r0 /u0 needed to par-
tially control the system. The result of our calculation can be
seen in Fig. 7, where the ratio is plotted against u0. We can
see in that figure that there is a good agreement between the
computed values and the upper bounds given above, that
were computed using numerical estimations of the � max

k and
�min

k involved.
Finally, we can show how our control strategy can be

applied even if the noise values are large, i.e., if u0��. For
these noise values the control strategy that we apply is es-
sentially the same: We just need to put the initial condition
on a suitable safe set Sk, from which it will be mapped to a
point in Sk−1. Condition C1 implies that any point on a safe
set will be mapped inside a horizontal strip, either H1 or H2,
and that it will be at most � away from the top or the bottom
sides of the square Q. Thus, when u0��, it is possible to
find that the joint action of the noise and the map can take
the trajectory out of the square, as shown in Fig. 8. Consid-
ering the situation shown in this figure, it is easy to see that
it is still possible to keep the trajectories bounded for a given
value of u0��. What we must do is to place the initial
condition on a safe set Sk such that u0 is larger than
max�u0−�+� max

k−1 ,� max
k−1 �, which is always possible provided

that k is sufficiently small. In that case, we can see that it is
possible to keep trajectories bounded forever with r0�u0.
The necessary r0 value to achieve this goal is

r0 = max�u0 − � + � max
k−1 ,� max

k−1 ,u0 − � min
k−1� � u0.

This possibility, together with the possibilities discussed in
the u0�� case, imply that we can keep trajectories bounded
forever with r0�u0 for all values of u0�0.

V. EFFECTS OF IMPERFECT TARGETING

As in any other control scheme involving targeting of
certain points in phase space, an important issue that should

be considered when aiming for potential practical applica-
tions is which can be the possible effects of having imperfect
targeting. This can be modeled by considering that, instead
of applying the necessary correction rn for each iteration, we
apply rn+�rn, where ��rn���r0 is what we call “control
noise.” This is a random error out of our control that is due to
this imperfect targeting. However, it is important to note that
this situation is equivalent to considering that we do not
know the exact position of the safe sets Sk, but instead there
is an inaccuracy smaller or equal than �r0 on its position.
Thus, this �r0 can be an effect of the imperfect targeting, to
uncertainties in the position of the safe sets or to these two
effects together.

However, as we sketched in Ref. �12�, it is not difficult to
show that in this situation it is still possible to keep trajecto-
ries bounded even when the control is smaller than the noise
if �r0 is sufficiently small. This can be seen as follows. As-
sume that we are trying to partially control the trajectory for
a given u0, and that this can be achieved when the targeting
is perfect �which implies that �r0=0� for certain value r0
�u0. For simplicity, we can assume that pn is a point that
can be at most �r0 away from the suitable safe set Sk for this
noise value. Considering that for �r0=0 the point f�pn�+un
will be at most u0 away from a point in Sk−1, it is easy to see
that for �r0�0, the point qn+1= f�pn�+un will be further
from Sk−1, but at most u0+C�r0 away from it. The value of
the constant C�1 depends on how expansive the map f is,
but it can always be found for small �r0 values, as long as
conditions C1 and C2 assure that the map f is well behaved.

As we mentioned before, in the case of perfect targeting a
correction r0 is enough to put the trajectory back on the safe
set. Now that the deviation of the trajectory is larger �due to
the joint action of noise un and to the fact that the trajectory
did not lie exactly in the suitable safe set� we need to apply
now a larger correction rn�. However, using the same idea
that is shown in Fig. 5, we can notice that a correction such
that �rn���r0�=r0+C�r0 would be enough to put pn+1=qn
+rn� at most �r0 away from the suitable safe set, and this
strategy can be repeated forever. In this case, the necessary
control and/or noise ratio to keep trajectories partially con-
trolled is r0� /u0= �r0+C�r0� /u0, that is smaller than one if
�r0 is sufficiently small, as we claimed.
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FIG. 7. Control-noise ratio needed to partially control the Hénon
map, computed numerically taking 1000 trajectories of 1000 itera-
tions �dots�. We also plot �solid� the upper bounds for this ratio
given by the expression derived in the text. In order to use those
expressions, numerical estimates of the values of � max

k and �min
k are

needed.
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FIG. 8. A possible situation arising when u0��. A trajectory
starting in p0 belonging to S3 �light gray line� is mapped to f�p0�,
that belongs to S2 �gray line�, a point that is inside the horizontal
strip H1 �bounds in thick gray lines�. If u0�� the point f�p0�+u0

can lie out of Q, whose lower bound is also represented here
�dashed�. But if we have chosen adequately the set Sk, we can see
here that with a control r0 bounded by a r0 such that r0�u0, the
trajectory can be lead to Sk, and this can be repeated forever.
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We have checked this result for different values of �r0
using the numerical example of the Hénon map with u0
=0.25, as we did previously. In Fig. 9 we can see a plot of a
controlled trajectory and the applied correction �rn� needed
for each iteration to partially control the system in the pres-
ence of imperfect targeting, when �r0=0.1r0. We can see in
Fig. 9�a� plot of a controlled trajectory. The inset plot in that
figure reveals that the trajectory lies always close to the suit-
able safe set S3 but never exactly on it, due to the imperfect
targeting. However, as we can see in Fig. 9�b�, even in this
situation the control applied is smaller than u0. It is also
clear, though, that the values of the control needed to keep
the trajectories bounded using our strategy in this situation
are larger than in the �r0=0 case �that are shown in Fig.
6�b��. Thus, in our opinion this technique is quite robust to
imperfect targeting.

VI. CONCLUSIONS

In this paper we have made a deep exploration of the
partial control technique, a control strategy that allows one to

keep the trajectories of a dynamical system close to a chaotic
saddle even if the control applied is smaller than the noise
amplitude. First, we have proved rigorously some results
from which it can be inferred that our technique can be ap-
plied in quite general settings. After this, we have given re-
sults concerning this technique. We have derived upper
bounds for the control-noise ratio that allow to partially con-
trol the considered system, that are always smaller than one.
We have shown that our control strategy can also be used for
large noise values. Finally, we have shown that those ratios
can be kept smaller than 1 even if there are inaccuracies in
the control signal, i.e., imperfect targeting, or uncertainties in
the position of the safe sets. Our results have been illustrated
and tested numerically with the paradigmatic Hénon map.
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