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Abstract:

Control of dynamical systems has rgceived a growing interest in last years. Most of the existing
control techniques allow to stabilize the system considered in a desired periodic orbit. However, in some
situations, we might just need to keep the system’s trajectories inside a region from which they will
typically escape, without making it follow a prescribed trajectory. We call this type of control partial
control. Environmental neise might be an obstacle to achieve this goal in practical applications. However,
our aim here is to show, using as an example the bouncing ball map, that there is an advantageous partial
control strategy that allows to keep trajectories bounded inside a region of phase space where the system
acts like a horseshoe map, from which nearly all trajectories diverge (except a zero-measure set). We
show here that the particular geometrical action of the map allows to do this even if the control applied
is smaller than the noise amplitude. A numerical exploration of the applicatjon of this technique to this
paradigmatic example is also performed.

1 Introduction

Since Ott, Grebogi and Yorke published their seminal paper [1] on control of chaotic systems, this branch
of nonlinear dynamics has attracted growing interest for its potential applicability in different fields of
science. The main goal of most of these works is either to find a way to lead the trajectory to any of the
unstable periodic orbits that are embedded inside the chaotic attractor by applying small perturbations
to the system, or to destroy the chaotic attractor by applying some small harmonic perturbations to the
system (see [2,3]).

Although chaotic attractors are widespread, there are other types of complex dynamical behaviour
that are also very common in nature, and for which it might also be desirable to achieve some type of
control. That is the case of transient chaos, a situation where there is a nonattractive set in phase space
where the dynamics is chaotic, (a chaotic saddle), from which typically all trajectories diverge. Different
techniques [4-7] have been proposed with this objective. This type of control is also known as chaos
preservation [8] or chaos maintenance [9], and it has been shown to be useful in many different contexts.
On the other hand, another widespread phenomena in nonlinear dynamics are interior crisis and crisis-
induced intermittency [10] by which, if one of the system’s parameters is varied, the chaotic attractor is
suddenly expanded. After a crisis, the trajectories alternate periods of time in the region of the phase
space where the pre-crisis attractor lied with excursions out of it. Those excursions might be undesirable,
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so that some schemes have also been proposed [11-13] that allow to keep the trajectories close to the
region where the pre-crisis attractor lied.

In most of the works mentioned in the former paragraph the aim of the control is not to make the
system follow a prescribed trajectory in the phase space. Instead, their aim is to keep the trajectories in a
bounded region from which they would typically escape in absence of control, and where the dynamics
can be very complicated. This type of control might be what is needed in many contexts and, in order to
differentiate it from other more restrictive control methods we call it partial control of a chaotic system.
It is also quite evident that in practical applications in physics, environmental noise is an obstacle in order
to achieve this goal. Our aim in this paper is to give a novel example of an advantageous partial control
technique that allows to partially control a wide variety of dynamical systems [14]. More precisely, this
technique allows to partially control a variety of dynamical systems that act like a horseshoe map on
a region of phase space. Our technique allows to keep trajectories bounded in that region even if the
control applied is smaller than the noise amplitude. In this paper, we describe the main features of this
technique by using as a novel example of application the well-known bouncing ball map [15].

The structure of this paper is the following: in Section 2 the control problem is stated precisely and
the main ideas of our partial control technique are outlined, introducing the key concept of safe set.
After this, in Section 3 we present the map that will be used in this paper, the bouncing ball map, and we
describe how safe sets can be found in this example. In Section 4 we outline our partial control strategy.
After this, in Section 5 we make some numerical analysis of our control technique and finally Section 6
is devoted to the conclusions,

2 . The partial control strategy

In this Section we state the partial control problem in a general way. We consider that the unperturbed
dynamics of the m-dimensional system considered is given by the one-to-one map p,, 1= f(pn), that
can also be a Poincaré map of a m + 1-dimensional flow in an appropriate surface of section. We assume
now that there is a region in phase space @ from which nearly the trajectories (except a zero-measure
set) escape under iterations of the map, and where the dynamics might be complex due to the presence
of a nonattractive chaotic set (i.e., a chaotic saddle).

As in most physical applications, trajectories might be deviated due to the action of the environmental
noise, so the dynamics of the system can be modelled by the equation p,4+1 = f(pn) + up, where uy, is
a bounded random perturbation, ||u,|| < uo, that plays the role of noise.

The aim of partial control is to keep the trajectories inside the region of phase space ¢ from which
trajectories would typically diverge. The only thing that we can do in order to achieve this goal is to apply
an accurate control r,, each iteration, that we assume also bounded by a positive constant ||ry,|| < 7o, in
such a way that the global dynamics of our system is given by the equations

dnt1 = f(pn) + Up (])
Pn+1 = Qn+1 + I'n,

(so the control r,, depends on p, and u,).

The strategy that we use to partially control this type of systems inside Q is the following. First,
we are going to locate inside the region @ certain safe sets where trajectories can be steered into with
the adequate control r,, each iteration (although it is not important to know exactly where will they lic).
The key point here is that for a wide variety of dynamical systems it is possible to find safc scts with
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a geometrical structure that allow to do this even if the amplitude of applied control is smaller than the
noise amplitude. In other words, it is possible even if rg < ug.

In the remaining part of this paper, we are going to make use of the well-known bouncing ball map
to show that if a dynamical system acts like a horseshoe map on certain region @ of the phase space,
it is possible to find these safe sets in Q. Thus, for these systems it is possible to keep trajectories
bounded in @, from which they would typically escape, even if the control applied is smaller than the
noisc amplitude.

3 Safe sets for the bouncing ball map

The map that we deal with is the bouncing ball map [15], which is defined as:

(¢n+l,vn+l) = (¢n + vn,avy + B cos(¢n + Un))- (2)

This map will play the role of the map f in Eq. 3. This map displays very different types of dynamics
depending on the values of parameters a and . However, we are interested here in the values o = 1 and
B = 12.6. For these parameters values, it can be proved rigorously that for certain parallelogram @ of
the phase space, the map f acts like a horseshoe map. This particular geometrical action is shown in Fig.
1.

As a consequence of this stretching and folding. nearly all the trajectories escape from Q under
iterations of the map. If we add noise to the system, then all trajectories eventually escape from Q. Our
aim here is to avoid those escapes, and to show that this type of partial control is possible even if we
use control that is smaller than the noise amplitude. To do that, we need the safe sets that we already
mentioned. Where can they be found?

The safe sets for horseshoe maps can be obtained inductively as follows. Let the safe set S° be
(somehow paradoxically) the segment in Q that escapes from it under one iteration of f, a segment that
goes from the left side to the right side of Q. Now, note that, due to the geometrical action of £~1, for
any curve 7 from the left to the right side of @, f~!(v) N Q consists on 2 new curves. Then, the safe
set S1 = £71(S5%) N Q will consist on two disjoint curves going from the left side to the right side of Q.
Thus, $? = £~1(S1) N Q will consist on 4 curves from left to right in Q. Proceeding analogously, the
safe set S* can be generated inductively using the following formula:

Sk =1 (S HnQ. (3)

The safe sets S°, S! and S? can bee seen in Fig. 1(b). From this figure, and considering also the
geometrical action of the bouncing ball map, we can see that these three properties, that are those that
make them useful for our control purposes, hold:

(i) The set S* consists of 2% curves going from the left side to the right side of Q.

(ii) Each curve of S* is surrounded by two curves of S¥+1, In other words, each curve of S* has two
curves of S*+1 that are closer to it than any other curve of S¥.

(iif) We call the maximum and the minimum distance between any curve of S k~1 and the two curves
of S* that surround it Ax and & respectively. Then,

lim A* = lim ¢* =0 4)

k—o0 k—oo

Now that those safe sets are known, we can show why trajectories can be kept inside @ even if 7o < up.
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Figure 1: Action of the bouncing ball map on the parallelogram @ (a) and the resulting safe sets S°
(thick black), S? (black) and S? (grey) (b), whose geometrical structure will allow to partially control
the system inside @ even if rg < ug.

4 Partial control strategy for the bouncing ball map

The strategy that allows to keep the trajectory inside the square @ is the following. For simplicity we
assume here that ug is smaller than the minimum distance between f(Q) and the left and right sides of
Q. Given uy, find the set S* such that A¥ < ug, which is always possible by Eq. 4. Then, put the initial
condition p in any point on S*. The action of the map will take the trajectory to f(p), that by definition
will lie in one of the 28— curves of S*=!. After this, the noise acts. But, as we can see in Fig. 2, the lac

that any curve of S¥~! is surrounded by two adjacent curves of S¥ allows to use a correction ||r|| <
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Figure 2: Illustration of the partial control strategy. The trajectory that lied in S¥ (thin black line) is
mapped into a point on S¥~1 (thick black line). However, noise (here u or u’) deviates it. But the
fact that any curve of S5¥~! is surrounded by two curves of S¥ allows to achieve this goal even if the
correction applied (here r or r’) is smaller than the noise amplitude.

to put the resulting point f(p) + u + r back on a point of S*, and this can be repeated forever. Note that
this implies that we can find a value of the control rg such that trajectories can be kept inside @ even if
ro < Ug.

The power of our technique can be evaluated by estimating the value of the ratio ro/ug needed to
control the system. Although an explicit calculation of this ratio is difficult in most cases, by having a
sufficiently accurate estimation of the values of A¥ and 6* it is possible to make an analytical estimate
of the maximum 7o /ug needed to partially control the system for a given value of ug. In fact, it can be
proved that

: : . , ro _ AF

o The ratio needed to control the system if ug € (A* + 6¥+1, AF 4- 6¥] is bounded by "o < o

Ug — 5k

e The ratio needed to control the system if ug € (A¥ +6%, A¥=1 4 §%] is bounded by ;—0 < -
0 0

n the next section we show that these expressions allow to have quite good approximations of the ratio
1ieeded to control the system for each value of ug.

v Numerical example

i a final example of application, we can show how our control technique works for a given value of
0, for example ug = 0.35. For this value of the noise amplitude the adequate safe set turns out to be
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Figure 3: A controlled series of the bouncing ball map for ug = 0.32 (a) and the control applied each
iteration (b), that is obviously smaller than ug (marked with a dashed line).

S2, that is shown in Fig. 1. An example of a controlled time series of the variable ¢ is shown in Fig. 3
(a), and it is easy to see that trajectories are kept inside the parallelogram. On the other hand, in Fig. 3
(b) we can see that, in order to steer the trajectories into S2, a control such that ||r,|| < 0.2 is enough.
Thus, with a control that is approximately 57 % of the noise amplitude, trajectories can be kept bounded
forever,

We have also made some simulations in order to see the validity of the approximations of the ratios
r0/up needed to keep trajectories bounded done in Section 4. We have picked 100 different time series
of the system for different values of the noise amplitude ug and we have estimated the minimum value of
ro needed to keep trajectories bounded. The results of these calculations can be seen in Fig. 4. We can
notice there that there is a good agreement between the analytical and the numerical estimates. In order
to perform the analytical estimate of the ratio 79 /ug we need to know the values of AF and §%. This is
difficult to do analytically, so in this case we have estimated them numerically. In any case, the shape
of the curves that might be expected from our analysis is in good agreement with the purely numerical
results.

6 Practical issues and conclusions

Some remarks are necessary. In order to apply our technique, we need to locate the safe sets. This
implies a previous knowledge of the region of the phase space where the horseshoe acts like a horseshoc
map. We expect this to be feasible by doing a time series analysis of the system, although we do not
know clear references on how this should be exactly done. Location of homoclinic points and homoclinic
intersections can be a good starting point. However, it is important to notice that just an approximailc
knowledge of the position of the safe sets is needed to adequately partially control the considered systein.
This can be casily proved by using some of the ideas sketched here. From our point of view this problem
is equivalent to an inaccuracy of the applied control. However, even in presence of moderate inaccuracics
the ratio ro/ug needed to partially control the system can be kept smaller than one.

In summary, we used the bouncing ball map to illustrate that for a wide and important class of two
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Figure 4: Ratio ro/ug needed to partially control the system for different values of ug, computed numer-
ically (black dots) using 100 different time series of 10000 time steps and its analytical estimate (grey

line). Note that the estimates are quite similar to the real values and that the computed values of rg /uo
are always smaller than one, as claimed.

dimensional dynamical systems, there is a strategy by which the trajectories can be kept in a region of
phase space where a horseshoe-like map acts even with a control that is smaller than the noise. Para-
doxically, this is due to the same general geometrical conditions that make nearly all the trajectories
diverge from that region, that also imply the existence of certain sets, the safe sets, with a very interest-
ing structure. We have shown a numerical example of application of our method. In our opinion, the
wide presence of this kind of structures in dynamical systems allow to apply this technique to a wide
variety. A more general lesson that could be extracted from our work is that the particular geometry that
s usually related with certain types of complex dynamics may be useful for control purposes.
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