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Synchronization of coupled oscillators is by now a very well studied subject. A large number of
analytical and computational tools are available for the treatment of experimental results. This
article focuses on a method recently proposed to construct a phase model from experimental
data. The advantage of this method is that it extracts a phase model in a noninvasive manner
without any prior knowledge of the experimental system. The aim of the present research is to
apply this methodology to a network of electronic genetic oscillators. These electronic circuits
mimic the dynamics of a synthetic genetic oscillator, called “repressilator”, which is capable of
synthesizing autonomous biological rhythms. The obtained phase model is shown to be capable of
recovering the route leading to synchronization of genetic oscillators. The predicted onset point
of synchronization agrees quite well with the experiment. This encourages further application of
the present method to synthetic biological systems.
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1. Introduction

The synchronization of coupled oscillators has
received much attention in the past few years
within the context of nonlinear dynamics. Since
oscillators are ubiquitous around us, this explains
the large volume of literature dedicated to this
subject. Among the long list of examples it is
worth citing coupled systems, which spontaneously
synchronize such as neurons [Elson et al., 1998],
menstrual synchrony among women [McClintock,
1971], and genetic clocks [Yamaguchi et al., 2003].
Synchronization plays an important role also in
biological rhythms such as the circadian clock

located at the suprachiasmatic nucleus (SCN) of the
hypothalamous in mammals. The SCN is composed
of ∼ 10,000 neurons, each of which is a self-sustained
oscillator with a varied frequency. Through the
mutual coupling, the SCN neurons are synchronized
to form the circadian rhythm. It is therefore indis-
pensable to study the biological rhythm under the
framework of coupled oscillators.

In the study of coupled oscillators, one of the
most standard modeling approaches is the phase
equation modeling, which can be applied to weakly
coupled limit cycle oscillators [Kuramoto, 1984].
Because of its very simple mathematical expres-
sion, the phase modeling technique has been applied
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to a variety of systems including the biological
rhythms [Winfree, 1980; Galan et al., 2005; Kori
& Mikhailov, 2004]. However, an important prob-
lem of constructing the phase models from exper-
imental biological data still remains open. Hence,
the present article aims at constructing a phase
model from an experimental system that mimics
the dynamics of a genetic oscillator. This genetic
oscillator, called the “repressilator”, has been con-
ceived and built in laboratory from scratch [Elowitz
& Leibler, 2000]. The experiment shows a peri-
odic evolution of a protein level in bacteria genet-
ically manipulated. The underlying dynamics of
this oscillator can be described by a very simple
mathematical model based on ordinary differential
equations. This equation can be simulated in many
ways and we have proposed an analog simulation
with electronic circuits [Wagemakers et al., 2006].
Furthermore, we have demonstrated that the syn-
chronization could be achieved within a set of oscil-
lators with a global coupling between the units.
This synchrony, which has been described theoreti-
cally [Garćıa-Ojalvo et al., 2004], has not yet been
observed in a synthetic biological system. Hence,
our electronic genetic network provides an impor-
tant initial step towards the analysis of real biologi-
cal systems. In a biological experimental setup, the
only variable accessible for observation is a fluores-
cent marker that reflects the state of an internal
variable. The time lapse fluorescence microscopy is
a recent technique that allows the recording of a
time series of an evolving process in a cell popula-
tion. The time series analysis presented is particu-
larly well suited for this experimental setup since it
is noninvasive and uses the fluorescence as the state
of a phase oscillator.

The method of constructing the phase model is
based on an approach [Tokuda et al., 2007], recently
developed to extract phase models from multivari-
ate time series. This approach has an important
practical advantage that no prior knowledge of the
underlying dynamics is required. Compared with
the conventional techniques [Kuramoto, 1984; Sak-
aguchi et al., 1987; Kiss et al., 2005; Galan et al.,
2005; Miyazaki et al., 2006], which are rather inva-
sive in the sense that a perturbation is applied
to an isolated oscillator or two coupled oscillators
should be extracted from a population of oscilla-
tors, the present approach utilizes only a set of time
series recorded from all the units. This noninvasive
property can be a great advantage especially for
the application to biological systems. First, natural

frequencies of the units as well as interaction func-
tion between the units are estimated by the multi-
ple shooting technique. Then, the estimated phase
model can be simulated for a different coupling
value to study the dependence of synchronization
on the coupling strength. One of the highlights of
the estimation technique is its ability to reconstruct
the route to synchronization from only a single time
series of the experimental setup in a weak coupling
configuration. This single data set is shown to be
sufficient to predict the onset point of full synchro-
nization in the experimental system.

2. The Repressilator Model

The original repressilator model is founded on
a synthetic biology experiment first published in
[Elowitz & Leibler, 2000]. The authors constructed
an oscillator with different genes, which are present
in the bacteria E. Coli and made them interact
artificially. It is composed of three different genes
which produce proteins capable of interacting with
other genes by inhibiting their protein synthesis.
The structure of the repressilator is the following:
Gene 1 produces a protein that silences gene 2,
gene 2 represses gene 3 and gene 3 inhibits gene 1.
This closed chain of inhibitions is called the repressi-
lator. It has been demonstrated experimentally that
sustained oscillations do exist for the repressilator.
The dynamics of this system can be expressed by a
simple mathematical model of coupled ordinary dif-
ferential equations. In the following set of equations,
each dynamical variable pi represents the concentra-
tion of a protein produced by one of the genes:

dp1

dt
= −γp1p1 +

α1

1 +
(

p3

K0

)n (1)

dp2

dt
= −γp2p2 +

α2

1 +
(

p1

K0

)n (2)

dp3

dt
= −γp3p3 +

α3

1 +
(

p2

K0

)n . (3)

The parameter γpi holds for the protein mean life,
the parameter αi is the protein production rate
and K0 and n are related to the strength of the
repression of the specific protein. This repressila-
tor model can be simulated with a very simple
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Fig. 1. (a) Basic circuit of the repressilator with a MOSFET transistor and discrete linear components. (b) Typical time
series of the three voltages V1, V2 and V3.

analog electronic circuit [Wagemakers et al., 2006].
The circuits reflect the most important aspect of
the dynamics, which is the mutual repression of
each gene. The basic circuit is composed of three
MOSFET transistors which actuates as controllable
switches as it can be seen in Fig. 1(a). In the
absence of tension on the gate of the transistor i,
the voltage Vi increases until it reaches a threshold
and shuts down the tension Vi+1. It reproduces the
circular inhibition of the repressilator perfectly as
it can be seen in the time series of Fig. 1(b).

The protein concentration of each bacteria
oscillates individually with its own phase and
frequency without any kind of observable global
behavior. To explore the effects of the synchroniza-
tion on a colony of repressilators, several units have
been coupled with a simple resistor to a common

point in the configuration shown in Fig. 2. The
synchronization of the different units is possible to
achieve with the variation of the coupling of the
resistance Rc. The level of coupling needed to syn-
chronize the system will be detailed in Sec. 3.

In order to obtain the prediction with the
numerical method, we need to describe in some
detail a model of the circuit of Fig. 1. First, it
is convenient to analyze the behavior of a single
cell to understand the complete model. The basic
unit of the circuit representing the dynamics of the
repressilator can be viewed in Fig. 1 in the dashed
box. The core of the model is a MOSFET cir-
cuit which behaves as a switch controlled by the
gate voltage. Based on the MOSFET enhancement
n-channel model, we have the following expression
for the drain current id:

id(Vi, Vi−1) =




0 for Vi−1 < Vth

K(2Vi(Vi−1 − Vth) − V 2
i ) for 0 < Vi < Vi−1 − Vth

K(Vi−1 − Vth)2 for 0 < Vi−1 − Vth < Vi,

(4)

with K and Vth two parameters depending on the
considered MOSFET model. Other models can also
be used for the drain current. A simpler model
can be approximated in the form of a continuous
function:

id(Vi, Vi−1) = K(Vi−1 − Vth)2
(

Vi

Vi + Vi−1 − Vth

)

×




(
Vi−1

Vth

)n

1 +
(

Vi−1

Vth

)n


 .

The equation that rules the dynamics of one basic
cell can be written as:

Ci
dVi

dt
=

(Vcc − Vi)
Ri

− id(Vi, Vi−1), (5)

which is the sum of the currents in the transistor Ci.
However, to simplify the analysis a simpler model
can be obtained after some assumptions. The set of
equations is reduced to:

R2C2
dV2

dt
= −V2 + Vccf(V1) + α, (6)

R3C3
dV3

dt
= −V3 + Vccf(V2) + α, (7)

R1C1
dV1

dt
= −V1 + Vccf(V3) + α, (8)
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Fig. 2. Schematics of the coupled system, the variable V1 is connected to a common point through a resistor Rc.

with f(x) = 1/(1 + (x/Vth)n). This expression is
similar to the model of the repressilator in Eqs. (1)–
(3).

The coupling between the units is achieved
through a common resistor to all the circuits as
shown in Fig. 2. The voltage V1 of each circuit is
connected to a common point through a resistor
Rc. We obtain in this way a global coupling of the
system. In order to obtain the equation of the cou-
pled circuit, we have to consider first the voltage Vg

of the common point where all the resistors Rc are
connected. The current flowing from this point to
one of the voltage V1 of the repressilator n is:

in =
(Vg − V n

1 )
RC

, (9)

with V n
1 the voltage V1 of the circuit n. On the

other hand, we have the sum of all the currents at
this point:

N∑
n=1

in = 0, (10)

which leads to:
N∑

n=1

(Vg − V n
1 ) = 0. (11)

We deduce that Vg is the mean of all the voltages:

Vg =
1
N

N∑
n=1

V n
1 . (12)

It is now straightforward to deduce the set of ODE’s
of the coupled system:

R2C2
dV2

dt
= −V2 + Vccf(V1) + α, (13)

R3C3
dV3

dt
= −V3 + Vccf(V2) + α, (14)

R1C1
dV1

dt
= −V1 + Vccf(V3) + α

+ R1
1
Rc

1
N

N∑
n=0

(V n
1 − V1). (15)

The parameters used in the experiments are:

• R1 = R2 = R3 = 1kΩ with a variability of 10%
• C1 = C2 = C3 = 1µF with a variability of 10%
• Vcc = 3V
• Vth = 2.3V with a variability of 10%

3. Problem and Method

The coupled system described in the previous sec-
tion can be synchronized depending on the coupling



July 6, 2010 14:56 WSPC/S0218-1274 02680

Predicting the Synchronization of a Network of Electronic Repressilators 1755

value Rc. In this section, we expose the method that
will give us the coupling value necessary to obtain
this synchronization.

Consider a system of N weakly coupled nearly
identical limit cycle oscillators:

ẋi = Fi(xi) +
C

N

N∑
j �=i

G(xi, xj), (16)

where xi and Fi (i = 1, 2, . . . , N) represent state
variables and the dynamics of the ith oscillator,
C and G represent the coupling constant and the
interaction function between the ith and jth oscilla-
tors. Our assumption is that in an isolated condition
(C = 0), i.e. uncoupled oscillators, each oscillator Fi

gives rise to a stable limit cycle with similar natu-
ral frequencies ωi. Then the phase reduction theory
[Kuramoto, 1984] states that for weak uniform cou-
pling C, the network dynamics can be reduced to
the phase equations:

θ̇i = ωi +
C

N

N∑
j=1

H(θj − θi) (17)

(θi: phase of ith oscillator; H: interaction func-
tion). As a reminder, we assume that a simul-
taneous measurement of all oscillators is made
as {xi(n∆t) : n = 1, . . . ,M}N

i=1 (∆t: sampling
time).

Our goal is to infer the phase equations from the
measurement data under the conditions that:

(1) the underlying dynamics (16) are unknown,
(2) the coupling constant C associated with the

measured data is taken from a nonsynchronous
regime, and

(3) the coupling type is known to be uniform and
an all-to-all connection.

The estimation does not require an a priori knowl-
edge of the specific value of the coupling constant
(without loss of generality, it can be taken to be
unity).

Our approach to the problem can be described
as follows [Tokuda et al., 2007]:

(1) Determine the phases θi(t) from the data xi(t).
Among various definitions of phases [Pikovsky
et al., 2001], a simple formula is chosen, where
the phase θ is increased by 2π at every local
maximum of x(t), and between the local max-
ima the phase grows proportionally in time.

(2) Fit the phases {θi(t)} to the phase equations:

θ̇i = ωi +
C

N

N∑
j=1

H̃(θj − θi), (18)

where the interaction function H̃, which is in
general nonlinear and periodic with respect to
2π, is approximated by a Fourier expansion up
to order of D as H̃(∆θ) =

∑D
j=1 aj sin j∆θ +

bj(cos j∆θ − 1).
The unknown parameters p = {ωi, aj , bj}

are estimated by the multiple-shooting method
[Baake et al., 1992]. We denote the time evolu-
tion of the phase equations (18) with respect to
the initial condition θ(0) by θ(t) = φt(θ(0), p).
Then, at each sampling time t = i∆t, the
phase equation must satisfy the boundary con-
ditions: θ((n + 1)∆t) = φ∆t(θ(n∆t),p). With
respect to the unknown parameters p, we solve
these nonlinear equations by the generalized
Newton method, and we integrate the evolu-
tion function φt numerically. For the computa-
tion of the gradients ∂φ/∂p, which are needed
for the Newton method, variational equations
of the phase equations (18) are also solved
numerically.

A necessary condition to solve the nonlin-
ear equations is that the number of unknown
parameters is less than the number of equa-
tions, corresponding in this case to N + 2D <
N(M − 1). This always holds in the case of
enough data M .

(3) To avoid over-fitting, a cross-validation tech-
nique is used to determine the optimum number
of higher harmonics in the interaction func-
tion, D [Stone, 1974]. We divide the multi-
variate data into two parts. For the first half
of the data, the parameter values p are esti-
mated, then we apply the estimated parameters
to the latter half data and measure the error
E =

∑
n |θ((n + 1)∆t) − φ∆t(θ(n∆t),p)|2. The

order number D giving rise to the minimum
error is considered to be the optimum.

4. Coupled Repressilator Model

We apply the technique described in the previous
section to the genetic oscillator, which models the
repressilator. The voltage V1 of each oscillator is
connected to a common point through a resistor
Rc. We obtain this way a global coupling of the
system, which is described by Eqs. (13)–(15) with
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a multiplicative coefficient:

R2C2
dV2

dt
= −αiV2 + αiVccf(V1), (19)

R3C3
dV3

dt
= −αiV3 + αiVccf(V2), (20)

R1C1
dV1

dt
= −αiV1 + αiVccf(V3)

+ R1
1
Rc

1
N

N∑
n=0

(V n
1 − V1). (21)

Each unit gives rise to a limit cycle oscilla-
tion under the chosen parameter configuration with-
out coupling C = 0. To consider inhomogeneity in
the network, parameter values αi are varied among
the cells, and the multivariate data are recorded as
{Vi,2(t)}N

i=1.
Here, we examine the case of N = 16. Inho-

mogeneous parameter values were set as αi =
1 + 0.005 · (i − 8.5) (i = 1, 2, . . . , 16). The
data {Vi,2(t)}16

i=1 were collected with the coupling

strength C = 0.01, which gives rise to a nonsynchro-
nized dynamics. The sampling interval was set to be
∆t = 0.08 for the extraction of the phase {θi(t)}.
Then, by applying the multiple-shooting method
the data have been down sampled to ∆t = 1000·0.08
and the total of 2000 data points have been col-
lected for the parameter estimation. (As an initial
condition, unknown parameter values are all set to
be zero, i.e. ωi = 0, aj = bj = 0.) The convergence
property of the multiple-shooting was excellent; a
single Newton procedure gives a good estimate.

Figures 3(a) and 3(b) show the estimated
interaction function and the natural frequencies of
the uncoupled oscillators with the Fourier order
of D = 4, which was optimized by the cross-
validation test. The estimated natural frequen-
cies are distributed on a diagonal line with the
original frequencies computed from each of the
repressilators. Moreover, the estimated interaction
function H̃(∆θ) is in a very good agreement
with that estimated by applying the perturbation
method [Kuramoto, 1984; Sakaguchi et al., 1987] to
a single repressilator model.

(a) (b)

(c)

Fig. 3. Results of modeling the simulated data at K = 0.01. (a) Interaction function H̃(∆θ) estimated by the perturbation
method (solid line) and by the present method (dotted line). (b) Natural frequencies of the original system against its estima-
tion. (c) Synchronization diagram of the original system (solid line) and estimation (dotted line). Circle point corresponds to
the coupling strength used for the modeling.
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The estimated phase model (18) can be
used for predicting the synchronization structure.
Figure 3(c) shows the dependence of the order
parameter Φ on the coupling strength, where Φ
was computed according to ReiΦ = 1/N

∑N
j=1e

iφj

(φj : phase of jth cell). The phase model gives
an excellent prediction of the order versus cou-
pling strength curve. The Kuramoto transition
point [Kuramoto, 1984] (onset of synchronization)
observed in the original repressilator model (19)–
(21) is predicted by the phase model, even though
only a single data point is used for the parameter
estimation.

We remark that this precision of predictability
is expected as far as the coupling strength is weak
enough. Under such a weak coupling, the phase
reduction theory guarantees that the phase dynam-
ics is invariant [Kuramoto, 1984]. This is essential
for predicting the onset of synchronization from a
weaker coupling regime. In contrast, if the synchro-
nization takes place only at a very strong coupling,
the phase dynamics gets distorted. In that case, it
becomes more difficult to predict the synchroniza-
tion. In that sense, there is a certain limitation of
predicting the onset of synchronization.

It is important to note that the estima-
tion results depend on the modeling condition.
Figures 4(a)–4(c) show the dependence of the esti-
mation error on the data length M , observational
noise, and percentage of the number of observed
repressilators. The estimation error was measured
as a deviation of the estimated interaction func-
tion H̃s(∆θ) from the one H̃p(∆θ) estimated by
the perturbation method, i.e. E =

∫ 2π
0 ‖H̃s(∆θ) −

H̃p(∆θ)‖d∆θ. As the observational noise, inde-
pendent zero-mean Gaussian noise ξ∈N(0, γ2) was
added to each of the multivariate data {Vi,2(t)}16

i=1,
where the noise level is given by 100γ/σ [%] (σ:
standard deviation of the signal V ). The percent-
age of the number of observed oscillators is given
by 100N/16 [%], where only a subset of N mea-
surements {Vi,2(t)}N

i=1 was used among the 16 mea-
surements {Vi,2(t)}16

i=1.
As shown in Fig. 4(a), the data length of

M = 100 is required for a precise estimation of
the interaction function. Since the sample interval
of this study was set to be relatively long (∆t =
1000 · 0.08), the total number of oscillation cycles
included within these data (M = 100) were about
1600. Sometimes, this amount of oscillation cycles

(a) (b)

(c)

Fig. 4. (a) Dependence of the estimation error on the data number. (b) Dependence of the estimation error on the observa-
tional noise. (c) Dependence of the estimation error on the percentage of the number of observed repressilators.
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cannot be recorded from the experiment. According
to another simulation using much shorter sampling
interval (∆t = 40·0.08), the data length of M = 120
was found to be enough for a precise estimation,
where the number of oscillation cycles within this
data was about 80. This amount of cycles can be
expected for normal experimental data.

Figure 4(b) shows the influence of the observa-
tional in the case that the data length is fixed to
M = 80. The estimation is found to be robust up
to the observational noise of 10%, which is practical
for a real experimental situation. Although the esti-
mation result is rather sensitive to the percentage of
the observed cells, it still provides a good estimate
even if 5% of the cells is not observed.

5. Application to Electronic
Circuit Data

Our technique has been finally applied to exper-
imental data measured from electronic genetic

networks with 16 coupled units [Wagemakers et al.,
2006]. In this section we contrast the result obtained
with the numerical algorithm and the experiments.

In order to compare the numerical algorithm
with the experiment, the interaction function H̃ of
the coupled system must be estimated. This func-
tion can be estimated with the help of the phase
response curve.

The phase response curve represents the phase
displacement of the oscillator when a perturbation
is applied during the cycle [Winfree, 1980]. To elab-
orate this curve, small perturbations are applied at
different times of the cycle. In our case these per-
turbations are short electric pulses. The phase dis-
placement is compared with the phase previous to
the shock. The phase shift is represented in function
of the phase of the cycle. Figure 5(a) represents the
experimental phase response curve along with the
waveform of the oscillator.

The interaction function H̃ for weak coupling
can be estimated from the experimental phase

(a) (b)

(c) (d)

Fig. 5. (a) Phase response curve of a single circuit along with the waveform of the oscillation. (b) Interaction function H̃(∆θ)
of the experimental system (solid line) and its estimate (dotted line). (c) Natural frequencies of the experimental system
against its estimate. (d) Synchronization diagram of experimental system (solid line) and estimate (dotted line). Circle point
corresponds to the coupling strength used for the modeling. In the inset graphic the time series of the circuit for the weak
coupling configuration is shown for the coupling Rc = 13kΩ.
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response curve [Kuramoto, 1984]. The measured
interaction function of the circuit is represented in
Fig. 5(b). The interaction function is also computed
from a time series of the experiments in a weak
coupling regime. Despite some differences between
the numerical algorithm and the experiment in
Fig. 5(b), the results are consistent. Figure 5(b)
shows the estimated natural frequencies of the oscil-
lators. The Fourier order was optimized by the
cross-validation test as D = 3. The last figure repre-
sents the estimated synchronization diagram com-
pared to the experimental measurements. Note that
the computed diagram has been obtained from a
single time series of the weak coupled system. The
time series is circled in red in Fig. 5(d). The tran-
sition to synchrony is very well represented in this
graphic. The results validate the assumption that
the system can be estimated by a set of coupled
phase oscillators when the coupling between units
is weak.

6. Conclusions

A phase model has been estimated from an
experimental data of an electronic genetic network.
The estimation technique requires only a single set
of multivariate data recorded simultaneously from
all units of the genetic oscillators. The estimation
accuracy has been checked by comparing the esti-
mated interaction function with the one obtained
by the perturbation method. The estimated phase
model was further utilized to study the dependence
of the synchronized state of genetic oscillators on
the coupling strength. The phase model was shown
to be capable of recovering the route from non-
synchronization to synchronization with an accu-
rate onset point, which agrees quite well with the
experiment.

The next challenge of the present approach is
to apply it to experimental data from synthetic bio-
logical system such as coupled synthetic genetic
oscillators. Experimental realization of the cou-
pling among such synthetic oscillators is awaited.
To deal with biological data, the dynamical noise
should be an important issue, since biological sys-
tems are inherently noisy. We believe that the
present approach might be robust against a mod-
erate amount of dynamical noise as shown by its
application to the electronic data, which includes
a certain amount of dynamical noise. However, in
the case that a strong level of dynamical noise
exists, the phase dynamics should take the form

of stochastic differential equations. To deal with
such stochastic dynamics, the parameter estimation
technique should be modified such as using the aver-
aging method [Siegert et al., 1998]. Such approach
to deal with the dynamical noise will be considered
in our future work.
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