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The continuous Bonhoeffer–van der Pol (BVP for short) oscillator is transformed into a map-
based BVP model by using the forward Euler scheme. At first, the bifurcations and chaos of
the map-based BVP model are investigated when the step size varies as a bifurcation param-
eter. By using the fast-slow decomposition technique, a two-parameter bifurcation diagram is
obtained to give insight into the effect of the step size on bifurcations and chaos of the map-based
BVP model. The investigation shows that the period-doubling bifurcation is dependent on the
step size, while the saddle-node bifurcation is independent of the step size. Second, when the
fast–slow decomposition technique cannot be used, we rigorously prove that in the map-based
BVP model there exists chaos in the sense of Marotto when the discrete step size varies as a
bifurcation parameter. These results show that the discrete step sizes play a vital role between
the continuous-time dynamical system and the corresponding discrete dynamical system. Much
attention should be paid on the step size when a map-based neuron model is used as an alter-
native to a continuous neuron model.

Keywords : Step size; Bonhoeffer–van der Pol oscillators; bifurcation; chaos; map-based BVP
model.

1. Introduction

Map-based neuron models have received much
attention over the past decade, especially in the
large-scale numerical simulation of collective behav-
ior of neuron networks [Rulkov et al., 2004; Izhike-
vich, 2007]. As an advantageous simplification,
map-based models have shown to be comparable to
continuous neuron models in reproducing character-
istic behavior of biological neurons [Rulkov, 2001;
De Vries, 2001; Shilnikov & Rulkov, 2004; Casado,
2003; Casado et al., 2004; Ibarz et al., 2007a,

2007b, 2007c, 2008; Tanaka et al., 2006; Cao &
Sanjuan, 2009].

In general, a map-based neuron model can be
obtained in two ways: one is obtained by using the
discrete processing for an ODE such as the Euler
discrete scheme [Rulkov et al., 2004; Izhikevich,
2007], in which the step size is used to make the
partition of the continuous time; the other one is
obtained by using the Poincaré map [Terman, 2005].

Although it is easier to get a map-based neu-
ron model by using the Euler discrete method than
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by using the Poincaré map, many problems remain
unclear. The basic question is whether the qualita-
tive properties of continuous-time systems are pre-
served via discretization methods. Another one of
the very important problems is the effect of the step
size on the nonlinear dynamical behaviors of a map-
based neuron model. Concerning these questions,
as a kind of special Morse–Smale dynamical system
[Shub, 2007], the continuous-time gradient system
on a two-dimensional compact manifold is globally
topologically conjugate to the corresponding dis-
crete dynamical system obtained by Euler method
for a sufficiently small time step [Bielecki, 2002].
In addition, it is noted that the similar question
has been considered by other authors [Jing et al.,
2002]. While, there is still less attention on non-
Morse–Smale dynamical system, especially when
some nonhyperbolic continuous dynamical systems
(i.e. structurally unstable systems) are concerned.

In this paper, as a simplified version to the
Hodgin–Huxley nerve equations [Hodgkin & Hux-
ley, 1952], the continuous BVP oscillator is trans-
formed into a map-based BVP model by using the
forward Euler scheme. As a representative of a wide
class of nonlinear excitable oscillator, BVP oscilla-
tor is taken into account not only because BVP
oscillator has wider application in the modeling
of biological precesses, but also has rich nonlin-
ear behavior including different topological prop-
erties between the continuous-time BVP oscillator
and the discrete one. Therefore, our main goal in
this paper is to investigate the effect of the step
size as a bifurcation parameter on bifurcations and
chaos of a map-based BVP model. At first, the fast–
slow decomposition technique is used to analyze the
fast subsystem of a map-based BVP model. A two-
parameter bifurcation diagram is obtained to give
insight into the effect of the step size on bifurcations
and chaos of a map-based BVP model. The investi-
gation demonstrates that the curve of fixed points,
the saddle-node bifurcations, are independent of the
step size, while the period-doubling bifurcation is
dependent on the variation of the step size. Second,
when the fast–slow decomposition technique fails,
we rigorously prove that in the discrete BVP model
there exists chaos in the sense of Marotto [2005]
when the step size varies as a bifurcation param-
eter. The existence condition for chaos is differ-
ent to that presented in [Jing et al., 2002]. These
results show that the discrete step sizes play a vital
role between the continuous-time dynamical system
and the corresponding discrete dynamical system.

Much attention should be paid on the step size when
a map-based neuron model is used as an alternative
to a continuous neuron model.

The layout of this paper is as follows. In Sec. 2,
a two-parameter bifurcation analysis is given by
using the fast–slow decomposition technique. The
strict mathematical analysis is presented concern-
ing the effect of the step size on bifurcations and
chaos in Sec. 3. Finally, we sum up our results
in Sec. 4.

2. The Single Map-Based BVP
Model

The classical continuous BVP oscillator may be
written as

ẋ = y − 1
3
x3 + x + µ,

ẏ = ρ(a − x − by),
(1)

and it can be transformed into a two-dimensional
map by using the forward Euler discrete scheme

xn+1 = xn + δ

(
yn − 1

3
x3

n + xn + µ

)
,

yn+1 = yn + δρ(a − xn − byn),
(2)

where 0 < ρ � 1, 0 < a < 1, 0 < b < 1, µ is a
stimulus intensity, and 0 < δ < 1 is the step size.
The state variable x can be thought of the electric
potential across the cell membrane, and the other
state variable y stands for a recovery force. Due to
the fact that 0 < δρ � 1 is small enough, the evo-
lution of y (or yn) is much slower than that of x
(or xn). Thus, we refer to xn as the fast variable
and yn as the slow variable.

The bifurcation analysis of Eq. (2) can be
obtained by using the fast–slow decomposition tech-
nique, which was at first used by [Rinzel, 1987] when
a continuous bursting system was considered. After-
wards, this technique was widely used to different
continuous or discrete systems by many researchers
such as [Sherman, 1996; Rulkov, 2001; De Vries,
2001; Izhikevich, 2007; Casado et al., 2003, 2004;
Ibarz et al., 2007a, 2007b, 2007c; Tanaka et al.,
2006; Cao & Sanjuan, 2009].

The key to the fast–slow decomposition tech-
nique is to consider the slow variable yn as a bifur-
cation parameter, and to substitute it into the first
equation of Eq. (2). Thus, the bifurcation analysis
of Eq. (2) can be investigated through the following
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fast subsystem by letting yn + µ as a bifurcation
parameter γ, that is,

xn+1 = xn − δ
1
3
x3

n + δxn + δγ. (3)

Moreover Eq. (3) is symmetric after the trans-
formation γ → −γ and xn → −xn. Thus, the
bifurcation diagram is symmetric to the origin.
The two-parameter γ−δ bifurcation diagram
for the fast subsystem Eq. (3) is shown in
Fig. 1(a). The solid lines represent the curves of
saddle-node bifurcations γSN given by the two

straight lines

γ = ±2
3
. (4)

The dotted lines represent the curves of period-
doubling bifurcations γPD given by

γ = ± 2
3δ

(1 − δ)

√
2 + δ

δ
. (5)

Seen from Fig. 1(a), there exist two saddle-node
bifurcations and two period-doubling bifurcations
corresponding to each fixed value of the para-
meter δ when 0 < δ < 1. Corresponding to each
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Fig. 1. (a) Two-parameter bifurcation diagram for the fast subsystem Eq. (3). (b) Bifurcation diagram for the fast subsystem
with δ = 0.3. (c) Bifurcation diagram for the fast subsystem with δ = 0.5. (d) Bifurcation diagram for the fast subsystem with
δ = 0.9.
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δ (0 < δ < 1), the horizontal distance between the
left-hand saddle-node bifurcation and the right-
hand saddle-node bifurcation is always fixed at
3/4, which is independent of the variation of δ.
In contrast with the situation in the saddle-node
bifurcation, with the increasing step size δ, the
horizontal distance between the left-hand period-
doubling bifurcation and the right-hand period-
doubling bifurcation is decreasing, and finally tends
to the zero distance. In addition, the bifurcation
analysis shows that there does not exist the exter-
nal/internal crisis bifurcation, which means that the
minimum of the iterate cannot map onto an unsta-
ble fixed point on the middle branch of the curve of
fixed points. This implies that bursting cannot take
place resulting from bistability [De Vries, 2001].

The following three bifurcation diagrams
Figs. 1(b)–1(d) further explain the bifurcation phe-
nomenon given in Fig. 1(a) corresponding to δ =
0.3, δ = 0.5, and δ = 0.9, respectively. Seen from
Figs. 1(b)–1(d), there exists at first an S-shaped
curve of fixed points. Second, there exist two saddle-
node bifurcations (denoted by triangles) occurring
at the knees of these S-shaped fixed point curves.
Third, there exist two period-doubling bifurcations
(denoted by squares). When the bifurcation param-
eter γ is approaching each period-doubling bifur-
cation, stable two-cycle, four-cycles, eight-cycles,
etc., are observed. Finally, the route from period-
doubling bifurcation to chaotic attractors is also
observed. The strict mathematical proof will be dis-
cussed later.

3. Mathematical Analysis of the
Two-Dimensional Map-Based
BVP Model

If ρ is not small enough, then the fast–slow decom-
position technique cannot be used again. So in this
section, we will analyze the two-dimensional Map-
Based BVP model.

The equivalent map form of Eq. (2) can be
rewritten as

F :
(

x
y

)
�→


x + δ

(
y − 1

3
x3 + x + µ

)
y + δρ(a − x − by)


 . (6)

3.1. Fixed points

The fixed point of Eq. (6) satisfies the following
equations:

y − 1
3
x3 + x + µ = 0,

a − x − by = 0,
(7)

that is,

− 1
3
x3 +

(
1 − 1

b

)
x +

a

b
+ µ = 0. (8)

There exists only a real fixed point of F due to
the discriminant ∆ = 9((a/b)+µ)2−4(1−(1/b))3 >
0 when b < 1. And the unique real fixed point of F
is presented as follows:

x = −−2b + 2b2 + 3
√

2(−3ab2 − 3b3µ +
√

b3[−4(b − 1)3 + 9b(a + bµ)2])
2
3

3
√

4b(−3ab2 − 3b3µ +
√

b3(−4(b − 1)3 + 9b(a + bµ)2))
1
3

. (9)

We have the following proposition:

Proposition 1. For any value of a, µ, δ, if b < 1,
then there exists only one fixed point of F, and the
forward Euler discrete scheme does not make any
change for the fixed point of Eq. (1) with respect to
the original continuous BVP oscillator.

3.2. Stability analysis

The Jacobian matrix of F at fixed points is as fol-
lows:

DF (x) =

(
1 + δ − δx2 δ

−δρ 1 − δρb

)
, (10)

and the corresponding characteristic equation of
the Jacobian matrix DF (x) at fixed points can be
expressed as

λ2 + p(x)λ + q(x) = 0, (11)

where

p(x) = δx2 + δρb − δ − 2,

q(x) = (δ2ρb − δ)x2 − δ2ρb + δ2ρ

− δρb + δ + 1.

(12)

It is noted that the fixed points of F satisfy
Eq. (8), then the discriminant of Eq. (11) can be
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written as

∆ = p2(x) − 4q(x) = Ax2 + Bx + c = 0, (13)

and where

A = δ2 − 3
b
δ2 − 2δ2ρb,

B =
3δ2a

b
+ 3δ2µ,

C = δ2b2ρ2 + 2δ2ρb − 4δ2ρ + δ2.

(14)

It is obvious that A < 0 if 0 < ρ < 1, 0 < a <
1, 0 < b < 1, and 0 < δ < 1. Then, the discriminant
of Eq. (13) is as follows:

∆13 = 9a2 + 12b − 4b2 + 18abµ + 9bµ2 − 48bµ

+ 40b2ρ − 20b3ρ2 + 12b4ρ2 + 8b5ρ3. (15)

Thus, there exist two real roots x1 and x2

of Eq. (13) due to ∆13 > 0 when 1/4 < ρ <
1, (2

√
ρ − 1)/ρ < b < 1, and 0 < δ < 1,

where

x1 =
−3a − 3bµ −√9(a + bµ)2 + 4b(3 + 2b2ρ − b)(1 + 2(b − 2)ρ) + b2ρ2

2(−3 + b − 2b2ρ)
,

x2 =
−3a − 3bµ +

√
9(a + bµ)2 + 4b(3 + 2b2ρ − b)(1 + 2(b − 2)ρ) + b2ρ2

2(−3 + b − 2b2ρ)
.

(16)

Without loss of generality, we suppose that x1 < x2,
then we have the following proposition:

Proposition 2. If 1/4 < ρ < 1, (2
√

ρ − 1)/ρ < b <
1, and 0 < δ < 1, then the fixed point of F is unsta-
ble if one of the following conditions is satisfied:

(i) when x1 < x < x2, and

|x| <

√
δ2ρb − δ2ρ + 2δρb − 2δ − 4

δ2ρb − 2δ
;

(ii) when x = x1 or x = x2, and

x >

√
4 + δ − δρb

δ2
or x < −

√
4 + δ − δρb

δ2
;

(iii) when x < x1 or x > x2, and

x >

√
δ2ρb − δ2ρ + δρb − δ

δρb − 1

or

x < −
√

δ2ρb − δ2ρ + δρb − δ

δρb − 1
.

4. Chaos in the Sense of Marotto

A redefining snap-back repeller is given as follows
[Marotto, 2005]:

Definition. Suppose z is a fixed point of f with
all eigenvalues of Df (z) exceeding 1 in magnitude,
and suppose there exists a point x0 �= z in a
repelling neighborhood of z, such that xM = z

and det(Df (xk)) �= 0 for 1 ≤ k ≤ M , where
xk = fk(x0). Then z is called a snap-back repeller
of f .

Then, the chaos in the sense of Marotto is as
follows:

Theorem. If f has a snap-back repeller then f is
chaotic.

In the following, we will prove that there exists
a snap-back repeller in the sense of Marotto con-
cerning the following simplified form of Eq. (17),
where a shift transformation has been taken in order
to guarantee that (0, 0) is the only fixed point of the
following equations:

xn+1 = xn + δ

(
yn − 1

3
x3

n + xn

)
,

yn+1 = yn + δρ(−xn − byn).

(17)

We will at first prove the unique fixed point O(0, 0)
to be an expanding fixed point.

The characteristic equation of the Jacobian
matrix of Eq. (17) at O(0, 0) can be written as

H0(λ) = λ2 + p(0)λ + q(0) = 0, (18)

where
p(0) = δρb − δ − 2,

q(0) = 1 − δρb + δ − δ2ρb + δ2ρ.
(19)

Suppose that λ1 and λ2 are two characteristic roots
of Eq. (25), then

λ1 + λ2 = −p(0), λ1λ2 = q(0). (20)
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The discriminant of the characteristic equation of
Eq. (18) is as follows:

∆0 = p2(0) − 4q(0)

= δ2(1 − 4ρ + 2bρ + b2ρ2). (21)

We have then the following proposition:

Proposition 3

(i) If 1/4 < ρ < 1, 0 < b < (2
√

ρ − 1)/ρ, and
0 < δ < 1, then ∆0 < 0;

(ii) If 1/4 < ρ < 1, b = (2
√

ρ − 1)/ρ, and
0 < δ < 1, then ∆0 = 0;

(iii) If 1/4 < ρ < 1, (2
√

ρ − 1)/ρ < b < 1, and
0 < δ < 1, then ∆0 > 0.

By using the stability analysis at the fixed
point O(0, 0), the following proposition can be
presented:

Proposition 4

(i) If ∆0 > 0, then there exist two unequal real
roots λ1 and λ2 of Eq. (18). And if H0(−1) =
δ2ρ − δ2ρb < 0 and H0(1) = 4 − 2δ2ρb + 2δ −
δ2ρb + δ2b < 0, then |λi| > 1 (i = 1, 2);

(ii) If ∆0 = 0, then there exist two equal real
roots λ1 = λ2 of Eq. (18). And if |p(0)| =
|δρb − δ − 2| < 2, then |λi| > 1 (i = 1, 2);

(iii) If ∆0 < 0, then there exist a pair of pure
imaginary roots λ1, and λ1 of Eq. (18). And
if |q(0)| = |1 − δρb + δ − δ2ρb + δ2ρ| > 1, then
|λi| > 1 (i = 1, 2).

To sum up, the condition of expanding fixed
point is obtained as follows:

Proposition 5. If 1/4 < ρ < 1, 0 < b <
(2
√

ρ − 1)/ρ, and 0 < δ < 1, then the fixed point
O(0, 0) is an expanding fixed point.

Next, we want to find another point Z(x, y)
in the neighborhood of O(0, 0) satisfying F 2(Z) =
O,Z(x, y) �= O(0, 0), and ‖DF 2(Z)‖ �= 0.

A 2-period circle satisfies the following four
equations:

(1 + δ)x − 1
3
δx3 + δy = X,

−δρx + (1 − δρb)y = Y,

(1 + δ)X − 1
3
δX3 + δY = 0,

−δρX + (1 − δρb)Y = 0.

(22)

X,Y , and y can be obtained as follows:

X =
δ(1 − δρb)2

δ2ρ − 3(1 − δρb)2
,

Y =
δρ(ax3 + bx)

1 − δρb
,

y =
δρ(ax3 + bx)
(1 − δρb)2

+
δρx

1 − δρb
.

(23)

Substituting Eq. (23) into the following equation

g(x) = (1 + δ)X − 1
3
δX3 + δY − x, (24)

the following equation can be obtained

x = (1 + δ)(ax3 + bx) − 1
3
δ(ax3 + bx)3

+ δ
δρ(ax3 + bx)

1 − δρb
− x. (25)

Let

g(x) = (1 + δ)(ax3 + bx) − 1
3
δ(ax3 + bx)3

+ δ
δρ(ax3 + bx)

1 − δρb
− x = 0, (26)

then an eight degree polynomial can be obtained
from Eq. (26) as follows:

a9x
8 + a8x

7 + · · · + a2x + a1 = 0, (27)

where a1 = (1 + δ)b + δ(δρ + b)/(1 − δρb) − 1.
Obviously, when a1 < 0, then we have the fol-

lowing theorem:

Proposition 6. If a1 < 0, then there must exist a
real root Z(x, y) �= O(0, 0).

It is true that ‖DF 2(Z)‖ = ‖DF (F (Z))‖ ×
‖DF (Z)‖ �= 0 due to ‖DF (F (Z))‖ �= 0 and
‖DF (Z)‖ �= 0.

Finally, we obtain the following sufficient con-
ditions for chaos in the sense of Marotto:

Theorem. If 0 < δ < 1, 1/4 < ρ < 1, 0 < b ≤
(2
√

ρ − 1)/ρ, together with (1 + δ)b + ((δ2ρ + δb)/
(1 − δρb)) < 1, then there exists chaos in the sense
of Marotto if one of the following conditions is
satisfied:

(i) ∆0 > 0, |x| <

√
δ2ρb − δ2ρ + 2δρb − 2δ − 4

δ2ρb
;
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(ii) ∆0 = 0, x >

√
4 + δ − δρb

δ2
or

x < −
√

4 + δ − δρb

δ2
; or |x| <

√
1 − ρb

δ
;

(iii) ∆0 < 0, x >

√
δ2ρb − δ2ρ + δρb − δ

δρb − 1
or

x < −
√

δ2ρb − δ2ρ + δρb − δ

δρb − 1
.

5. Conclusion

In this paper, the continuous BVP oscillator is
transformed into a map-based neuron model by
using the forward Euler scheme. As a sensitive bifur-
cation parameter, the step size plays a fundamen-
tal role on bifurcations and chaos of the map-based
BVP model. In general, the curve of fixed points,
the saddle-node bifurcations, is not affected from
the step size. While, the period-doubling bifurca-
tion and the subsequent chaos resulting from it will
be much affected with the increase in step size. The
larger the step size is taken, then the more irregular
is the dynamical behavior of the map-based neuron
model and chaos may also occur.

The investigation demonstrates that much
attention should be paid on the step size when a
map-based neuron model is used as an alternative
to a continuous neuron model.
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