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We investigate the role of multistable states on the occurrence of vibrational resonance in a periodic

potential system driven by both a low-frequency and a high-frequency periodic force in both

underdamped and overdamped limits. In both cases, when the amplitude of the high-frequency force

is varied, the response amplitude at the low-frequency exhibits a series of resonance peaks and

approaches a limiting value. Using a theoretical approach, we analyse the mechanism of

multiresonance in terms of the resonant frequency and the stability of the equilibrium points of the

equation of motion of the slow variable. In the overdamped system, the response amplitude is always

higher than in the absence of the high-frequency force. However, in the underdamped system, this

happens only if the low-frequency is less than 1. In the underdamped system, the response amplitude

is maximum when the equilibrium point around which slow oscillations take place is maximally

stable and minimum at the transcritical bifurcation. And in the overdamped system, it is maximum at

the transcritical bifurcation and minimum when the associated equilibrium point is maximally stable.

When the periodicity of the potential is truncated, the system displays only a few resonance peaks.
VC 2011 American Institute of Physics. [doi:10.1063/1.3610213]

The analysis of the effects of two-frequency signals is of

great importance in physics, engineering, and biology.

Landa and McClintock
1

have shown that the response of a

nonlinear system to the low-frequency periodic signal

passes through a maximum depending on the amplitude of

an additional high-frequency signal. The point is that fre-

quencies far from them can cause a resonance phenom-

enon which is termed as vibrational resonance (VR). The

phenomenon of VR has been studied in single-, double-,

and triple-well and also in excitable systems. As a conse-

quence of this analysis, it becomes very important to study

the different kinds of nonlinear systems from either the

understanding of the very nature of VR or its possible

applications. The objective of the present work is precisely

to explore what kind of features presents the phenomenon

of VR in periodic potential systems and, in particular, in

the pendulum system in both the underdamped and the

overdamped cases. The equation of motion of the pendu-

lum system constitutes a paradigmatic model in the explo-

rations of bifurcations, chaos, and diffusion phenomena of

many nonlinear dynamical systems. Here, we perform our

investigation of the VR for the pendulum from a theoreti-

cal point of view and verify the theoretical predictions by

numerical simulations.

I. INTRODUCTION

The phenomenon of vibrational resonance (VR) is a

dynamical resonance induced by a high-frequency periodic

force at the low-frequency x of the input periodic signal. This

phenomenon was first reported by Landa and McClintock.1 Its

subsequent analysis has received much attention in the past

few years because of its importance in a wide variety of con-

texts in physics, engineering, and biology.2–7 Theoretical

approaches have been developed to study VR.6,8,9 The occur-

rence of VR has been studied in a monostable,10 bista-

ble,1,8,9,11,12 and three well13 systems. Moreover, it has been

also analyzed in excitable systems,14 vertical cavity surface

emitting laser,15,16 coupled oscillators,4,17,18 and time-delay

systems.19–22 Very recently, VR is found to induce undamped

low-frequency signal propagation in one-way coupled17 and

globally coupled23 bistable systems. Vibrational ratchet motion

is studied in certain systems with spatially periodic potentials

driven by a biharmonic force and a Gaussian white noise.24 In

the pendulum system driven by a high-frequency periodic

force and noise, employing vibrational mechanics scheme, it

has been shown that mobility and diffusion coefficient are

extremely sensitive to mass even for large damping.25

It is appropriate to note here that when the second high-

frequency periodic force in a typical bistable system is

replaced by a noise term, the resultant resonance is the well-

known stochastic resonance (SR).26 There are similarities

and differences between SR and VR. Both SR and VR were

often studied in systems with nonperiodic potentials. How-

ever, very little work has been done on SR in periodic poten-

tials.27–29 In the pendulum system, it is shown27 that the

exhibited resonant behaviour is not the SR associated with

the hopping between the wells, but it is a noise enhanced res-

onance due to the intra-well motion. Furthermore, and due to

the diffusion dynamics, there is no synchronization of the dy-

namical variable and the periodic driving force. Very

recently, SR has been analysed28 in a potential with an arbi-

trary number of maxima and minima. By applying a linear
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response theory, it is obtained an optimal number of maxima

and minima for which the response is maximized. Now, a

natural question arises: Can a biharmonic signal give rise to

VR in periodic potential systems? The main goal of the pres-

ent work is precisely to investigate, through a theoretical

approach and numerical simulation, the occurrence and the

features of VR in the pendulum system for both under-

damped and overdamped cases driven by the biharmonic

force f cos xtþ g cos Xt.
The equations of motion of the underdamped and over-

damped pendulum systems are

€hþ d _hþ sin h ¼ f cos xtþ g cos Xt (1)

and

_h þ sin h ¼ f cos xt þ g cos Xt; (2)

respectively. The equation of motion of the pendulum system

also describes the dynamics of several physical systems

including rf-driven Josephson junctions and phase-locked

voltage-controlled oscillators. In Eqs. (1) and (2), we assume

that X� x, f, g> 0, and f � 1. The amplitudes f and g can

differ in orders of magnitude. Such mixed signals have been

used in different fields of science and engineering. Examples

include a two-frequency laser signal showing high stability

and high efficiency,2 an acoustic field consisting of a high-

frequency imaging wave and a low-frequency audio pump-

ing wave4 found to be useful for measuring changes in the

fluid pressure30 and distinguish size distributions of gas filled

micro-pores,31 and an injection current used in a vertical cav-

ity surface emitting laser for experimental demonstration of

VR,15 telecommunication signals where information carriers

are usually high-frequency waves modulated by a low-fre-

quency signal32 and ultrasonic two-frequency waves used to

enhance cavitation yield.33

In the absence of periodic forcing and damping, the

potential of the pendulum system is V(h) =� cos h. This

potential has minima at h�min ¼ 62np, n ¼ 0; 1; 2;… and

maxima at h�max ¼ 6 2nþ 1ð Þp, n ¼ 0; 1; 2;…. Furthermore,

h�min and h�max are the stable and unstable equilibrium points,

respectively, of the system. For X� x, it is reasonable to

assume that the solution of the system consists of both a

slow variable X and a fast variable w. Substituting h¼Xþw
in Eq. (1), we obtain coupled equations for the variables X
and w. Because w is a rapidly changing, we approximate its

equation of motion as a damped and periodically driven (by

the high-frequency force) free particle whose solution in the

long time limit is a periodic function of fast time s¼Xt. On

averaging out w(s) over the period of the fast time, we obtain

the nonlinear equation of motion for the slow variable X. For

f � 1, we assume that the amplitude of the slow oscillation

is small and consider linearized equation of motion of X.

This leads to, in the linear approximation, an analytical

expression for the amplitude (denoted as AL) of slow motion.

In a similar manner, we find an expression for AL of slow

motion for the system (2). The ratio of AL and f is termed as

response amplitude Q. Using the theoretical expression of Q,

we analyze the occurrence of VR in both underdamped and

overdamped systems.

The organization of the paper is as follows. In Sec. II, we

obtain the equation of motion of the slow variable X and an ap-

proximate theoretical expression for the response amplitude Q
for the underdamped system (Eq. (1)). We show the occurrence

of multiple VR and bring out the differences between the VR

in the pendulum system and other systems with nonperiodic

potentials. We analyse the resonance dynamics in terms of the

resonant frequency xr and the stability of equilibrium points

around which slow oscillations take place. We consider the

overdamped system (Eq. (2)) in Sec. III. In Sec. IV, we study

the effect of the truncation of the periodicity of the potential.

Finally, the conclusions are described in Sec. V.

II. UNDERDAMPED PENDULUM SYSTEM

The first objective is to find a solution of Eq. (1) for

X� x by the method of separation where the solution is

written as a sum of slow variable X(t) and fast variable

w(t,Xt): h(t)¼X(t)þw(t,Xt). We assume that X is periodic

with period 2p=x and w is periodic in the fast time s¼Xt
with period 2p. Substituting h¼Xþw into Eq. (1), we obtain

€X þ €wþ dð _X þ _wÞ þ cos w sin X þ sin w cos X
¼ f cos xtþ g cos Xt: (3)

Due to the presence of the mixed terms cos w sin X and sin w
cos X, we add and subtract the terms cos wh i sin X and

sin wh i cos X, where

hcos wi ¼ 1

2p

ð2p

0

cos wðsÞds; hsin wi ¼ 1

2p

ð2p

0

sin wðsÞds

(4)

with F tð Þh i representing the average value of F(t) over s¼ 0 to

2p in Eq. (3) and obtain the following equations for X and w:

€X þ d _X þ hcos wi sin X þ hsin wi cos X ¼ f cos xt;

(5)

€w þ d _w þ cos w � hcos wi½ � sin X
þ sin w � hsin wi½ � cos X
¼ g cos Xt: (6)

Essentially, because w is assumed to be rapidly oscillating

periodic function of fast time, the terms containing w in the

evolution equation of X are averaged out over its period and,

moreover, Eq. (6) can be approximated as24,25

€wþ d _w ¼ g cos Xt: (7)

A. Approximate theoretical expression for the
response amplitude Q

The solution of Eq. (7) in the long time limit is25 w¼ l

cos(Xtþ/) where l ¼ g=ðX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ d2

p
Þ and /¼ tan�1(d=X).

Then, we find cos wh i ¼ J0 lð Þ and sin wh i ¼ 0 where J0(l) is

the zeroth-order Bessel function. Throughout our analysis on

underdamped system, we choose X� d. In this case, we can

neglect d2 in the argument of J0(l) and approximate it as

J0(g=X2). Now, Eq. (5) becomes
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€X þ d _X þ J0ðg=X2Þ sin X ¼ f cos xt: (8)

If X� d is not the case, then J0(g=X2) in the above equation

must be replaced by J0(l). Equation (8) can be treated as a

forced motion of a particle in the effective potential,

VeffðXÞ ¼ �J0ðg=X2Þ cos X: (9)

In Fig. 1, we plotted the effective potential Veff(X) for a few

values of g with X¼ 10. We can clearly notice the effect of g.

For g¼ 0 and 150, the shapes of the potential remain the same

while the depth of the wells is reduced. The maxima and min-

ima of Veff are altered by the parameter g. The maxima and

the minima of Veff for g¼ 0 and 150 become the minima and

maxima for g¼ 300. Figure 2 shows J0(g=X2) versus g for

X¼ 10. Here, we can see that J0 oscillates around the value 0

with decreasing amplitude and J0 ! 0 as g! 1. Whenever

J0> 0, the minima of Veff are X�min ¼ 62np, n ¼ 0; 1; 2;…
and the maxima are X�max ¼ 6 2nþ 1ð Þp, n ¼ 0; 1; 2;…. The

locations of the minima and the maxima of Veff are inter-

changed when J0< 0. A consequence of this is that for the

values of g for which J0> 0 slow oscillations occur around

the equilibrium points ðX�; _X�Þ ¼ ðX�min; 0Þ, while for other

values they take place around ðX�; _X�Þ ¼ ðX�max; 0Þ.
The equation of motion for the deviation variable

Y¼X – X* is given by

€Y þ d _Y þ ðJ0 cos X�Þ sin Y ¼ f cos xt: (10)

If J0> 0 (<0), then X� ¼ X�min X�max

� �
. Therefore,

J0 cos X� ¼ J0j j. For f � 1, we assume that Yj j � 1 and ap-

proximate sin Y as Y. Then Eq. (10) becomes

€Y þ d _Y þ x2
r Y ¼ f cos xt; x2

r ¼ jJ0j; (11)

which is a damped and periodically driven linear equation. We

note that xr is the natural frequency of the linear version of the

equation of motion of the slow variable X in the absence of the

external force f cos xt. It is called resonant frequency of the

low-frequency oscillation in the presence of f cos xt. xr is in-

dependent of f, x, and d and depends on the parameters g and

X. Below we show that resonance occurs when the resonant

frequency matches with the angular frequency x or it becomes

locally maximum. The general solution of Eq. (11) is

YðtÞ ¼ C1emþt þ C2em�t þ AL cosðxt þ UÞ; (12)

where C1 and C2 are integration constants, m6 are the roots

of the equation m2 þ dmþ x2
r ¼ 0, and

AL ¼
f ffiffiffi
S
p ; S ¼ x2

r � x2
� �2 þ d2x2 ; (13a)

U ¼ tan�1½�dx=ðx2
r � x2Þ� : (13b)

The roots m6 are< 0 for d2 > 4x2
r and become complex

conjugate with negative real part for d2 < 4x2
r . Conse-

quently, in the limit t!1, the first two terms in the solution

(12) falls-off exponentially fast to zero and are termed as

transient. The last term in Eq. (12) is the dominant compo-

nent of the solution. Therefore, for large t, we write the solu-

tion as Y(t)¼ALcos(xtþU). Finally, the response amplitude

is given by Q ¼ AL=f ¼ 1=
ffiffiffi
S
p

.

B. Analysis of VR: Connection between resonance
and xr

In order to verify theoretical results, we numerically

integrate Eq. (1) using the fourth-order Runge-Kutta method

with step size (2p=x)=1000 and leave the solution corre-

sponding to first 1000 drive cycles of low-frequency force as

a transient. Then, we compute numerically the sine and co-

sine components QS and QC, respectively from the equations

QS ¼
2

kT

ðkT

0

hðtÞ sin xtdt ; (14a)

QC ¼
2

kT

ðkT

0

hðtÞ cos xtdt ; (14b)

where T¼ 2p=x and k¼ 500. Then Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

S þ Q2
C

p
=f . For

the purposes of our analysis, we treat g as the control param-

eter. Figure 3 shows both theoretical and numerical values of

Q versus g for four set of values of x and X with f¼ 0.1 and

d¼ 1. The theoretical prediction is in a very close agreement

with the numerical simulation. There are several interesting

results on the pendulum system compared to the VR reported

on the other systems with nonperiodic potentials.

First, we note that the values of g, gVR, at which Q
becomes maximum (i.e., S becomes minimum), are the roots

FIG. 1. Plot of the effective potential Veff given by Eq. (9) for three values

of g with X¼ 10. Notice that for g¼ 0 and g¼ 150, the shapes of the poten-

tial remain the same while the depth of the wells is reduced, showing the

effect of the value of g.

FIG. 2. Variation of the zeroth-order Bessel function with the control pa-

rameter g for X¼ 10. Note that J0 exhibits a damped oscillation. Moreover,

the values of g at which J0¼ 0 are not equally spaced.
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of the equation Sg¼ dS=dg¼ J0g(|J0|–x2)¼ 0 with

J0g¼ dJ0=dg where we have used x2
r ¼ J0j j. Therefore, reso-

nance occurs if |J0|¼x2 or J0g¼ 0. We note that J0(0)¼ 1,

|J0(g=X2)|< 1 and it oscillates around the value 0 with a

decreasing amplitude. Suppose gc is the value of g above

which |J0| is always<x2. Then for g< gc, the values of g at

which resonance occurs are the roots of |J0| – x2¼ 0. For

g> gc, the resonance values of g are the roots of the equation

J0g¼ 0. These are clearly seen in Fig. 4 which shows the

connection between the resonances and x2
r for x¼ 0.5 and

X¼ 10. The value of gc is 761, however, the values of gVR

are not equally spaced.

Since |J0|< 1, we find from Q ¼ 1=
ffiffiffi
S
p

that for x � 1

Q(g)<Q(g¼ 0). That is, there is no gain in the response am-

plitude at the frequency x � 1 due to the addition of a high-

frequency force. However, due to the damped oscillatory

variation of J0, the response amplitude Q will show an oscil-

latory variation and it becomes maximum whenever |J0| is

maximum (i.e., J0g¼ 0). The above results are clearly evi-

dent in Fig. 3 for x¼ 1 and 1.25.

For x< 1, a key result is Q(g)>Q(g¼ 0). At the

resonances occurring for g< gc, Qmax¼ 1=(dx). At other

resonances (gVR> gc), which are due to the local maxima of

x2
r (see Figs. 3 and 4), the value of Qmax slowly decreases

from the value 1=(dx) and approaches the limiting value QL

(indicated by dashed lines in Fig. 3) in the limit of g ! 1.

These results are clearly seen in Figs. 3 and 4.

An interesting result, for both x> 1 and x< 1, is that Q
does not decay to 0, whereas in the systems with a finite

number of potential wells Q! 0 for sufficiently large values

of g because of the monotonic increase of the resonant fre-

quency for large values of g.1,8,10,12,13 In the pendulum sys-

tem, since x2
r ¼ J0j j ! 0 as g!1, the limiting value of Q

for large values of g is QL ¼ 1=ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ d2
p

Þ. As g
increases, the strength of the effective potential seen by the

slow variable decreases (see Fig. 1), and for sufficiently large

values of g, the equation of the slow variable is essentially

the equation of motion of a periodically driven damped free

particle (Eq. (8) with J0¼ 0), and in this case, the response

amplitude is QL.

Next, we present the effect of the angular frequency X
on VR. Figure 5 shows the variation of Q as a function of X
for g¼ 100. Multiresonance occurs when X is varied. The

differences between the effects of X and g on VR can be eas-

ily noticed by comparing the Figs. 3 and 5. For large values

of X, g=X2 � 0, J0(g=X2) � 1, and Q approaches the limiting

value 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þ2 þ d2x2

q
which is Q(g¼ 0), whereas for

large values of g, Q � QL ¼ 1=ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ d2
p

Þ. On the other

FIG. 3. Response amplitude Q versus the control parameter g for the under-

damped pendulum system for a few set of values of x and X. The values of

d and f are 1 and 0.1, respectively. The continuous curve and the solid circles

represent the theoretical Q and the numerically computed Q, respectively.

The dashed horizontal lines indicate the limiting values of Q.

FIG. 4. Plots of (a) Q versus g and (b) x2
r ¼jJ0 g=X2

� �
j

� �
versus g for the

underdamped pendulum system with x¼ 0.5, X¼ 10, f¼ 0.1, and d¼ 1. In

(b), the horizontal dashed line denotes x2
r ¼ x2 ¼ 0:25. The vertical dashed

lines indicate the values of x2
r and g at which Q becomes maximum.

FIG. 5. Numerically computed Q versus X for the underdamped system

with f¼ 0.1, d¼ 1, x¼ 0.5, and g¼ 100. The subplot (b) is a magnification

of a part of Q in (a).
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hand, for small values of X, x2
r ¼ J0 g=X2

� �
oscillates very

fast (because 1=X2 varies rapidly) and hence, Q also oscil-

lates fast and is clearly seen in Figs. 5(a) and 5(b). The spac-

ing between successive resonances decreases rapidly when X
is decreased from a higher value.

In our study, we treated f � 1. In Fig. 3, for x¼ 0.5

and X¼ 10, the first resonance occurs at a large value of g.

Resonance can be observed for lower values of g also by

choosing smaller values for x and X. For example, for

X¼ 10 and 5, the first resonance occurs at g¼ 195.5 and

48.87, respectively. Further, resonance with considerable

enhancement of response amplitude of the output signal of

the system at the low frequency x occurs only for small val-

ues of f. For several fixed values of f(< 100), we calculated

Q for a range of values of g of same order of magnitude of f.
In all the cases, the variation of Q with g is found to be negli-

gibly small. When f¼ 0, the system (1) is now driven by

only one periodic force with angular frequency X and ampli-

tude g. In this case, the system can exhibit different routes to

chaos and chaotic diffusion when g or X is varied. We

obtained a theoretical frequency-response amplitude equa-

tion for 0 < g� 1 by assuming the solution of the form A
cos(Xtþ/). For a certain range of fixed values of the damp-

ing parameter, the response amplitude follows different paths

(hysteresis) when X is increased from a small value to a

large value and decreased from a large value to a small value

and single resonance occurs. Multiresonance phenomenon is

not observed.

In the VR analysis, we assume that there is a peri-

odic signal with frequency x and very low amplitude

f � 1. Interestingly, VR analysis indicates that when this

low amplitude signal is fed to a nonlinear system driven

by a second periodic force of frequency X far from x,

X� x, then the amplitude of the output signal at the

frequency x can be maximized by an appropriate ampli-

tude g of the high-frequency force. This high-frequency

force induced VR is of great interest for the detection of

low level signal.

C. Analysis of VR: Connection between resonance
and stability of the equilibrium points

Now, we bring out the connection between the VR and

the stability of the equilibrium points around which slow

oscillations take place. The equilibrium points of the system

(Eq. (8)) for f¼ 0 are ðX�min;
_X�Þ ¼ ð62np; 0Þ, n ¼ 0; 1; 2;…

and ðX�max;
_X�Þ ¼ ð6ð2nþ 1Þp; 0Þ, n ¼ 0; 1; 2;…. The sta-

bility determining eigenvalues are

k6 ¼
1

2
�d6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4J0 cos X�

ph i
: (15)

If J0> 0, then for X�min; 0
� �

, Rek6< 0 and are stable, while

for X�max; 0
� �

, k6 are real with kþ> 0 while k�< 0 and are

unstable (saddles). The stability is exchanged for J0< 0.

That is, the stability of the equilibrium points is changed

when g is varied and the associated bifurcation is the tran-

scritical bifurcation. A consequence of this is that for the val-

ues of g for which J0> 0 slow oscillations occur around the

equilibrium points X�min; 0
� �

, while for other values, they

take place around X�max; 0
� �

. Around each of the stable equi-

librium points, there exists a slow orbit. The coexisting slow

orbits and the coexisting actual orbits can be obtained by

choosing different initial conditions in the numerical

simulation.

Figures 6(a) and 6(c) show the variation of Rek6 of

X�min; 0
� �

and X�max; 0
� �

, respectively. As g increases from

zero, the eigenvalues of X�min; 0
� �

are complex conjugate

with a negative real part, while for X�max; 0
� �

, we find

k�< 0< kþ. The imaginary part of k’s of X�min; 0
� �

decreases

in magnitude and at a value of g, they are pure real negative.

Then at another value of g, one of the eigenvalues of

X�min; 0
� �

becomes positive (while those of X�max; 0
� �

become

complex conjugate with negative real part). At this value of

g, the stability of X�min; 0
� �

and X�max; 0
� �

are exchanged and

the associated bifurcation is transcritical. The transcritical

bifurcation repeats as g increases. Q attains the limiting

value QL at the transcritical bifurcation points. Resonances

occur when X�min; 0
� �

or X�max; 0
� �

are maximally stable, i.e.,

the real part of the largest eigenvalue is minimum. These can

be clearly seen in Fig. 6.

In Fig. 7, we plotted h* (the h-component of the equilib-

rium point about which both slow as well as the actual oscil-

lations occur) versus g along with the response amplitude Q.

Comparing Figs. 2 and 7, we find that the center of

FIG. 6. Rek6 versus the control parameter g of (a) the equilibrium points

X�min; 0
� �

and (c) the equilibrium points X�max; 0
� �

. Continuous and dashed

curves represent Rekþ and Rek�, respectively. (b) Q versus g of the under-

damped pendulum system for d¼ 1, f¼ 0.1, x¼ 0.5, and X¼ 10. The verti-

cal dashed lines indicate the connection between the resonance and the

nature of the eigenvalues of the stable equilibrium points.
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oscillation switches from h*¼ 0 to p and p to 0 when J0

changes its sign from positive to negative and negative to

positive, respectively. The switching takes place not at the

resonance but at the transcritical bifurcation point.

III. OVERDAMPED PENDULUM SYSTEM

In this section, we consider the overdamped pendulum

system (Eq. (2)). Multiresonance is also realized in the over-

damped pendulum system, however, there are some differen-

ces in the mechanism of VR.

For the system (Eq. (2)), we obtain

_X þ J0ðg=XÞ sin X ¼ f cos xt; (16)

and the response amplitude Q is given by

Q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ x2
p ; xr ¼ jJ0j: (17)

The stability determining quantity k of the equilibrium points

of Eq. (16) with f¼ 0 are given by

k ¼ kmin ¼ �J0; for X�min ¼ 0;62p;…
kmax ¼ J0; for �

max ¼ 6p;63p;…:

�
(18)

In Fig. 8, we plotted Q, xr, and the variation of stability

determining eigenvalue kmin and kmax of the equilibrium

points X�min and X�max, respectively, versus g. Note that Q
displays a series of resonance peaks. In contrast to the under-

damped system, in the overdamped system, resonances occur

when xr¼ 0 at which the stability of the equilibrium points

X�min and X�max are exchanged. Moreover, Q is locally mini-

mum when xr becomes a maximum and k of the stable equi-

librium points is minimum (maximally stable). At all the

resonance values of g, we find Q¼ 1=x. Furthermore, for

both x< 1 and x> 1, the response amplitude Q(g)>Q(0)

and QL¼ 1=x.

IV. VIBRATIONAL RESONANCE IN TRUNCATED
PERIODIC POTENTIAL SYSTEMS

In this section, we report on the effect of the truncation

of the periodicity of the periodic potential on VR. To know

the role of periodicity of the potential beyond |h|> 2p, we

consider the overdamped system with the truncated periodic

potential of the form

VTðhÞ ¼
�1þ 1

nðh� c1Þn; for h < c1

� cos h; for c1 	 h 	 c2

�1þ 1
nðh� c2Þn; for h > c2

8<
: ; (19)

where c1 =� 2p, c2¼ 2p, and n¼ 2, 4. The choices n¼ 2

and n¼ 4 correspond to linear and nonlinear forces, respec-

tively, for |h|> 2p. Figure 9 shows the potential VT(h) for

n¼ 2 and n¼ 4. In Eq. (2), we replace sin h by dVT(h)=dh.

Now, the response amplitude Q is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ x2
p

, where

xr ¼
jJ0j; for hðtÞ 2 ½c1; c2�

1 for n ¼ 2 and
3g2

2X2
for n ¼ 4; otherwise:

8<
: (20)

In the pendulum system, xr is independent of time, while in

the system with the potential VT, it is a function of time.

However, as long as h tð Þ 2 c1; c2½ �, the resonant frequency is

|J0(g=X)| and Q is identical to the system (Eq. (2)). Above a

critical value of g, h(t) visits the outside region of the inter-

val [c1,c2]. The time spent by the system outside the above

interval increases as g increases. Therefore, for very large

values of g, we can approximate Q as

FIG. 7. Response amplitude Q and h* (the h-component of the equilibrium

point around which both slow as well as the actual oscillations occur) versus

the parameter g for d¼ 1, f¼ 0.1, x¼ 0.5, and X¼ 10.

FIG. 8. Variation of theoretical Q (continuous line), numerical Q (solid

circles), resonant frequency xr, and the eigenvalue k of the equilibrium

points X�min and X�max (for f¼ 0) of the overdamped pendulum system as a

function of the control parameter g for x¼ 0.5, X¼ 10, and f¼ 0.1.

FIG. 9. Plot of VT(h) versus h for n¼ 2 and 4.

033106-6 Rajasekar, Abirami, and Sanjuan Chaos 21, 033106 (2011)

Downloaded 01 Oct 2011 to 193.147.59.98. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



QL ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
r þ x2

p ; xr ¼
1; for n ¼ 2

3g2

2X2
; for n ¼ 4:

8<
: (21)

For large values of g, the response amplitude Q becomes a

nonzero constant for n¼ 2 (linear force) while it decays to

zero for n¼ 4 (nonlinear force). The numerical Q versus g
presented in Fig. 10 confirms the above results.

V. CONCLUSIONS

To conclude, we have investigated the occurrence of VR

in the pendulum system for the underdamped and overdamped

cases. In particular, we have analysed the impact of the pres-

ence of an infinite number of alternating stable and unstable

equilibrium points. The stability of the equilibrium points

around which slow oscillations occur is altered when g is var-

ied. There are few rich features of VR in the pendulum sys-

tem. In the conventional VR, Q(g) decays to zero for large

values of g. Different from this, in the underdamped pendu-

lum system for x< 1, the response amplitude (Q) profile dis-

plays multiple resonance peaks, Q(g)>Q(g¼ 0) and Q(g)

approaches a limiting nonzero value for large values of g.

Resonance occurs whenever xr matches with x or it becomes

locally maximum. Furthermore, at the resonance, the equilib-

rium points around which slow oscillations occur are maxi-

mally stable. The mechanism of VR in the overdamped

system is quite different from that of the underdamped system.

In the overdamped system, the most interesting result is that

Q(g)>Q(g¼ 0) for both x> 1 and x< 1 and the resonance

occurs when xr becomes minimum (= 0). Another thing is

that at the resonance, a transcritical bifurcation of the equilib-

rium points takes place. And conventional VR is found when

the periodicity of the potential is truncated. Our theoretical

results are clearly supported by our numerical simulations. All

the features of VR in the pendulum system are explained by

our theoretical approach. From the above, we believe that the

study of VR in different kinds of potentials would provide fur-

ther insight on VR.
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