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We analyze how the asymmetry of the potential well of the Duffing oscillator affects the vibra-
tional resonance. We obtain, numerically and theoretically, the values of the low-frequency and
amplitude of the high-frequency forces at which vibrational resonance occurs. Furthermore, we
observe that an additional resonance is induced by the asymmetry of the potential well. We
account the additional resonance in terms of resonant frequency of the slow motion of the
system. Resonance occurs in the asymmetric system for the input signal frequency range for
which it is not possible in the symmetric system. Resonance is also studied with nonsinusoidal
input signals and in the presence of additive Gaussian white noise.
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1. Introduction

The study of the occurrence of vibrational res-
onance [Landa & McClintock, 2000; Gitterman,
2001] — a resonant dynamics induced by a high-
frequency periodic force at the low-frequency ω of
the input periodic signal — has received consid-
erable interest in the past few years. In a typ-
ical bistable system when the amplitude g of a
high-frequency periodic force is varied, the ampli-
tude of the response at the low-frequency shows
a bell-shape curve with a maximum enhancement
of the response at a critical value denoted as g

VR
.

Experimental evidence of the vibrational resonance
has been demonstrated in analog simulations of

the overdamped Duffing oscillator [Baltanas et al.,
2003], in an excitable electronic circuit with Chua’s
diode [Ullner et al., 2003] and in a bistable opti-
cal cavity laser [Chizhevsky et al., 2003]. A the-
oretical approach for vibrational resonance in the
presence of additive white noise has also been devel-
oped [Casado-Pascual et al., 2003]. A scaling-law
relating the gain factor for the low-frequency signal
due to vibrational resonance with the strength of
the added noise was obtained based on an analyt-
ical treatment for an overdamped bistable system
and verified experimentally in a vertical cavity
surface emitting laser [Chizhevsky & Giacomelli,
2004; Chizhevsky, 2008]. Moreover, it has been
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shown that vibrational resonance is an effective phe-
nomenon to enhance the detection and recovery of
weak aperiodic binary signals in stochastic bistable
systems [Chizhevsky & Giacomelli, 2008]. Further-
more, multiple vibrational resonance in a monos-
table [Jeyakumari et al., 2009a] and multistable
[Jeyakumari et al., 2009b] quintic oscillator and sin-
gle resonance in coupled and small world networks
of FitzHugh–Nagumo equations [Deng et al., 2009;
Deng et al., 2010] were very recently reported.

Vibrational resonance has been studied in the
overdamped bistable system with the asymmet-
ric potential V (x) = −(1/2)αx2 + (1/4)βx4 − γx,
α, β, γ > 0 [Chizhevsky & Giacomelli, 2006] and
with V (x) = 4(x − x3) + ∆ [Chizhevsky &
Giacomelli, 2008] where ∆ is a constant param-
eter describing the level of asymmetry. A single
resonance is reported when the amplitude of the
high-frequency force or ∆ is varied. Our prime goal
in the present paper is to report the result of a
detailed theoretical and numerical analysis of the
vibrational resonance in the asymmetric Duffing
oscillator

ẍ+ dẋ+
dV
dx

= f cosωt+ g cos Ωt, (1)

where Ω � ω and the asymmetric potential of
the system in the absence of damping and exter-
nal force is

V (x) =
1
2
ω2

0x
2 +

1
3
αx3 +

1
4
βx4. (2)

The potential V (x) is symmetric when α = 0.
Figure 1 illustrates the influence of the asymmet-
ric parameter α on the shape of the single-well and
the double-well potentials. A two-state theory for
stochastic resonance was developed for the over-
damped system with the asymmetric potential (2)
subjected to Gaussian [Wio & Bouzat, 1999; Li,
2002] and nonGaussian [Wio & Bouzat, 1999]
noises. When the asymmetry parameter α is
increased, weakening of stochastic resonance is
observed. That is, signal-to-noise ratio is decreased
and the optimum noise intensity at which stochas-
tic resonance occurs is increased by the asymmetry.
Recently, double stochastic resonance is reported in
an overdamped system with a deformable asymmet-
ric double-well potential [Borromeo & Marchesoni,
2010].

For Ω � ω, due to the difference in time
scales of the low-frequency force f cosωt and the

(a)

(b)

Fig. 1. Shape of the potential V (x) for (a) ω2
0 = β = 1

and α = 0 (continuous line), 0.75 (dashed line), 1.9 (painted
circles) and (b) ω2

0 = −5, β = 5 and α = 0 (continuous line),
0.75 (dashed line), 2 (painted circles).

high-frequency force g cos Ωt, we assume that the
solution of the system (1) consists of a slow motion
X(t) and a fast motion ψ(t,Ωt). Applying a theoret-
ical approach, in a linear approximation, we obtain
an analytical expression for the response amplitude
Q of the low-frequency (ω) output signal. Using this
theoretical expression of Q, we analyze the effect
of the asymmetry parameter α on vibrational res-
onance. We obtain the theoretical values of ω and
g at which vibrational resonance occurs when we
have an asymmetry in both single-well and double-
well cases. Our theoretical prediction is in good
agreement with the numerical simulation. One main
result is the occurrence of an additional resonance
for a range of values of α in the asymmetric system
compared to the symmetric system. We describe the
single and multiple resonances in terms of resonant
frequency of the linear version of the slow motion.
It is worth noting that the number of resonances
taking place for the sinusoidal input signal f cosωt
persists when it is replaced by nonsinusoidal and
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arbitrary shape binary signals of same frequency
and amplitude. Strong degradation and suppression
of resonance are found in large intensity of added
Gaussian white noise. Additional resonance occurs
in the overdamped version of the system (1) and in
the damped asymmetric quintic oscillator also.

2. Theoretical Approach

For Ω � ω we assume the solution of Eq. (1)
as x(t) = X(t) + ψ(t, τ = Ωt) where X and
ψ are slow motion with period 2π/ω and fast
motion with period 2π/Ω, respectively. Because ψ
is rapidly varying, we approximate the equation of
motion for ψ as ψ̈ = g cos Ωt which gives ψ =
−(g/Ω2) cos Ωt, ψav = (1/2π)

∫ 2π
0 ψ dτ = 0, ψ2

av =
g2/2Ω4 and ψ3

av = 0. Then the equation for the
slow motion is

Ẍ + dẊ + C2X + αX2 + βX3 + C1 = f cosωt,
(3)

where

C1 =
αg2

2Ω4
, C2 = ω2

0 +
3βg2

2Ω4
. (4)

Equation (3) can be viewed as the equation of
motion of a system with the effective potential

Veff(X) = C1X +
1
2
C2X

2 +
1
3
αX3 +

1
4
βX4. (5)

Slow oscillations take place about the equilibrium
points X∗ which are roots of the cubic equation

βX∗3 + αX∗2 + C2X
∗ + C1 = 0. (6)

If Eq. (6) has three real roots, then we designate
them as X∗

L,X
∗
M and X∗

R with X∗
L < X∗

M < X∗
R.

When Veff becomes a double-well potential, then
X∗

L and X∗
R are the local minimum of left- and

right-wells respectively, while X∗
M is the local

maximum of it.
Substituting X = Y +X∗, where Y is the devi-

ation of the slow motion from X∗, in Eq. (3), we
obtain

Ÿ + dẎ + ω2
rY + α′Y 2 + βY 3 = f cosωt, (7)

where

ω2
r = C2 + 2αX∗ + 3βX∗2, α′ = α+ 3βX∗. (8)

The solution of the linear version of Eq. (7) in the
limit t→ ∞ and f � 1 is AL cos(ωt − φ) where

AL =
f

[(ω2
r − ω2)2 + d2ω2]1/2

,

φ = tan−1

(
ω2 − ω2

r

dω

)
.

(9)

The response amplitude Q is AL/f , where ωr is the
resonant frequency of the linear version of the equa-
tion of motion of the slow variable X(t).

3. Resonance in the System with an
Asymmetric Single-Well Potential

The shape of the potential V (x) depends basically
on the parameters ω2

0, α and β. V (x) is asymmet-
ric due to the term (1/3)αx3. For ω2

0 , α, β > 0 the
potential V (x) has a single-well form [Fig. 1(a)] for
α2 < 4ω2

0β and double-well form for α2 > 4ω2
0β.

When ω2
0 < 0, β > 0, α-arbitrary V (x) becomes a

double-well potential [Fig. 1(b)]. In this section, we
analyze the occurrence of vibrational resonance in
the system (1) with the single-well potential shown
in Fig. 1(a).

For a single-well system (1), Eq. (3) with f = 0
has only one equilibrium pointX∗. When α = 0,X∗
is always 0. X∗ < 0 for α > 0 while X∗ > 0 for
α < 0. Veff(X) remains as a single-well potential.
The values of the control parameter at which res-
onance occurs correspond to the minima of S =
(ω2

r − ω2)2 + d2ω2.
For a fixed value of ω when g is varied, res-

onance occurs at g = g
VR

where g
VR

is a root of
Sg = dS/dg = 4(ω2

r−ω2)ωrωrg = 0 and Sgg|g=g
VR

=
8ωω2

rg > 0. Here ωrg = dωr/dg. For α = 0 we obtain

gVR = Ω2

√
2(ω2 − ω2

0)
3β

. (10)

For ω2 < ω2
0, resonance will not occur if the control

parameter g is varied from 0. In the asymmetric
system (α �= 0),X∗ �= 0 and ωr is a complicated
function of the parameters. Analytical expression
for g

VR
is difficult to find. However, we can deter-

mine g
VR

from S by numerically finding the roots
of Sg = 0 and the value of Sgg at the roots.

We choose the values of the parameters as
ω2

0 = 1, β = 1, d = 0.3, f = 0.05,Ω = 10. V (x) is
a single-well potential for 0 < α < 2 and a double-
well potential for α > 2. We consider now the case
0 < α < 2. Figure 2 shows both theoretically and
numerically computed g

VR
as a function of ω for

α = 0, 1 and 1.9. From the numerical solution x(t)



February 14, 2011 19:38 WSPC/S0218-1274 02841

278 S. Jeyakumari et al.

Fig. 2. Variation of gVR with ω for three values of α. The
potential is symmetric for α = 0. The continuous line is
the theoretical prediction of vibrational resonance while the
painted circle represents the value of gVR calculated from the
numerical solution of the system.

of Eq. (1), the sine and cosine components QS and
QC are calculated from the equations

QS =
2
nT

∫ nT

0
x(t) sinωt dt, (11a)

QC =
2
nT

∫ nT

0
x(t) cos ωt dt, (11b)

where T = 2π/ω and n is taken as 500. Then Q =√
Q2

S +Q2
C/f . From the numerically computed Q

versus g the value of gVR at which Q becomes max-
imum is found. The theoretical approximation is
in good agreement with the numerical result. We
notice the absence of resonance for ω < 1 in Fig. 2,
for α = 0. That is, in the symmetric system if
ω < 1 (= ω2

0) an enhancement of the amplitude of
the signal at low-frequency ω is not possible when
the amplitude g of high-frequency force is varied.

This is the case for 0 < α < 1.23. In this interval
of α, ωr increases monotonically with g from the
value 1 and hence no resonance appears for ω < 1.
An interesting result is the observation of double
resonance for α ∈ [1.23, 2]. As shown in Fig. 2 for
α = 1.9, double resonance occurs when g is varied
from zero for each fixed value of ω ∈ [0.7721, 1].

We explain the g
VR

versus ω curve for α = 1.9
with the plot of ωr versus g [Fig. 3(a)] and ωrg versus
g [Fig. 3(b)]. From Figs. 3(a) and 3(b) we infer the
following:

(i) For 0 < ω < ωr1 = 0.7721 the value of ωr is
greater than ω and ω2

r−ω2 in the function S or
Q is nonzero for any value of g. However, ωrg =
0 at g0 = 57.8. Since Sg = 4(ω2

r −ω2)ωrωrg the
function S becomes a minimum at this value
of g. Hence, there is a resonance at g = g0
for 0 < ω < ωr1. In Fig. 3(c), for ω = 0.5, as
g increases from 0, the value of Q increases,
reaches a maximum value at g = g

VR
= g0 and

then decreases with further increase in g. For
0 < ω < ωr1, gVR

remains a constant because
ωr is independent of ω and ω2

r − ω2 �= 0.
(ii) Corresponding to each value of g in the inter-

val [0, g0], there is another value of g in the
interval [g0, g1 = 88] both having the same
value of ωr. Consequently, for each fixed value
of ω ∈ [ωr1, ωr2 = 1], the quantity ω2

r − ω2 is
0 for two values of g. Hence, there are two res-
onances. In the symmetric single-well system
only one resonance is possible and is given by
Eq. (10). The additional resonance is due to
the asymmetry introduced in the system. We
can see a double resonance for ω = 0.85 and
ω = 0.9 in Fig. 3(c). The value of Q is the

(a) (b) (c)

Fig. 3. (a) Variation of resonant frequency ωr with g for α = 1.9. ωr is independent of ω. (b) ωrg (= dωr/dg) versus g for
α = 1.9. ωr and ωrg are calculated from Eq. (8). (c) Numerically computed Q versus g for the system (1) with single-well
potential for three values of ω. The values of the other parameters are ω2

0 = 1, β = 1, α = 1.9, d = 0.3, f = 0.05 and Ω = 10.
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same at both resonances since they are due to
ω2

r −ω2 = 0 and Qmax is 1/(dω). On the other
hand, the influence of damping is to reduce
the value of Q and it does not alter the value
of g

VR
.

(iii) When ω > ωr2 then ω2
r − ω2 = 0 for a value of

g > g1 and hence there is a resonance.

For ω > ωr1 the resonance is due to the matching
of the resonant frequency ωr with the frequency ω
of the input signal while for 0 < ω < ωr1 though
ωr �= ω a resonance occurs due to the minimization
of the function S.

A plot of g
VR

versus α and Qmax versus α for
three values of ω is shown in Fig. 4. Note also that
a resonance does not occur in the symmetric case
for ω = 0.85 when g is varied. When asymmetry is
introduced the absence of resonance continues for
values of α < 1.23. Single and double resonances
take place for 1.23 ≤ α < 1.81 and 1.81 ≤ α ≤ 2,
respectively. For ω > 1, a single resonance occurs for
0 < α < 2. This is shown in Fig. 4(a) for ω = 1.1
and 1.2. In Fig. 4(b) the reason for the constancy
of Qmax with α is that the associated resonance is
due to ωr = ω. The variation of Qmax with α (in
the interval 1.23 ≤ α < 1.81 for ω = 0.85) indicates

(a)

(b)

Fig. 4. Plots of gVR and Qmax (at g = gVR) as a function
of ω.

that the resonance is due to the minimization of S
with ωr �= ω.

Besides this previous analysis, we also consider
the effect of α on the vibrational resonance by using
nonsinusoidal and arbitrary binary shape periodic
input signals. We consider the following periodic
signals in place of f cosωt:

h1(t) = f




cosωt, 0 ≤ t <
π

ω

2ω
π
t− 3,

π

ω
≤ t <

2π
ω

(12)

h2(t) = f




ω

π
t− 1

2
, 0 ≤ t <

π

ω

−ω
π
t+

3
2
,

π

ω
≤ t <

2π
ω

(13)

h3(t) = f




1, 0 ≤ t <
π

4ω

−0.5,
π

4ω
≤ t <

3π
4ω

0.5,
3π
4ω

≤ t <
π

ω

−0.75,
π

ω
≤ t <

5π
4ω

1,
5π
4ω

≤ t <
7π
4ω

−0.25,
7π
4ω

≤ t <
2π
ω
.

(14)

In all the above three signals t = mod(2π/ω).
Figure 5 shows the numerically calculated Q ver-
sus g for α = 1.9 with the different input signals
with the same frequency ω = 0.85 and amplitude
f = 0.05. The high-frequency force is again g cos Ωt.
In all the cases, a double resonance is observed. g

VR

values for the signals f cosωt, h1(t), h2(t) and h3(t)
are (34, 72), (38, 80), (95, 177) and (42, 71) respec-
tively. The effect of asymmetry is similar for all
the forms of the periodic input signals considered.
The above result indicates that the form of the
high-frequency force need not be the same as the
input signal. For any arbitrary periodic signal of
frequency ω, amplification of the amplitude of the
output signal at the frequency ω can be carried out
by using the force g cos Ωt.
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Fig. 5. Q versus g for the system (1) with the low-frequency
signal being (a) f cos ωt, (b) h1(t), (c) h2(t) and (d) h3(t).
The high-frequency force is g cosΩt. The values of the param-
eters are ω2

0 = 1, β = 1, d = 0.3, f = 0.05, ω = 0.85, α = 1.9
and Ω = 10.

Next, we illustrate the effect of additive Gaus-
sian white noise η(t), with zero mean and the cor-
relation function 〈η(t)η(t + τ)〉 = Dδ(t − τ) where
D is the variance or intensity of the noise, in the
system (1) with double resonance. In the numeri-
cal calculation of Q, 2× 103 trajectories, x(i)(t), are
generated by numerically integrating the equation
of motion for every realization of the noise η(t). We
use the same initial condition for all the trajectories.
First 500 drive cycles of low-frequency force are left
as transient. After every integration step we calcu-
late 〈x(t)〉, the average of all x(i)(t). This average
quantity is used in Eqs. (11) for the calculation of Q.
In Fig. 6 numerically calculated Q versus g is plot-
ted for four values of noise intensity along with the
noise free resonance curve. Double resonance with
slight shift in the values of g

VR
is observed for small

values of D. In Fig. 6 we notice the following:

(i) An increase in the noise intensity first sup-
presses the resonance occurring at a lower

Fig. 6. Response amplitude Q versus the amplitude g of the
high-frequency force in the absence of external noise and for
four fixed values of the noise intensity D with ω = 0.85 and
α = 1.9.

value of the amplitude of the high-frequency
force followed by the other resonance.

(ii) The value of g
VR

moves towards the origin with
D. The Gaussian white noise contains all the
frequencies. As pointed out in [Baltanas et al.,
2003; Casado-Pascual et al., 2003], the por-
tion of the noise corresponding to the high-
frequency interval is the source for the decrease
in the value of g

VR
.

(iii) Q, specifically Qmax, decreases when D
increases. The part of noise with frequencies
other than the high-frequency region degrades
the performance of the system by decreasing
the value of Q.

4. Resonance in an Asymmetric
Double-Well System

The potential V (x) has an asymmetric double-well
shape for ω2

0 < 0, β > 0 and α-arbitrary [Fig. 1(b)].
As α increases from zero (i) the depth of the left-well
increases while that of the right-well decreases and
(ii) the location of the local minimum of the right-
well moves towards the origin whereas the minimum
of the left-well moves further away from the origin.

We fix the values of the parameters as ω2
0 =

−5, β = 5, d = 0.3, f = 0.05, ω = 1.5 and Ω = 10.
For α = 0, from Eq. (6) with C1 = 0, we find that
the system (3) in the absence of low-frequency force
has two stable and one unstable equilibrium points
for g < gc = 81.65. There is only one equilibrium
point for g ≥ gc and Veff is a single-well potential.
As shown in Fig. 7 the bifurcation is of pitchfork
type. For α �= 0 saddle-node bifurcation occurs and
is shown in Fig. 7 for α = 0.75. As g increases from
0 the two stable equilibrium points move toward the

Fig. 7. X∗ versus g of the system (3) in the absence of low-
frequency force for α = 0 and α = 0.75. S and U denote
stable and unstable branches respectively of the equilibrium
points.
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(a)

(b)

Fig. 8. Plots of (a) theoretical and numerical gVR versus α
and (b) Qmax (g = gVR) versus α for the double-well case
of the system (1). Here ω2

0 = −5, β = 5, d = 0.3, f = 0.05,
ω = 1.5, Ω = 10. gVR and Qmax are symmetric about α = 0.
The continuous line and the painted circles represent the
theoretical and numerical results, respectively.

origin while the unstable one moves away from the
origin along the positive X-axis. At g = gc = 70.72
the two equilibrium points lying in the region X > 0
collide with each other and disappear. For g ≥ gc
there is only one stable equilibrium point and is in
the region X < 0. This is the case for α > 0. For α <
0 the stable equilibrium point in the region X > 0
remains stable while the other stable equilibrium
point in the region X < 0 collides with the unstable
point and both disappear at g = gc. That is, the
high-frequency periodic modulation with amplitude
g > gc leads to the elimination of bistability.

The effect of α on g
VR

and Qmax (the value of
Q at g = gVR) is depicted in Fig. 8. We have cho-
sen the stable equilibrium point X∗

R (X∗
L), which is

the local minimum of the lower depth well, when
the effective potential is a double-well in order to
obtain this figure for α > 0 (α < 0), in the theoret-
ical calculation of g

VR
. (For α > 0 (< 0) the right

(left)-well has a lower depth than the other well.)

In the numerical simulation, the above refers to the
choice of the orbit confined to the lower depth well
for the starting small value of g. If the system is con-
sidered with the orbit confined to higher depth well
for the starting small value of g for each fixed value
of α, then g

VR
versus α plot is the same as Fig. 8(a)

except without the lower branch (g
VR

≤ 70).
Observe that g

VR
and Qmax are symmetric

about α = 0, as shown in Fig. 8. For |α| ∈
[0.34, 1.23] three resonances occur while for the
remaining values of α two resonances occur. We can
account the various branches in Fig. 8 with ωr ver-
sus g plot [Fig. 9(a)]. In Fig. 9(a) when α = 0 as
g increases the value of ωr decreases and becomes
≈ 0 at gc = 81.65 and then increases.

As seen in Fig. 7 at g = gc a pitchfork bifur-
cation occurs and the double-well shape of Veff

becomes a single-well. Furthermore, X∗
R (as well as

X∗
L)→ 0 as g → gc and X∗ = 0 is the only pos-

sible equilibrium state for which a slow oscillation
takes place. There is no abrupt change in the value

(a)

(b)

Fig. 9. Theoretical resonant frequency ωr as a function of
g for three values of the asymmetry parameter α. The hori-
zontal dashed line corresponds to ωr = ω = 1.5. In the sub-
plots (a) and (b) X∗ in Eq. (8) is chosen as X∗

R and X∗
L,

respectively.
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of ωr at g = gc. Since ωr is independent of ω, for
each value of ω in the interval 0 < ω < ωr(g = 0),
ωr = ω at two values of g and hence there are two
resonances. A numerically computed Q is plotted as
a function of g for three values of α in Fig. 10(a),
where for the starting small value of g an initial con-
dition on the orbit confined to right-well is chosen.
We notice two resonances at g

VR
= 71.05 and 98 for

α = 0.
gc and ωr(g = 0) depend on the value of α.

For α = 0.75 as g increases from 0 the value of ωr

decreases and reaches the minimum value 0 in the
limit g → gc = 70.72. At this value of g the effec-
tive potential undergoes bifurcation to a single-well
form. The point is that for g < gc two slow motions
coexist while for g ≥ gc only one slow motion exists
and is about X∗

L < 0. Moreover, as g → gc, we do
not have either the case X∗

L and X∗
R → X∗ = 0 (as

is the case for α = 0) or X∗
L → X∗

R. Consequently,
the resonant frequency at g = gc jumps from the
minimum value 0 to a higher value corresponding
to the slow motion about X∗

L. This is the reason for
the appearance of discontinuity in Q versus g plot
in Fig. 10(a). If X∗ = X∗

L is used in the theoretical
calculation of ωr given by Eq. (8) for both g < gc
and g > gc, then we get the ωr versus g as shown in
Fig. 9(b) where we can notice a smooth variation of
ωr at g = gc.

An interesting observation in Fig. 9(a) is that
the dashed horizontal line corresponding to ω = 1.5
intersects the ωr curve at three values of g. That
is, ω2

r − ω2 = 0 for three values of g. These values
of g are g

VR
= 64.35, 79.55 and 96.85 — one lies

below gc while the other two are above gc. At all
these three resonances Qmax = 1/(dω) = 2.22222.
This is the case for α ∈ [0.34, 1.23]. For each fixed
value of α in this interval, resonance occurs at three
different values of g and the values of g

VR
vary with

α. However, Qmax at the three values of gVR remain
equal and even for all values of α in the above inter-
val. Moreover, it depends only on the parameters d
and ω and independent of other parameters. We
can observe three resonances all with the same Q
in Fig. 10(a), for α = 0.75. The occurrence of three
resonances is attributable to the tuning of three dif-
ferent oscillations: one confined to the lower depth
well, second confined to the higher depth well and
the third involving cross-well motion. In the sym-
metric double-well system ωr of the two intra-well,
oscillations are the same and hence only one res-
onance for g < gc (and another for g > gc, asso-
ciated with cross-well motion). In the asymmetric

(a)

(b)

Fig. 10. Numerically calculated response amplitude Q ver-
sus g for three values of α of the system (1) with a double-well
potential V (x). For the starting value of g the initial con-
dition is chosen on the orbit confined to (a) right-well and
(b) left-well of the system.

double-well case ωr of the two intra-well, oscilla-
tions are different (as shown in Fig. 9). The response
curve for α = 0.75 in Fig. 10(a) can be compared
with the response curve shown in Fig. 10(b), where
the initial condition for the starting small value of g
is on the orbit confined to the left-well. In Fig. 10(b)
we notice only two resonances. The resonance at
g

VR
= 64.35 is absent.
When α = 2, the ω = 1.5 line in Fig. 9(a)

intersects the resonant frequency curve only at
g = 55.25. Q is maximum at this value of g with
ω2

r − ω2 = 0 and Qmax = 1/(dω) = 2.22222. For
g > gc = 60.47, ωr curve has a local minimum at
g = 95.55 and hence Q becomes a maximum though
ω2

r − ω2 �= 0. The value of Q at this resonance is
lower than its value at g = 55.25. For α = 2 there
are two resonances as shown in Fig. 10(a). For the
same value of α in Fig. 10(b) we find only the sec-
ond resonance. For |α| < 1.23 all the resonances are
due to ω2

r − ω2 = 0 and hence Qmax = 2.22222 as
seen in Fig. 8(b). In the remaining interval of α, one
resonance is due to ω2

r − ω2 = 0 while the other is
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Fig. 11. Q versus g for different types of low-frequency input
signal. The continuous line, dashed line, painted circles and
triangles correspond to the signals f cos ωt, h1(t), h2(t) and
h3(t) respectively, described in Eqs. (12)–(14).

due to the local minimum of ωr with ωr �= ω and
hence there are two branches of Qmax curve.

Figure 11 presents the variation of Q with
g for the nonsinusoidal periodic signals given by
Eqs. (12)–(14) for α = 0.75 and ω = 1.5. All the
three resonances observed for the sinusoidal signal
f cosωt persist for the other three forms of the peri-
odic signal, however, with a slight shift in the values

of g
VR

. Qmax is also found to be different for the dif-
ferent signals. The decrease in the value of Q for the
nonsinusoidal signal is due to the fact that they can
be written as a Fourier series in terms of the sinu-
soidal terms with the fundamental frequency ω and
its higher-order harmonics. Therefore, the value of
Q at ω of the nonsinusoidal signal is lower than that
of the sinusoidal signal f cosωt.

The effect of additive Gaussian white noise on
the resonance is also studied for α = 0.75 and
ω = 1.5. The increase in the noise intensity is found
to suppress the noise-free three resonances one by
one. Moreover, the value Qmax at the resonance(s)
is decreased by the added noise, and for a suffi-
ciently large noise intensity all the resonances are
suppressed.

5. Resonance in the Overdamped
System

The equation of motion of the overdamped version
of the asymmetric Duffing oscillator is

ẋ = −ω2
0x− αx2 − βx3 + f cosωt+ g cos Ωt. (15)

(a) (b)

(c) (d)

Fig. 12. (a) α versus gVR for a single-well case of the overdamped system (15). The values of the parameters are ω2
0 = 1, β = 1

and Ω = 10. (b) Q versus g for the single-well case with α = 1.9, f = 0.05 and ω = 0.85. (c) and (d) are for a double-well case
where ω2

0 = −5, β = 5, Ω = 10, f = 0.05 and ω = 1.5.
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The amplitude AL of the low-frequency oscillation
of the system (15) is obtained as

AL =
f√

ω2
r + ω2

, (16)

where ω2
r is given by Eq. (8) and C1 and C2 in

Eq. (6) now become

C1 =
αg2

2Ω2
, C2 = ω2

0 +
3βg2

2Ω2
. (17)

For the system (15) with symmetric single-well
(ω2

0, β > 0, α = 0) as g increases ω2
r increases from

ω2
0 monotonically and hence there is no resonance.

Resonance occurs in the asymmetric system for a
range of values of α. For example, Fig. 12(a) shows
g

VR
versus α for ω2

0 = 1, β = 1 and Ω = 10. As
shown in Fig. 12(b), for ω = 0.85, f = 0.05 and
α = 1.9 resonance takes place at g = 5.78. In the
symmetric double-well case for ω2

0 = −5, β = 5
and Ω = 10 only one resonance is possible (g

VR
=

[2|ω2
0 |Ω2/(3β)]1/2) and it occurs at g = 8.165. In

Fig. 12(c) we notice two resonances for all nonzero
values of the asymmetry parameter α. However,
similar to the system (1) in the system (15) also

the value of Qmax at one resonance (which occurs
at the minimum of the function S with ω2

r −ω2 �= 0
for the damped system and ω2

r �= 0 for the over-
damped system) decreases with increase in α [see
Fig. 12(d)].

6. Resonance in the Asymmetric
Quintic Oscillator

The additional resonance found in the systems (1)
and (15) due to the presence of asymmetry in
the potential can be observed in other nonlinear
asymmetric systems also. For example, consider the
equation of motion of the asymmetric quintic oscil-
lator driven by two periodic forces given by

ẍ+ dẋ+ ω2
0x+ αx2 + βx3 + γx5

= f cosωt+ g cos Ωt. (18)

When α = 0, the potential of the quintic oscilla-
tor is symmetric. For ω2

0 , α, β, γ > 0 the potential
is a single-well with a local minimum at x = 0.
We fix the parameters as ω2

0 = β = γ = 1, d =
0.3, f = 0.05, ω = 1.25 and Ω = 10. Figure 13(a)
shows the plot of g

VR
versus α. When α = 0 there

(a) (b)

Fig. 13. (a) Plot of gVR versus the asymmetry parameter α of the system (18) with a single-well potential. (b) Response
amplitude Q as a function of g for α = 0 and 3. gVR = 51 when α = 0. gVR = 29.25 and 64.75 when α = 3.

(a) (b)

Fig. 14. (a) Plot of gVR versus α for the system (18) with a double-well potential. (b) Q versus g for two values of α.
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is only one resonance. Asymmetry induced second
resonance occurs for α ∈ [2.75, 3.3]. In Fig. 13(b)
for α = 3 we can clearly see two resonances.

The quintic oscillator has a double-well shape
for ω2

0 < 0, β, γ > 0. We choose ω2
0 = −1 and

the values of the other parameters as fixed earlier.
In Fig. 14(a) g

VR
versus α is plotted. As shown in

Fig. 14(b) two resonances occur for α = 0. One
more resonance is found for α < 0.925. An example
is shown in Fig. 14(b) for α = 0.6. For α > 0.925
only one resonance occurs.

7. Conclusion

We have studied the occurrence of vibrational res-
onance in the asymmetric Duffing oscillator. When
the asymmetry parameter α is varied, the depth of
the two wells as well as the location of the local
minima of the wells change. The introduction of
the effective potential for the slow motion allowed
us to find an approximate analytical expression for
the response amplitude Q at the low-frequency ω.
Multiple resonance is found for a range of fixed
parameter values when the amplitude g of the high-
frequency force is varied. In the symmetric single-
well and double-well cases at most single and double
resonances respectively are possible. We have shown
the occurrence of an additional resonance due to
the presence of the asymmetry in the potential.
In the double-well system, the additional resonance
appears when the orbit confined to the lower depth
well is chosen for the starting small value of the
control parameter g. The additional resonance is
found in the overdamped system also. Importantly,
in the overdamped symmetric single-well system
vibrational resonance is not possible while it occurs
for a range of values of the asymmetry parameter.

It is noteworthy to compare the effect of the
asymmetry on stochastic resonance reported in
[Wio & Bouzat, 1999; Li, 2002] with the vibra-
tional resonance. These two resonances with +α
are the same as −α. Stochastic resonance does not
occur with additive Gaussian noise in the single-
well asymmetric system whereas vibrational reso-
nance including double resonance takes place. In
the double-well system, only one stochastic reso-
nance is realized. Moreover, the asymmetry is found
to increase the value of the optimum noise inten-
sity at which resonance occurs and reduces the
maximum value of signal-to-noise ratio. In con-
trast to this, we notice (i) more than one vibra-
tional resonance in both damped system (Fig. 8)

and overdamped system [Fig. 12(c)] and (ii) for one
resonance g

VR
(α) < g

VR
(α = 0) and at this res-

onance Q(α, g
VR

) = Q(α = 0, g
VR

) for a range of
values of α.
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